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Genomic sequences of Mycobacterium smegmatis A cluster 
phages LBerry, Pembroke, and Zolita
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ABSTRACT LBerry, Pembroke, and Zolita are newly isolated bacteriophages that 
infect Mycobacterium smegmatis mc²155. Based on gene content similarity, LBerry and 
Pembroke are assigned to cluster A3, and Zolita is assigned to cluster A5. LBerry and 
Pembroke are 99% identical to Anaysia and Caviar, and Zolita is 99% identical to SydNat.
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T he Mycobacterium genus of bacteria includes increasingly antibiotic-resistant 
human pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus 

(1). With the increasing occurrence of antibiotic-resistant pathogens constituting a global 
threat to public health, phage therapy has recently been employed as an alternative 
treatment strategy. Some phages isolated using the nonpathogenic bacterial host M. 
smegmatis also infect pathogenic Mycobacteria and these phages can potentially be used 
in phage therapy (2, 3).

LBerry, Pembroke, and Zolita were isolated, purified, and their genomes were 
annotated through our participation in the SEA PHAGES program (4). Plaque purification, 
amplification, and production of high-titer lysates were performed as described in the 
Phage Discovery Guide (5).

All three phages were isolated from damp grassy soil samples collected in the 
northeastern US; with LBerry isolated outside of a hotel, Pembroke from a former 
farm, and Zolita near a flower bed. Each sample was treated with 7H9 liquid medium, 
filtered (0.2 µm), and inoculated with Mycobacterium smegmatis mc2 155. Samples were 
incubated at 37°C with shaking for 48 h, then plated on top agar with host bacteria 
to form plaques. Three rounds of purification were done for LBerry and Pembroke, and 
four rounds for Zolita. All three phages were determined to have siphovirus morphology 
via negative-strain transmission electron microscopy (Fig. 1). DNA from each phage was 
extracted from a high-titer lysate by phenol: chloroform: isoamyl: alcohol extraction (6) 
and sequenced by the Pittsburgh Bacteriophage Institute (Table 1). Raw reads were 
verified for accuracy using Consed v29.0 (7) and assembled using Newbler v2.9 (8). All 
phage genomes have a 3′ single-stranded overhang; the sequences are reported in Table 
1 along with genome sizes and GC content for each phage. Based on gene sequence 
similarities, LBerry and Pembroke were assigned to the A3 cluster while Zolita was 
assigned to the A5 cluster (9, 10). LBerry and Pembroke are 99% identical to A3 cluster 
phages Anaysia OP021679 and Caviar ON970623 (11), and Zolita is 99% identical to A5 
phage SydNat ON970625.

DNA Master v5.23.6 was used to perform the genome annotations (12). GeneMark 
v2.5 (13), Glimmer v3.02 (14), and Starterator v.546 (15) were used to determine gene 
starts. Protein functions were determined using HHpred (PDB, UniProt, Pfam-A v.36, and 
NCBI v.3.19 databases) (16, 17), BLASTp v.2.14.1 (18), and Phamerator (19). ARAGORN 
v.1.2.38 (20) and tRNAscan-SE v.2.0 (21) were used to identify tRNAs. Membrane proteins 
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were predicted using TMHMM v.1.0.24 (22) and TOPCONS v.2.0 (23). Unless otherwise 
stated, default parameters were used for the programs listed.

Cluster A is the largest group of mycobacteriophages, with nearly 800 members. 
They are genetically diverse (24), and divided into 20 subclusters. LBerry, Pembroke, and 
Zolita follow the expected synteny of an A cluster phage beginning with a lysis cassette 
followed by structural proteins, integration proteins, replication/recombination proteins, 
an immunity repressor, and ending with a series of proteins of unknown function. The 
presence of immunity repressor and integrase genes in all three phages suggests that 
these phages could potentially adopt a temperate lifestyle (25). It has been determined 
that A3 cluster phages are able to infect M. tuberculosis H37Rv (26), indicating that LBerry 
and Pembroke could be further investigated for application in phage therapy.

FIG 1 Images of (A) LBerry, (B) Pembroke, and (C) Zolita in negative-stained (1% uranyl acetate) taken by a JEOL 200 CX transmission electron microscope. All 

three phages have siphovirus morphology.

TABLE 1 Sequencing, genome, and phage characteristics

Parameter LBerry Pembroke Zolita

Soil sample characteristics
  Collection date 17 October 2022 10 October 2022 29 August 2018
  Collection location coordinates 43.058056 N

77.650556 W
42.076111 N
70.833056 W

41.843056 N
71.438611 W

Phage particle characteristics
  Capsid size (nm) 68–71 (n = 20) 59–63 (n = 20) 67–69 (n = 20)
  Tail length (nm) 184–187 (n = 20) 189–192 (n = 20) 211–214 (n = 20)
Taxonomic identification
  Class Caudoviricetes
  Genus Microwolfvirus Benedictvirus
  Species Unclassified Benedictvirus Zolita
Sequencing
  Sequencing instrument Illumina MiSeq v3 reagents
  Library prep kit TruSeq DNA Nano Prep, S4 Flowcell, v1.5 NEB Ultra II Library Kit
  Number of reads 100,000 100,000 552,393
  Length of reads (bp) 150-base single-end reads
  Shotgun coverage (×) 276 280 1,523
Phage genome characteristics
  Genome length (bp) 50,965 50,849 51,182
  3′ single-stranded overhang sequence CGGGTGGTAA CGGGTGGTAA CGGGAGGTAA
  GC content (%) 64.0% 64.0% 60.9%
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