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Complete genomes of two Variovorax endophytes isolated from 
surface-sterilized alfalfa nodules
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ABSTRACT Variovorax species catabolize a wide range of natural and industrial 
products and have been shown to be integral rhizosphere inhabitants. Here, we report 
the complete genomes of V. paradoxus 2u118 and V. sp. SPNA7, which were isolated from 
alfalfa root nodules and possess plant growth-promoting properties.
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T he genus Variovorax is known to metabolize a wide range of substrates, including 
pesticides (1, 2), acyl homoserine lactones (3), and acrylamide (4). Variovorax species 

have the potential as plant growth-promoting bacteria via several strategies including 
lowering plant ethylene levels (5) and remediating metal-contaminated soil (6), and have 
been identified as keystone species for maintaining root growth in Arabidopsis (7). In a 
study of alfalfa nodule-associated bacteria, two Variovorax isolates were collected from 
an alfalfa field at CalPoly Pomona (34.045075, -117.812530). Surface-sterilized nodules 
were crushed with a mortar and pestle, serial dilutions were plated on LB agar, and single 
colonies were picked after incubation at 30°C for 1 week and streaked to obtain pure 
cultures. DNA was extracted using a Quick-DNA HMW Magbead Kit (Zymo Research) 
per the manufacturer’s instructions, and fragmented using Covaris gTubes following 
instructions from the manufacturer (4 passes at 7,000 rpm through the gTube orifice). 
The average size of the sheared gDNA was checked at the TapeStation 4200 (Agilent). 
Multiplexed microbial libraries were prepared using the PacBio SMRTbell prep kit 3.0 
together with the SMRTbell barcoded adapters 3.0 according to the PacBio protocol. 
Final whole genome libraries were not size-selected but simply purified via a standard 
procedure using 1× SMRTbell clean-up beads. DNA sequencing was performed using the 
PacBio Sequel IIe platform. Demultiplexing and adapter trimming were done using Lima 
v2.9.0 (https://github.com/pacificbiosciences/barcoding). All reads were then targeted 
for genome assembly by Canu v2.2 (8) and the assembled genomes were further refined 
by Circlator v1.5.5 (9) to identify circular contigs, remove redundant non-circular contigs, 
and rotate circular contigs to start with dnaA. This resulted in circular genomes and 
plasmids (Table 1). A completeness check was performed by CheckM v1.0.18 (10) and the 
N50 value was determined by Assembly stats ver1.01 (https://github.com/sanger-patho
gens/assembly-stats). High-quality reads, completeness, and N50 quality values for each 
strain were as follows: V. sp. SPNA7: 38,196, 100%, and 5,887,536 bp; V. paradoxus 2u118: 
23,568, 100%, and 5,622,806 bp. Genome ORF calling and annotation were performed by 
NCBI’s PGAP v6.6 (11) and the IMG Annotation Pipeline v.5.1.17 (12). All software tools 
used default parameters that were stated in each tool’s manual.

Properties of the finished genomes of each Variovorax strain are summarized in Table 
1. All 16S sequences had greater than 99.45% similarity to the published 16S sequences 
of V. paradoxus NBRC 15149T (13, 14). ANI values against V. paradoxus NBRC 15149T were 
93.94% and 95.27% for V. sp. SPNA7 and V. paradoxus 2u118, suggesting that SPNA7 
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could potentially represent a new species. ANI was calculated using contigs and the 
Ezbiocloud ANI Calculator (15).

Both genomes are enriched in genes related to heavy metal resistance (MerR family 
copper efflux transcriptional regulators, copper-responsive two-component system 
CusR/CusS, arsenate reductase, etc.) and xenobiotics degradation (including genes 
related to degradation of chloroalkanes, dioxins, styrene, toluene, xylene, etc.). Xenobi
otics degradation/metabolism accounts for 3.73%–3.79% of genes assigned to KEGG 
categories. Additionally, both genomes encode the enzyme ACC deaminase (acdS), 
genes for indole-3-acetic acid (IAA) biosynthesis, and acetoin and trehalose biosynthesis, 
all of which may contribute to plant growth promotion.
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DATA AVAILABILITY STATEMENT

The complete genome sequences of V. paradoxus 2u118 and V. sp. SPNA7 have been 
deposited in IMG/M under the taxon IDs 8045543215 and 8045536498, respectively. The 
assembled genomes are listed under the GenBank accession numbers CP138515 and 

TABLE 1 V. sp. SPNA7 and V. paradoxus 2u118 genome information

Strain Contig Topology Size (bp) GC% Coverage Protein coding # 16S # tRNA

SPNA7 #1 Circular 5,887,536 67.5 39.0× 5,459 2 46
#2 Circular 1,192,185 67.5 39.0× 1,112 0 10
Total n/aa 7,079,721 67.5 39.0× 6,571 2 56

2u118 #1 Circular 5,622,806 67.5 37.0× 5,238 2 46
#2 Circular 1,298,350 67 37.0× 1,241 0 0
Total n/a 6,921,156 67.5 37.0× 6,479 2 46

an/a: not available.
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CP138516 for 2u118, and CP138513 and CP138514 for SPNA7. The raw sequencing reads 
have been deposited under the NCBI BioProject numbers PRJNA1026576 for 2u118 and 
PRJNA1026575 for SPNA7.
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