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The type II secretion system as an underappreciated and 
understudied mediator of interbacterial antagonism
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ABSTRACT Interbacterial antagonism involves all major phyla, occurs across the full 
range of ecological niches, and has great significance for the environment, clinical arena, 
and agricultural and industrial sectors. Though the earliest insight into interbacterial 
antagonism traces back to the discovery of antibiotics, a paradigm shift happened when 
it was learned that protein secretion systems (e.g., types VI and IV secretion systems) 
deliver toxic “effectors” against competitors. However, a link between interbacterial 
antagonism and the Gram-negative type II secretion system (T2SS), which exists in 
many pathogens and environmental species, is not evident in prior reviews on bacterial 
competition or T2SS function. A current examination of the literature revealed four 
examples of a T2SS or one of its known substrates having a bactericidal activity against a 
Gram-positive target or another Gram-negative. When further studied, the T2SS effectors 
proved to be peptidases that target the peptidoglycan of the competitor. There are also 
reports of various bacteriolytic enzymes occurring in the culture supernatants of some 
other Gram-negative species, and a link between these bactericidal activities and T2SS 
is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is 
possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains 
relatively understudied for its role in interbacterial competition. Arguably, there is a 
need to analyze the T2SSs of a broader range of species for their role in interbacterial 
antagonism. Such investigation offers, among other things, a possible pathway toward 
developing new antimicrobials for treating disease.
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INTERBACTERIAL ANTAGONISM AND THE EMERGENT ROLE OF PROTEIN 
SECRETION SYSTEMS

R ecently, there has been a renewed and expanded interest in interbacterial antago
nism, that is, when one bacterium compromises another’s viability (1–6). Interbac

terial antagonism occurs across the full range of ecological niches and includes all 
major phyla. Thus, understanding its mechanisms has much significance for clinical, 
environmental, agricultural, and industrial arenas. The earliest insight into interbacte
rial antagonism traces back to the time when antibiotics were revealed, and since 
then, various metabolites, peptidic bacteriocins, colicins, and perforin-like proteins 
have demonstrated antibacterial activity (1–3, 7–13). In these cases, which encompass 
Gram-negative bacteria and Gram-positive bacteria, the antibacterial factors are released 
from the producer by cell lysis or via the action of the Sec-translocon, ABC-type 
transporters, efflux pumps, or outer membrane (OM) vesicles and thereafter diffuse 
toward the target bacterium (1, 2, 14–16). However, some of these antibacterial proteins, 
for example, WapA of Bacillus subtilis, are exported by the Sec-translocon not to the 
extracellular milieu but to the cognate bacterial surface and once there mediates a form 
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of contact-dependent growth inhibition (3, 16–18). As a variation on this theme, SitA is 
transferred from the surface of Myxococcus xanthus to the target’s OM in a process 
called OM exchange (2, 19, 20).

A paradigm shift occurred when it was realized that protein secretion systems, which 
are multi-component, membrane-spanning apparatuses, can also mediate the delivery 
of toxic “effectors” into competitors (1–3, 14, 21, 22). The most widely studied of this 
type of secretion system is the type VI secretion system (T6SS). Present in various 
Gram-negative bacteria, the T6SS is a spear-like apparatus (i.e., a repurposed phage 
fiber) that directly contacts the competing bacteria and then injects lipases, nucleases, 
peptidoglycan hydrolases, and other effectors (23–30). We and others have shown that 
type IV secretion systems (T4SSs), which are present in a subset of Gram-negative 
bacteria and evolutionarily related to conjugation systems, can also promote contact-
dependent, interbacterial killing by delivering multiple protein effectors (22, 31–40). 
Some conjugative T4SSs mediate interbacterial antagonism independently of protein 
or DNA-based cargo (5). Contact-dependent interbacterial killing has also been linked 
to the type VII secretion system of some Gram-positive bacteria (41–45) and a subclass 
of the Gram-negative type V secretion system known as contact-dependent inhibition 
(CDI) (14, 46–50). In yet another example, variants of the type I secretion system of some 
Gram-negative bacteria secrete bacteriocins into the extracellular milieu or deliver other 
toxic proteins to the producer’s surface for cell-to-cell antagonism (3, 21, 51, 52). Finally, a 
version of the Gram-negative type III secretion system helps M. xanthus degrade bacterial 
prey (19, 53), and there is speculation that effectors of the type IX secretion system of 
Bacteroidota hinder competitors (54, 55). Not surprisingly, many bacteria use multiple 
methods for antagonizing competitors, including contact-dependent and contact-inde
pendent mechanisms and the utilization of more than one secretion apparatus (2, 3, 22, 
56). Yet, there is another type of protein secretion system, the type II secretion system 
(T2SS), which, though well studied for other reasons, has been largely overlooked for its 
role in interbacterial competition.

