
Sequence analysis

ModDotPlot—rapid and interactive visualization of
tandem repeats
Alexander P. Sweeten 1,2,�, Michael C. Schatz 2, Adam M. Phillippy 1,�

1Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National
Institutes of Health, Bethesda, MD 20892, United States
2Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, United States
�Corresponding authors. Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute,
National Institutes of Health, Building 49, Room 4A22 49, Convent Drive, Bethesda, MD 20892, United States. E-mails: alex.sweeten@nih.gov (A.P.S.) and
adam.phillippy@nih.gov (A.M.P.)
Associate Editor: Yann Ponty

Abstract
Motivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via a dot plot. Innovative
approaches such as StainedGlass have improved upon this classic visualization by rendering dot plots as a heatmap of sequence identity, enabling
researchers to better visualize multi-megabase tandem repeat arrays within centromeres and other heterochromatic regions of the genome. However,
computing the similarity estimates for heatmaps requires high computational overhead and can suffer from decreasing accuracy.
Results: In this work, we introduce ModDotPlot, an interactive and alignment-free dot plot viewer. By approximating average nucleotide identity
via a k-mer-based containment index, ModDotPlot produces accurate plots orders of magnitude faster than StainedGlass. We accomplish this
through the use of a hierarchical modimizer scheme that can visualize the full 128 Mb genome of Arabidopsis thaliana in under 5 min on a laptop.
ModDotPlot is bundled with a graphical user interface supporting real-time interactive navigation of entire chromosomes.
Availability and implementation: ModDotPlot is available at https://github.com/marbl/ModDotPlot.

1 Introduction
Large tandemly repeating blocks of DNA, such as satellite
repeats and their complex higher-order structures, are ubiqui-
tous in many eukaryotic genomes, yet have been notoriously
difficult to sequence and assemble. These motifs occur dis-
proportionately in telomeric, centromeric, and heterochro-
matic regions of the genome (Logsdon and Eichler 2022),
and are commonly referred to as genomic “dark matter” due
to their prior absence from reference genomes (Sedlazeck
et al. 2018). Recent advances in long-read sequencing and as-
sembly tools have enabled genomics researchers to success-
fully assemble these complex regions, culminating in the first
complete human genome (Nurk et al. 2022) as well as impor-
tant model organisms such as Arabidopsis (Naish et al. 2021)
and nonhuman primates (Makova et al. 2024). More
broadly, with tools such as Verkko (Rautiainen et al. 2023)
and hifiasm (UL) (Cheng et al. 2024) now able to automati-
cally assemble complete “telomere-to-telomere” chromo-
somes, developing new methods to analyze these previously
dark regions of the genome has taken on new importance.

Traditionally, dot plots have been useful visualizations to
characterize the structure of complex repeats (Maizel and
Lenk 1988). To generate such a plot, a sequence S is typically
aligned with itself using software such as MUMmer (Marçais
et al. 2018), and plotted in a 2D space. This approach results
in a set of line segments from ½x;y� to ½xþ l −1;yþ l − 1� for
all matches of length l (above some minimum length

threshold) beginning at positions x and y in S. This yields a
single diagonal line segment, representing the sequence
aligned with itself, and all off-diagonal segments representing
the location of paralogous repeat copies. If based on a gapped
sequence alignment, these segments may also be colored by
their average sequence identity, but the internal, fine-grained
structure of the repeats cannot be represented by
this technique.

To overcome this limitation, recent work by Vollger et al.
(2022) introduced StainedGlass, which relies on a rasterized
rather than vectorized approach. In this framework, the aim
is to generate a similarity matrix Mw where each cell
MwðAi;BjÞ relates two genomic intervals Ai and Bj of length
w beginning at positions wi and wj in S. By re-framing the
problem in terms of intervals rather than single bases, a per-
cent identity can be computed between all pairs of intervals
and the matrix Mw can be rendered as a heatmap where each
cell (pixel) represents the percent identity between the two
substrings at the corresponding interval positions. This tech-
nique has extended the previously binary dot plot into a rich
spectrum of information and proven highly effective for visu-
alizing patterns of sequence evolution within tandem repeat
arrays of both humans and plants (Wlodzimierz et al. 2023,
Logsdon et al. 2024).

Although heatmaps produced by StainedGlass have been
useful in practice, the workflow used to generate them has in-
herent limitations. First, StainedGlass uses Minimap2

Received: 15 April 2024; Revised: 2 July 2024; Editorial Decision: 30 July 2024; Accepted: 5 August 2024
Published by Oxford University Press 2024.
This work is written by (a) US Government employee(s) and is in the public domain in the US.

