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Metagenome-assembled microvirus and cressdnavirus genomes
from fecal samples of house mice (Mus musculus)
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ABSTRACT House mice, Mus musculus, are highly adapted to anthropogenic spaces.
Fecal samples were collected from house mice entering primate enclosure areas at the
Duke Lemur Center (Durham, NC, USA). We identified 14 cressdnavirus and 59 microvirus
genomes in these mouse feces.
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nvasive rodents alter ecosystem dynamics by outcompeting endemic wildlife for

resources and frequently moving between wild and human-inhabited spaces (1-5).
House mice (Mus musculus), in particular, have become one of the most widespread
invasive species, being transported across the planet through human movement and
adapting remarkably well to human-altered landscapes (6).

As part of a larger study sampling lemurs, humans, and rodents at the Duke Lemur
Center (Durham, NC, USA) under IACUC #A161-21-08, fecal samples were collected in
August 2021 from two M. musculus trapped indoors in lemur enclosure areas. Fecal
samples were frozen at —80°C until extraction. Once thawed, fecal samples were
homogenized with SM buffer [0.1 M NaCl, 50 mM Tris-HCl (pH 7.4)] and centrifuged
briefly at 8,000 rpm. Using the Roche High Pure Viral Nucleic Acid Kit (Roche Diagnos-
tics, Germany), DNA was extracted from 200 pL of each supernatant. DNA extract was
amplified using the Templiphi kit (GE Healthcare, USA). After library preparation with
the lllumina DNA Prep Kit, libraries were sequenced on an lllumina NovaSeq 6000
at the Duke Center for Genomic and Computational Biology yielding 18,080,238 and
23,175,508 paired reads for each of the two samples. Paired-end reads were trimmed
using Trimmomatic v0.39 (7) and assembled with MEGAHIT v.1.2.9 (8). Circular contigs
were identified by terminal redundancy based on a >10 nt repeat. Diamond v2.1.9 (9)
BLASTx was used to identify viral-like sequences against a local NCBI RefSeq viral protein
database (release 220). Cenote Taker2 v2.1.5 (10) and VIBRANT v1.2.1 (11) were used
to annotate viral genomes. Viral genomes with >98% identity were clustered into virus
operational taxonomic units (vOTUs) with SDT v1.2 (12) and used as a reference to map
reads with BBMap v38.12 (13). Web-based BLASTn was used to determine the similarity
of viruses characterized in this study to known virus genomes. All bioinformatics tools
were used with default settings.

We identified 14 cressdnavirus and 59 microvirus genomes from feces collected
from two M. musculus individuals (Duke_8, Duke_15). The Cressdnaviricota phylum
is composed of single-stranded DNA viruses infecting an array of eukaryotic hosts
including plants, animals, fungi, and protists (14). The 14 cressdnavirus genomes encode
a capsid and replication-associated protein, range in length from 1,847 to 3,474 nt, and
GC content of 34.1%-55.0% (Fig. 1A). PP473106 and PP473146 share 97.5% similarity
and fall within the Smacoviridae family, a group predicted to infect gut archaea (15).
PP473147 is a member of the Genomoviridae family, a group of likely fungi-infecting
cressdnaviruses (16). The unclassified cressdnavirus genomes (n = 11) identified in this
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FIG 1 (A). Genome organizations of the cressdnaviruses were identified in M. musculus feces in this study. A summary of
the accession numbers, GC content, read depth, and top BLASTn hit for each distinct genome is presented. **This BLAST
hit represents a Rep protein BLASTp instead of a full genome comparison for PP473149. (B) Genome organizations of the
microviruses identified in M. musculus feces in this study. A summary of the accession numbers, GC content, read depth,
and top BLASTn hit for each distinct genome is presented. Genomes characterized in this study with >98% nt identity are
represented by one row. For (A) and (B), genome coverage plots based on vOTU read mapping depict the presence of all
vOTUs across Duke_8 and Duke_15. Black squares represent 50%-100% genome coverage and serve as a high-confidence
proxy of vOTU presence.
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study share similarities with viruses identified from water (n = 5), soil (n = 1), fish tissue (n
= 1), damselflies (n = 1), capybara feces (n = 1), and tortoise feces (n = 2).

Microviruses are small, single-stranded DNA bacteriophages (17). The 59 microvirus
genomes identified encode at least a major capsid protein, DNA pilot protein, and
replication initiator protein, range in length from 4,066 to 6,501 nt, and range in GC
content from 30.8%-59.0% (Fig. 1B). The distinct (<98% similarity) microvirus genomes
(n = 51) share the highest similarity with microviruses characterized from rodent (M.
musculus, Dipodomys merriami, Rattus norvegicus, and Sigmodon arizonae) feces and
tissue (n = 8), human samples (n = 17), water (n = 9), ungulate feces (n = 5), soil (n = 3),
fish tissue (n = 2), bat feces (n = 2), insects (n = 2), reptile feces (n = 1), avian feces (n = 1),
dog feces (n = 1), and airborne particulate (n = 1). The identified microviruses likely infect
enterobacteria within M. musculus.
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