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Abstract
Background  Illicit opioid overdose continues to rise in North America and is a leading cause of death. Mathematical 
modeling is a valuable tool to investigate the epidemiology of this public health issue, as it can characterize key 
features of population outcomes and quantify the broader effect of structural and interventional changes on 
overdose mortality. The aim of this study is to quantify and predict the impact of key harm reduction strategies at 
differing levels of scale-up on fatal and nonfatal overdose among a population of people engaging in unregulated 
opioid use in Toronto.

Methods  An individual-based model for opioid overdose was built featuring demographic and behavioural variation 
among members of the population. Key individual attributes known to scale the risk of fatal and nonfatal overdose 
were identified and incorporated into a dynamic modeling framework, wherein every member of the simulated 
population encompasses a set of distinct characteristics that govern demographics, intervention usage, and 
overdose incidence. The model was parametrized to fatal and nonfatal overdose events reported in Toronto in 2019. 
The interventions considered were opioid agonist therapy (OAT), supervised consumption sites (SCS), take-home 
naloxone (THN), drug-checking, and reducing fentanyl in the drug supply. Harm reduction scenarios were explored 
relative to a baseline model to examine the impact of each intervention being scaled from 0% use to 100% use on 
overdose events.

Results  Model simulations resulted in 3690.6 nonfatal and 295.4 fatal overdoses, coinciding with 2019 data from 
Toronto. From this baseline, at full scale-up, 290 deaths were averted by THN, 248 from eliminating fentanyl from 
the drug supply, 124 from SCS use, 173 from OAT, and 100 by drug-checking services. Drug-checking and reducing 
fentanyl in the drug supply were the only harm reduction strategies that reduced the number of nonfatal overdoses.

Conclusions  Within a multi-faceted harm reduction approach, scaling up take-home naloxone, and reducing 
fentanyl in the drug supply led to the largest reduction in opioid overdose fatality in Toronto. Detailed model 
simulation studies provide an additional tool to assess and inform public health policy on harm reduction.
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Background
Overdose death due to unregulated opioid use has 
become a public health crisis. Globally, two-thirds of 
deaths attributed to drugs are opioid-related [1]. Use is 
most prevalent in North America, where opioid overdose 
deaths have been on the rise for two decades. In Canada, 
approximately 20 deaths per day occurred due to opioid 
overdose in 2022, nearly double the rate in 2019, prior 
to the COVID-19 pandemic [2]. The increasing use of 
opioids over the last few decades was driven initially by 
medical overuse and has since resulted in increased over-
dose deaths fuelled by the introduction of fentanyl and 
fentanyl analogs into the unregulated drug supply [3].

For people with opioid use disorder (OUD), injection 
has been the predominant administration route, to has-
ten the onset of action or due to increased tolerance [4]. 
However, in recent years, inhalation has become more 
common [5]. In Ontario in 2019, of those deaths where 
evidence of injection or pipe/foil equipment (or both) 
was found at the scene, 58.6% included injection equip-
ment, while 67.6% included pipe/foil equipment [6]. 
Although equipment on scene does not necessarily imply 
its use as the mode of consumption, opioid overdose risk 
occurs across multiple modes of administration.

Prescription opioid misuse can lead to a switch to 
cheaper alternatives such as heroin [7]; in one study, 80% 
of heroin users first had misused prescription opioids 
[8]. More recently, synthetic opioids have become wide-
spread due to their further reduction in cost and increase 
in potency, fuelling a recent acceleration in overdose 
mortality [9]. The most prevalent synthetic opioid, fen-
tanyl, was implicated in 77% of overdose deaths in Can-
ada in 2020 and has overtaken heroin as the opioid most 
commonly found in opioid-related deaths in Toronto [2, 
10].

Although access varies, several interventions exist 
to combat the mortality risks associated with unregu-
lated drug consumption. Examples include medication-
assisted treatment (MAT) such as opioid agonist therapy 
(OAT) [11], supervised consumption sites (SCS) [12], and 
take-home naloxone (THN) kits [13], among others [14]. 
More recently, a pilot program to investigate the efficacy 
of a rapid drug-checking program was implemented in 
Toronto, Canada. These measures aim to reduce the asso-
ciated harm, by decreasing an individual’s reliance on an 
unregulated and potentially toxic drug supply, by reduc-
ing mortality risk during consumption, or by disseminat-
ing information about the composition of unknown drug 
samples to increase risk competency.