THE T2SS

Evolutionarily related to the type IV pilus apparatus, T2SSs mediate a multi-step form 
of protein secretion (57–65). Proteins to be secreted by this system (substrates) are 
first transported across the inner membrane by the Sec or Tat translocon. Once in 
the periplasm, the substrates assume their tertiary conformation and, in some cases, 
oligomerize. Finally, the folded substrates are transited across the OM by the T2SS 
apparatus. In this last step, the T2SS “pseudopilus” behaves like a piston or Archimedes 
screw to propel the substrates through the T2SS’s OM secretin and deliver them into 
the extracellular space. The T2SS apparatus is typically composed of 12 core proteins, 
although there are instances of some bacteria having fewer constituent parts (62). 
Finally, in some cases, additional chaperones aid with the stabilizing and secreting of 
the substrates (66, 67). What ultimately causes a substrate to be recognized by the T2SS 
apparatus is not clear but likely involves the protein’s tertiary structure (61, 68).

Although, at one time, referred to as the main terminal branch of the general 
secretory pathway (57, 69, 70), the T2SS is not universal in Gram-negative bacteria 
(71). Indeed, in its canonical form, the T2SS is mainly present in the Proteobacteria and, 
even there, is not 100% conserved (62, 72, 73). Hence, the T2SS is rightly considered 
as a specialized system that (only) a subset of Gram-negative bacteria has evolved for 
growth in the environment and/or infection of host organisms (62, 74). However, many 
human and animal pathogens are known to express a T2SS, including, among others, 
Acinetobacter baumannii, Burkholderia cenocepacia, Escherichia coli, Klebsiella pneumo
niae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, 
Vibrio cholerae, and Yersinia enterocolitica (Fig. 1) (62, 73, 75–85). T2SS-expressing plant 
pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, 
Xanthomonas campestris, and Xylella fastidiosa, among others (Fig. 1) (62, 86–93). Just 
as the number of pathogenic species that have been shown to express a functional 
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T2SS has increased in recent years, as reflected in Fig. 1, the number of processes 
ascribed to T2SSs during infection has steadily increased and currently encompasses 
tissue degradation in a range of body sites, plant cell wall degradation, and subversion 
of host defense factors, including complement, neutrophils, reactive oxygen species and 
mucus layers, suppression of immune signaling and cytokine destruction, adherence to 

FIG 1 Species in which a secreted protein/activity or phenotype is linked to the T2SS. Species belonging to the α-Proteobacteria are shaded in purple, 

β-Proteobacteria in orange, γ-Proteobacteria in blue, δ-Proteobacteria in yellow, and non-Proteobacteria in green. This is not necessarily an exhaustive list.
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surfaces, biofilm formation, invasion of and growth within host cells, host cell death and 
lysis, alterations in ion flux, reductions in blood coagulation, and nutrient assimilation 
after the breakdown of proteins, lipids, and carbohydrates (62, 94–113). T2SSs are also 
active in many environmental, non-pathogenic species (Fig. 1), expediting an expanding 
list of metabolic processes and symbioses, for example, iron, manganese, and iodate 
reduction, hydrocarbon degradation, and nutrient trafficking (62, 114–127). For many of 
the genera in Fig. 1, there are additional species in the genus that also carry the genes 
for a T2SS but functional analyses have not yet been reported (66, 73, 76, 128–144). 
In addition to the pathogenic and non-pathogenic genera listed in Fig. 1, there are 
many other genera within the Proteobacteria that encode the genes for a T2SS (that are 
distinguishable from the genes for a type IV pilus) and likely express T2SS-dependent 
proteins (Fig. 2) (73, 135, 145–156). The genes for T2SSs are typically present within the 
bacterial chromosome; however, there are examples of the system being encoded within 
a plasmid (108, 146, 157).