The risk of overdose and overdose fatality for an indi-
vidual with OUD is dependent on several factors. For 
instance, these risks can be mitigated by the uptake of 
harm reduction interventions, but the risks can increase 
if the individual has a history of previous overdose or was 

recently released from incarceration. Accordingly, these 
risks are dynamic features of individuals and emerge 
from the combined effects of use history, drug compo-
sition, harm reduction uptake, and various other factors 
[15–18].

Mathematical modeling has been used to study opioid 
overdose from a number of perspectives (see [19] for a 
comprehensive review). Broadly, approaches can be taken 
at the population level, such as compartmental models 
(e.g., [20]) which dynamically track the sizes of defined 
subpopulations, or individual level, where each mem-
ber of the population is resolved. For complex systems 
where interactions between individuals are important, 
agent-based models are suitable, and allow for dynamic 
network effects to arise [21]. Here, an individual-based 
micro-simulation model approach [22, 23] is used, where 
each individual is represented by a set of dynamic charac-
teristics, suitable for a heterogeneous population where 
an individual’s own current and past state determines the 
future state. We quantify and predict the impact of key 
interventions at differing levels of scale-up on overdose 
incidence among a population of people with OUD in 
Toronto, Ontario, to determine how individual overdose 
risk factors, including access to relevant interventions, 
translate collectively to population-level outcomes. The 
resulting model offers an additional tool to inform harm 
reduction policy.

Methods
Study setting
This study focuses on the urban population of people 
with OUD in Toronto, Canada’s largest city. Opioid over-
dose is the leading cause of death among 20- to 39-year-
olds in Ontario, with Toronto at the epicentre [2, 10]. 
Toronto is chosen as the study setting due to the estab-
lished network of harm-reduction services, compre-
hensive data reporting on opioid overdose, and recent 
high-quality survey data [24–26].

Like elsewhere in North America, opioid-related 
deaths have increased dramatically in Toronto: between 
2015 and 2017, such deaths increased by 125% before sta-
bilizing into 2019, when 295 deaths due to opioid toxic-
ity were confirmed. However, 2020 saw another dramatic 
rise of nearly 80%, to 545 deaths, rising further to 585 
deaths in 2021, an increase exacerbated by the effects of 
the SARS-CoV-2 pandemic [27, 28]. Our model calibra-
tion is based on 2019 data to decouple results from pan-
demic-related effects.

Toronto employs a well-developed harm reduction 
strategy, including a network of SCS, naloxone distribu-
tion and training services, and OAT options [29]. Recent 
federal and provincial funding announcements aimed at 
combatting the opioid overdose crisis provide an oppor-
tunity to improve harm reduction options in Toronto. In 
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2019, a five-year pilot program was launched to imple-
ment a network of multi-site drug-checking services 
(DCS) in the city, unique among DCS across Canada [10].

Two survey studies (OiSIS-Toronto, and the I-Track 
Phase 2 study) have focused on the population of people 
who inject drugs (PWID) in Toronto [24–26]. Size esti-
mates of this population vary (9,000–17,700) [30–32]. 
Although restricted to one form of administration (injec-
tion), and so not fully capturing recent trends toward 
inhalation, these survey data provide the best available 
description of demographic features and use behav-
iour in our study population. Together with this survey 
data, the availability of opioid overdose data (e.g., the 
Toronto Overdose Information System) and up-to-date 
data on the illicit drug supply in Toronto allow for accu-
rate calibration of many model parameters [24, 26, 29, 
33]. Toronto is, therefore, a natural setting to model opi-
oid overdose dynamics and evaluate the effect of various 
harm reduction scenarios.

Model framework
We constructed a dynamic, stochastic, individual-based 
model for injection and overdose in a population of peo-
ple with OUD. Each person in the population is modeled 
directly instead of tracking the sizes of defined subpopu-
lations (i.e., compartmental modeling). An individual in 
the model is defined to be a person aged 14 and above 
engaging in unregulated opioid consumption, and is 
described by a set of ten dynamic attributes compos-
ing the relevant demography, use history, intervention 
usage, and drug composition. The model framework we 

describe here results from an expansive review of the lit-
erature for significant quantitative observations of factors 
modifying opioid overdose morbidity and mortality risk. 
Distilled from this review, the individual attributes we 
consider are age at initiation of use, current age to obtain 
length of drug use (equal to the difference of age and age 
of initiation), frequency, whether (and how many) previ-
ous nonfatal overdoses have occurred, whether the user’s 
drug contains fentanyl, and incarceration (whether or 
not an individual is in prison, or has been released from 
prison within the last three weeks).1 Additionally, indi-
viduals can access four harm reduction services: the sta-
tus of whether an individual is currently accessing these 
services (described below) comprises an additional four 
attributes.

The model is time-dependent, and at each timestep, a 
person flows through a set of states as outlined in Fig. 1. 
Four different harm reduction strategies are available 
prior to consumption: SCS use, OAT, having THN pres-
ent and available to be administered, and use of DCS to 
examine drug makeup and potency. First, the dichoto-
mous use status of each intervention for a person is 
updated. Then the person may consume at the current 
timestep, with a probability determined by their use fre-
quency. If consumption takes place, the person may over-
dose, with a probability based on the interventions used, 
whether fentanyl is present, and the length of use for that 
person. Should the person overdose, fatality can occur 

1  Research conducted by Groot et al. (2016) suggests the increase in over-
dose risk observed post-incarceration returns to baseline after three weeks.

Fig. 1  A graphical representation of the model flow at one timestep. Black lines indicate flow pathways between events. ‘Y’ indicates yes for an event that 
occurs, whereas ‘N’ indicates no for an event that does not occur. Dotted arrows indicate probability dependencies from the individual attributes (grey) to 
a given event. Removal refers to an individual who is removed from the population
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with a probability determined by a base risk, scaled by 
intervention usage, number of previous overdoses, pres-
ence of fentanyl, and time since release from incarcera-
tion (if applicable). If the overdose is fatal, the individual 
is removed from the population. Other removal (other-
cause mortality, cessation of injection drug use) can also 
occur. Last, the set of attributes for each person is then 
updated either deterministically (age, length of use, pre-
vious overdose history) or probabilistically (incarceration 
state, fentanyl presence, use of the four harm-reduction 
strategies). Time then advances, and the process repeats.

Because the model resolves each person, the popula-
tion size at a given time is determined simply by summing 
the number of individuals at that time. Population-level 
dynamics are determined by the inflow and outflow of 
individual persons (see Fig.  2). At each timestep, a per-
son may initiate another into opioid use and thus into the 
population, with a probability dependent on the length 
of use for the initiating person and whether the initiating 
person is currently using OAT [34, 35]. The summation 
of initiation over all individuals determines the inflow 
into the population. Outflow is determined by the sum-
mation of removal of individuals as described above and 
in Fig.  1- through fatal OD, other mortality, or through 
cessation of use.

The detailed resolution of the individual mandates 
many parameters. These parameters determine the ini-
tialization of the population, the probabilities under-
pinning overdose and overdose fatality (and how each 
attribute modifies the risk of each), cessation, other-cause 
mortality, and initiation. Owing to the large parameter 
set, the model is computational in nature, where we look 
to numerically simulate the population dynamics over 
a fixed time frame (here, one year) for chosen param-
eter values versus obtaining analytical results (i.e., solu-
tions to model equations or relationships between model 

parameters). The model is implemented in the scientific 
computing environment Matlab R2022b [36].

To quantify how individual attributes affect overdose 
and overdose fatality risk, base risk probabilities pOD 
and pODf (overdose and overdose fatality probability, 
respectively) were formulated and then scaled according 
to an individual’s set of specific factors to form an actual 
risk of overdose and fatality for that individual. Whereas 
the population-level actual risk can be deduced from 
annual public health reporting on overdose and overdose 
fatality, pOD and pODf are unknown, in that it is not pos-
sible to study a population of people with OUD who do 
not exhibit any of the risk-modifying factors we consider 
in this model. Our approach, therefore, is to set the scal-
ing parameters governing how factors influence overdose 
and fatality risk, and then fit pOD and pODf such that 
model output matches reported overdose and fatality 
incidence in the chosen population, described below.