The output of a T2SS can range from one to dozens of proteins, encompassing a 
diverse array of peptidases, proteases, phosphatases, carbohydrate-degrading enzymes 
(e.g., cellulases, chitinases, and mucinases), lipolytic enzymes (lipases and phospholi
pases), nucleases (DNase and RNase), reductases, pore-forming proteins, ADP-ribosylat
ing toxins, and novel proteins (62, 99, 102, 158–168). Although most T2SS substrates 
ultimately exist (only) in the extracellular milieu, some also locate to the surface of the 
expressing cell (62, 107, 111, 169–174). Some bacteria encode two or three T2SSs that 
might mediate the release of different sets of substrates (62, 153, 175). Despite the vast 
amount of work done on T2SSs, a significant role for these systems in interbacterial 
antagonism has not been described or posited in the many reviews on the T2SS that 
extend from 1990 to the present (2, 3, 14, 18, 21, 22, 57, 58, 60–62, 69–71, 73, 79, 114, 
174, 176–222). Consequently, the impression has been that T2SSs are not important for 
interbacterial competition but are devoted to virulence or nutrient assimilation.

CONNECTIONS BETWEEN T2SSs AND INTERBACTERIAL ANTAGONISM

From the mid-1960s to the present, bacteriolytic enzymes have been detected in 
the culture supernatants of different environmental, Gram-negative bacteria (223–228). 
Such enzymes that have been characterized include the peptidoglycan-targeting α-lytic 
proteases, β-lytic proteases, and CwhA amidases of Achromobacter lyticus and Lysobacter 
sp. and the lysozyme-like enzymes and lipases from M. xanthus and other myxobacte
ria (229–240). The documented presence of a signal sequence in the N-terminus of 
many of these enzymes suggests that at least some of them are substrates of the 
T2SS. Compatible with such a scenario, the T2SS apparatus genes are upregulated at 
the time when Lysobacter capsici produces its bacteriolytic proteases and M. xanthus 
preys on other bacteria (125, 241). However, a formal linkage to the T2SS, for example, 
documenting the loss of the secreted protein in a T2SS mutant’s supernatant, has not 
occurred yet. The first clear connection of a secreted, bacteriolytic enzyme to a T2SS 
began in 1993 when the LasA elastase of P. aeruginosa was shown to be equivalent 
to a previously defined staphylolytic enzyme in P. aeruginosa supernatants (242–247). 
In 1998, LasA was confirmed as being a substrate of the P. aeruginosa T2SS, when it 
proved to be undetected in supernatants of an xcp T2SS mutant (248–250). A member 
of the M23 family of peptidases (251, 252), LasA lyses Staphylococcus aureus by cleaving 
the pentaglycine within the peptidoglycan of that target cell (242, 247). Despite these 
data, the antibacterial function of LasA was not featured in the many reviews on 
T2SSs and interbacterial antagonism that later appeared (as noted above), although 
attention was frequently directed toward the role of the protein’s elastase activity in 
infection. Incidentally, another staphylolytic enzyme dependent on the P. aeruginosa 
T2SS has been suggested, but the identity of that factor remains undefined (253–255). 
The next connection between an antibacterial activity and a T2SS occurred in 2020 and 
involved a marine species of Pseudoalteromonas. Specifically, an M23-peptidase known 
as pseudoalterin was found to be secreted via the T2SS and to promote the killing of 
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FIG 2 Additional genera within the Proteobacteria that carry genes for a T2SS. This is not necessarily an exhaustive list.
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S. aureus and various other marine Gram-positive bacteria (122, 256). As is the case for 
LasA, pseudoalterin acts on the peptide chain within the peptidoglycan of its target 
bacterium (122). The third link between antibacterial activity and a T2SS came in 2021, 
when the NlpC/P60 endopeptidase (PnpA) secreted via the T2SS of Photobacterium 
damselae was shown to degrade in vitro purified Vibrio peptidoglycan (257–259). Yet, an 
outstanding question from this study is how PnpA naturally bypasses the Gram-negative 
target’s OM in order to reach the peptidoglycan. One possibility is that a T2SS-dependent 
lipase or an effect of another secretion system first disrupts the lipid bilayer creating a 
pathway for PnpA to access the periplasm. A final study linking a T2SS to interbacterial 
antagonism occurred in 2022, when a T2SS mutant of Plesiomonas shigelloides was found 
to be impaired for killing E. coli upon co-incubation on solid media (81). The secreted 
bactericidal protein(s) of P. shigelloides remains unknown, however. Based on these data, 
the T2SS can, in fact, be a mediator of interbacterial antagonism, and it is conceivable 
that many T2SSs have antibacterial output. Yet, the T2SS still remains understudied for its 
role in interbacterial competition, especially when compared to other protein secretion 
systems.

CONCLUDING THOUGHTS AND FUTURE QUESTIONS

Despite what has been the prevailing impression, it is logical that T2SSs would be 
another means for interbacterial antagonism. For example, the different proteases/pepti
dases, lipases, and carbohydrate-degrading enzymes that are secreted by T2SSs could 
theoretically alter many moieties on the surface or in the envelope of a competitor 
leading to a loss of function or cell death (while not necessarily harming the producer). 
Based on the examples above, peptidoglycan appears to be a common target for 
antibacterial T2SSs. When the competitor is a Gram-positive bacterium, an enzyme 
acting on peptidoglycan might alone suffice. But, when the competitor is another 
Gram-negative bacterium, enzymes that act on the target’s OM would seem to be also 
necessary for effective competition. On the other hand, some T2SS substrates might act 
indirectly, for example, by processing foodstuffs in the extracellular milieu in a way that 
makes them less accessible or useful to competitors. Since some T2SS substrates (also) 
reside on the producer’s surface, T2SSs might even facilitate a novel form of contact-
dependent killing. Finally, it is possible that some T2SS substrates potentiate the action 
of another antibacterial secretion system, just as some T2SSs act to enhance the effects 
of those other systems on eukaryotic hosts (222, 260). Overall, T2SSs likely contribute to a 
multi-pronged strategy of interbacterial antagonism, especially for those Gram-negative 
bacteria that do not have one or more of the other systems. Aside from these types of 
mechanistic questions, it will be beneficial for future investigations to discern what other 
T2SS-encoding bacteria (Fig. 1 and 2) use their T2SS for antibacterial antagonism, to 
what degree, and with what types of effectors. Current Basic Local Alignment Search Tool 
(BLASTP) searches indicated that proteins with significant amino acid sequence similarity 
to LasA, pseudoalterin, or PnpA are encoded within the genomes of many of these other 
species (Fig. 3), further suggesting that these organisms might similarly employ their 
T2SS for interbacterial competition. Yet, given the ecological diversity of the >100 genera 
in Fig. 1 and 2, it is likely that new types of effectors and new forms of competition 
will also be revealed. For such an endeavor, it will be valuable to assess the role of the 
T2SS in models that simulate natural niches, whether that be an aquatic or terrestrial 
habitat, the rhizosphere, or infection of an animal or human host. Another interesting 
question will be if any known or yet-to-be-defined T2SS substrates that target bacteria 
also confer activity against fungi or protists. Further investigation of T2SS substrates as 
agents of antibacterial antagonism also offers a possible pathway toward identifying 
new antimicrobials that could be used to treat infectious diseases. Along those lines, 
LasA has been used as a treatment for experimental staphylococcal eye infections (261–
263). In sum, an expanded appreciation for T2SSs is likely to yield important new insight 
into the mechanisms of interbacterial antagonism, pathogenesis and potential disease 
therapies, and diverse ecological niches.
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FIG 3 Known antibacterial effectors of T2SSs and some of their homologs encoded within the genomes of other T2SS-encoding species. (a) BLASTP results 

using the LasA sequence from P. aeruginosa strain PA01 (accession no. NP_250562) as the query. Top hits were proteins from other species of Pseudomonas; 

however, they were not presented in order to focus on related proteins that occur in other genera. The five examples given are proteins that show some of the 

greatest levels of similarity to LasA and are from diverse species that are known to encode a T2SS. (b) BLASTP results using the pseudoalterin sequence from 

Pseudoalteromonas sp. strain CF6-2 (accession no. WP_237115101) as the query. The examples listed are five that show some of the greatest levels of similarity 

to pseudoalterin and are from a range of non-Pseudoalteromonas species that are known to encode a T2SS. (c) BLASTP results using the PnpA sequence from P. 

damselae strain MT1415 (accession no. 6SQX_B) as the query. The proteins listed are five that showed some of the greatest levels of similarity to PnpA and are 

from non-Photobacterium species that are known to encode a T2SS.
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