Model scenarios and outputs
Model simulations are run relative to a baseline param-
etrization, using all parameters calibrated to the Toronto 
study setting using 2019 overdose data from the Toronto 
Overdose Information System [27]. This baseline sce-
nario is run with 80 trials for model validation, particu-
larly for the calibrated values of pOD and pODf. From the 
baseline scenario, different harm reduction scenarios are 
explored. By varying in a range around the baseline value, 
the parameters controlling: SCS usage, the proportion 
using OAT, the probability of THN administered at OD, 
and the probability of using DCS prior to use, each inter-
vention is tested independently, in turn. Additionally, 
the proportion of injections containing fentanyl is varied 
to explore changes in the composition of the drug sup-
ply. All other parameters are kept at baseline values. For 
each parameter combination, the model is run 25 times. 
Response to each of the parameter variations is measured 

Fig. 2  Population-level dynamics determined by the summation of individuals entering and leaving the model population. Solid arrows (black) indicate 
flows into and out of the population stock. The dotted arrow indicates model dependency on attribute (grey). At each timestep, population inflow is the 
sum of initiation of new persons by all individuals, and outflow is the sum of all OD fatality, cessation, and non-OD all-cause mortality by all individuals
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through the outputs of total incidence of fatal and non-
fatal OD in the population over the 365-day duration of 
the model run (representing the calendar year of 2019), 
averaged over the set of simulations for the parameter 
combination.

Model parametrization and calibration
The primary data source for model parametrization is the 
Ontario Integrated Supervised Injection Services cohort 
in Toronto (hereafter OiSIS), an open prospective cohort 
of 701 PWID aged 18 and over, sampled from 2018 to 
2020 [26]. Additional parametrization was drawn from 
the I-Track Phase 2 survey (Toronto site) of PWID to 
monitor HIV, Hepatitis C, and associated risk behaviours 
(hereafter, I-Track), part of a national survey framework 
[24]. The Toronto site involved 255 PWID surveyed from 
2006 to 2007. Additional parametrization was based on 
the latest available data and populations reasonably simi-
lar to our study setting. Full details of parametrization are 
included in the Appendix, including a summary list of all 
model parameters in Table A.1.

Results
Baseline model simulation results
At baseline, the study population of Toronto grew by 
1.4% after one year, from 9000 to 9124 (95% CI: 9115–
9133). There were 3690.6 (95% CI: 3679–3703) nonfatal 
overdoses and 295.4 (95% CI: 291.4-299.4) fatal over-
doses. Of those experiencing a nonfatal overdose, 34.0% 
(95% CI: 33.8-34.2%) were receiving OAT, and 14.4% 
(95% CI: 14.3-14.5%) occurred at a SCS, whereas for fatal 
overdoses, 12.9% (95% CI: 12.4-13.3%) were receiving 
OAT, and none occurred at a SCS. Naloxone was pres-
ent for 17.7% (95% CI: 17.6-17.8%) of nonfatal overdoses, 
but fatal overdoses with naloxone present were very rare 
(0.253% (95% CI: 0.19-0.32%) of fatal overdoses). At base-
line, it is assumed no drug-checking services were being 
used.

Fentanyl was present in 81.1% (95% CI: 80.8-81.1%) 
of nonfatal overdoses but in 92.0% (95% CI: 91.7-92.4%) 
of fatal overdoses. The high-frequency injection class 
(daily use) composed 91.7% (95% CI: 91.6-91.8%) of all 
overdoses. The average age of individuals was similar 
across those experiencing a nonfatal overdose (42.32; 
95% CI: 42.27–42.36) and fatal overdose (42.42; 95% CI: 
42.30-42.54%).

27.6% (95% CI: 27.4-27.8%) of nonfatal overdoses 
occurred in individuals released from prison. Of those, 
7.2% (95% CI: 7.0-7.4%) had been released within the two 
weeks before the overdose. In contrast, 40.8% (95% CI: 
40.2-41.4%) of fatal overdoses occurred in those released 
from incarceration, and of those, 36.9% (95% CI: 35.9-
37.8%) had been released within two weeks of the fatal 
overdose.

Of those experiencing a nonfatal overdose, 62% (95% 
CI: 61.8-62.1%) had no previous overdoses, 31.8% (95% 
CI: 31.7-32.0%) had one, 5.4% (95% CI: 5.3-5.5%) had 
two, and 0.8% (95% CI: 0.76-0.82%) had three or more. 
For those experiencing a fatal overdose, 46.1% (95% CI: 
45.5-46.7%) had no previous overdose, 46.0% (95% CI: 
45.4-46.7%) had one, 7.0% (95% CI: 6.7-7.3%) had two, 
and 0.85% (95% CI: 0.73-0.96%) had three or more.

Harm reduction interventions
From the baseline set of parameters, the impact of scaling 
up or down the four different harm reduction strategies 
were explored.

In Fig. 3.a., the fraction of the study population using 
any SCS services are scaled from 0 to 1 (i.e., fraction using 
SCS for none of their consumption scaling from 1 to 0), 
with a baseline value of 0.2. The relative proportion of use 
across classes of most, some, and few is kept constant. 
Scaling up SCS uptake from baseline leads to a moder-
ate increase in nonfatal overdose due to the observed 
increased overdose risk at SCS [25]. At full scale-up of 
the entire population using SCS for a few, some, or most 
of their opioid use, an additional 820 overdoses were 
observed. Conversely, fatal overdoses decreased linearly, 
with 124 fatalities reduced from baseline at full use.

In Fig. 3.b., the probability of THN being present (and 
able to be administered) at an overdose is scaled from 
0 to 1, with the baseline value at 0.19. Fatal overdose 
decreased most dramatically out of the four interventions 
considered. Current THN usage (at the baseline value) 
prevents 63 fatalities annually. At full scale-up, only five 
overdose fatalities occurred, an additional reduction of 
290 fatalities. Nonfatal overdose increased slightly as 
THN presence increased due to the reduction in overall 
fatality, leading to a larger population and, thus, more 
use events. An additional 388 nonfatal overdoses were 
observed when THN was present for all injections.

In Fig.  3.c., the fraction of the population using OAT 
is scaled from 0 to 1, with a baseline value of 0.325. A 
significant reduction in overdose fatality is seen as OAT 
prevalence increases. At baseline usage, 85 fatalities are 
prevented versus having no OAT available, and additional 
scale-up beyond the baseline value further decreases 
fatalities, with 173 additional fatalities prevented at full 
usage. As in Fig. 3.b., there is a slight increase in nonfa-
tal overdose (171 more overdoses at full usage) due to the 
resultant increase in population caused by the reduction 
in overdose fatality.

In Fig.  3.d., the probability that an individual will use 
drug-checking services before use is scaled from 0 to 
1, with baseline at 0. Both nonfatal and fatal overdoses 
decrease linearly as DCS usage increases, with a reduc-
tion of 100 fatalities and 1185 nonfatal overdoses at full 
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scale-up. Among the interventions tested, drug checking 
is the only one to reduce nonfatal overdose.

Fentanyl prevalence
A substantial increase in both fatal and nonfatal overdose 
is observed as the presence of fentanyl in the drug sup-
ply increases, with baseline prevalence estimated to be 
0.5, based on drug checking service data in Toronto [33]. 
With no fentanyl in the drug supply, model simulations 
indicate that the population would experience an 84% 
reduction in fatal overdoses to just 47 overdoses (Fig. 4). 
Conversely, as the prevalence fraction increases to 1, fatal 
overdoses rise to 545. Similar trends are seen in nonfa-
tal overdose, with such overdoses rising from 1434 with 
no fentanyl to 5851 with full fentanyl presence, a 58% 
increase from baseline nonfatal overdose rates.

Discussion
Computational models are a crucial tool for aiding the 
development of informed policy to address the opioid 
crisis. The model developed here uses an individual-
based approach to combine multiple risk factors for over-
dose and overdose fatality to more fully understand how 
changes to demography, drug composition, and harm 
reduction interventions affect outcomes for a population 
of people with OUD.

Although this study focused on urban Toronto, the 
model is adaptable to other locations in a straightfor-
ward manner, provided sufficient data exists to param-
etrize the model specific to that population. Continuing 
and expanding high-quality survey studies of people with 
OUD are essential to further develop and update appro-
priate models. Results reported here center mainly on 
harm reduction, but the model is also useful to guide 

Fig. 3  Parameter exploration of the four harm reduction strategies considered here: (a) supervised consumption site (SCS) use, (b) rate of presence of 
naloxone at overdose, (c) fraction of PWID population using opioid agonist treatment (OAT), and (d) fraction of population who use drug checking ser-
vices prior to injection. Fatal overdoses (blue) and nonfatal overdoses (black) are plotted with standard error bars, and values corresponding to baseline 
parameters are indicated by blue and black circles, respectively
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policy around incarceration, changes to the illicit drug 
supply, initiation, and effects of shifting demographics.

Results from this study suggest that expanding THN 
programs is the most effective harm-reduction strat-
egy to reduce overdose fatality, with 35 lives saved per 
10% increase in availability at overdose. THN is also one 
of the most cost-effective approaches to harm reduc-
tion. Improving access to THN at overdose depends on 
expanding kit distribution, increasing training on admin-
istering naloxone at overdose, and encouraging con-
sumption in the presence of others who have access to 
a kit [37]. In our model framework, we implement THN 
intervention via a probability of administration at over-
dose. To more fully resolve this process as being admin-
istered from one individual to another, a framework with 
network dynamics would be required.

Expanding SCS services also significantly reduces over-
dose fatalities (approximately 16 fewer fatalities annu-
ally per 10% increase in SCS use). These services not 
only acutely reduce overdose fatality risk with available 
medical intervention but also connect users to educa-
tion, recovery programs, and other harm reduction pro-
grams. The increase in non-fatal overdose observed with 
scale-up of SCS services reflects the increased risk factor 
as found in [25], but is likely not causative in nature, and 
more likely reflects a tendency of SCS to attract people 
with higher-risk use profiles [24, 25]. In practice, this 
association would likely reduce at higher levels of scale-
up as differences in risk profiles of those using and not 
using SCS services would be less pronounced. OAT, 
such as methadone maintenance programs, began in the 
1960s and remains an effective treatment for opioid use 
disorder [38]. Model results show a reduction in approxi-
mately 26 overdose fatalities annually per 10% increase 

in OAT use. The COVID-19 pandemic precipitated sev-
eral changes to OAT services aimed at improving access, 
including federal exemptions to facilitate OAT prescrip-
tion re-fills, deliveries, take-home (non-observed) doses, 
and reduced drug screening for patients [39]. Both SCS 
and OAT services also offer benefits not captured in this 
study, such as reducing blood-borne virus transmission 
in PWID by reducing injections or improving access to 
clean syringes [40].

As part of the multi-site drug-checking services initia-
tive launched in Toronto in 2019, the advanced technique 
of using mass spectrometry is currently offered through 
three SCS sites. However, there are opportunities for 
more standardized drug testing (i.e., immunoassay test 
strips) independent of SCS at designated locations and 
events where drugs are expected to be present. Drug 
checking can reduce overdose risk beyond the indi-
vidual checking their sample, as results are often shared 
with the broader population [41]. It is also an important 
outreach approach to attract users who may not access 
drug-related services otherwise [10].Where drug check-
ing is offered through SCS, there is potential to improve 
the reach of other harm reduction services. DCS vary 
in cost, technology, and whether services are mobile or 
permanent. This approach gives the flexibility to provide 
support given various budget constraints, demand, and 
detectability standards.

The model was parametrized based on pre-pandemic 
surveys and statistical data. Using pre-pandemic data 
was a deliberate choice to generate model predictions 
independent of the effects of the pandemic. During the 
pandemic, harm reduction efforts experienced ser-
vice closures, treatment disruptions, reduced operating 
hours, and reduced client capacity at SCS [42, 43]. Fur-
thermore, directives on social distancing conflicted with 
the increased risks associated with injecting alone. By 
reflecting these changes in model parameter values, this 
study framework could predict the specific, quantified 
effects of each disruption, tested against the observed 
increases in overdose and overdose fatality since 2020.

Recent trends in route of administration of opioids 
presents a limitation of this work. Available survey data 
used here describe people who inject drugs, but those 
at risk of opioid overdose have increasingly also used 
inhalation as the route. Determining how demography, 
use behaviour, and overdose risk change in response to 
these shifting trends in usage will enable a more accurate 
description of the population at risk of opioid overdose.

Although this model tested the effect of each harm 
reduction strategy separately, efficacy and reach are opti-
mized by scaling up these strategies collectively. Where 
resource limitations dictate the prioritization of invest-
ment into harm reduction strategies, model studies are 

Fig. 4  Effect of the prevalence of fentanyl in the illicit drug supply on fatal 
overdoses (blue) and nonfatal overdoses (black), plotted with standard 
error bars. Results of fatal and nonfatal overdose based on current baseline 
prevalence (0.50) is indicated by blue and black circles, respectively
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useful to guide specific allocations toward combating the 
opioid crisis.
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