Bioinformatics, 2024, 40(8), btae493
https://doi.org/10.1093/bioinformatics/btae493
Advance Access Publication Date: 7 August 2024
Original Paper

https://orcid.org/0000-0002-5316-2973
https://orcid.org/0000-0002-4118-4446
https://orcid.org/0000-0003-2983-8934
https://github.com/marbl/ModDotPlot

(Li 2018) to determine sequence identity by computing the
number of matches, mismatches, insertions, and deletions be-
tween pairs of substrings. Minimap2’s alignment heuristic is
not well-suited for repetitive sequences (Sahlin et al. 2023)
and leads to long runtimes, especially for short tandem
repeats. For example, a single 3-Mb human centromere
requires over one hour to plot when running on a high-
performance compute cluster. Furthermore, StainedGlass
partitions the input sequence into intervals of a fixed size.
Similar substrings that are split across this boundary may fail
to align, leading to inaccurate identity estimates.

To improve upon these limitations, we propose a k-mer-
based approach that bypasses the computationally expensive
requirement of sequence alignment. Estimating sequence
identity from sets of k-length substrings (k-mers) has seen in-
creasing use in genomics (Ondov et al. 2016). Such tools typi-
cally utilize downsampling methods, such as minhash, to
reduce the size of each k-mer set before estimating sequence
identity using the Jaccard index or related set similar-
ity measure.

In this work, we introduce ModDotPlot, a novel heatmap
visualization tool that rapidly estimates sequence identity us-
ing hierarchical modimizers, a form of fractional minhashing
(Irber et al. 2022). Modimizers are defined as hashed k-mer
values that have no remainder when divided by some number
s, which we refer to as the sparsity. Here we restrict s to pow-
ers of two, s¼ 2d, which conveniently results in the set of
modimizers being: (i) precisely those hash values with d zeros
in their least significant bits, and (ii) a strict subset of the
modimizers defined by s¼ 2d − 1. We use this efficient mem-
bership test and hierarchical property to efficiently downsam-
ple genomic k-mers at multiple levels of sparsity. We show
that the resulting modimizers can be used to accurately esti-
mate the average nucleotide identity (ANI) of two substrings,
while being resistant to segmentation artifacts and orders of
magnitude faster than StainedGlass. To conclude, we demon-
strate ModDotPlot’s ability to elucidate the centromeric sat-
ellite structure of both plants and animals.

2 Materials and methods
ModDotPlot takes as input a list of sequences in FASTA for-
mat and outputs a self-identity heatmap for each sequence, as
well as comparative heatmaps for all pairwise combinations
of sequences. In describing our methods, we assume the con-
struction of a self-identity heatmap, but the necessary modifi-
cations for constructing comparative heatmaps is
straightforward. ModDotPlot can be run one of two ways,
specified at runtime: Static mode produces a static image file
for each plot, while Interactive mode builds a plot hierarchy
using multiple modimizer values so that the plot resolution
can be adjusted in real time as the user adjusts the zoom level.
We outline the workflow of both possible modes of
ModDotPlot in Fig. 1.

ModDotPlot first decomposes each sequence S of length n
into a list of its constituent k-mers Sk. Each k-mer and its re-
verse complement are passed through a hash function h :

Ω ! ½0;H� for some H 2 R, with the smaller of the two val-
ues added into Sk. Once broken down into k-mers,
ModDotPlot partitions Sk into evenly sized and nonoverlap-
ping genomic intervals of size w, also referred to as the win-
dow size. We define the number of intervals as r¼ n −kþ1

w ,
which we refer to as the resolution. This determines the

height and width of the resulting heatmap. To reduce the run-
time and space complexity of handling large sequences,
ModDotPlot sketches each interval A into sets based on a
modulo function, as originally proposed by Broder (1997).
We formally define our algorithm for sketching Sk in
Supplementary Algorithm S1. This generates the following
set for each interval:

MODsðAÞ ¼ 8a 2 fSk½A�g : a � 0 mod s (1)

We refer to any k-mer present in the sketch MODsðAÞ as a
modimizer. We define s 2 Zþ as the modimizer sparsity and
restrict s to powers of 2. Note that the sparsity value is in-
versely related to the number of modimizers selected (i.e. the
density), with s¼2 resulting in approximately every second
k-mer being selected, s¼4 with every fourth k-mer, and so
on. Given a set of k-mers sampled from a long random string,
the expected number of modimizers per window is:

m ¼ E½jMODsðAÞj� ¼
w
s

(2)

We refer to m as the modimizer sketch size, with larger values
of m increasing the accuracy of the minhash similarity esti-
mates. Given a desired plot resolution r and target sketch size
m, the corresponding window size w¼ n

r and required spar-
sity s¼ w

m can be automatically derived. Based on prior work
(Ondov et al. 2016), we use m¼1000 as a good compromise
between accuracy and efficiency.

In practice, if the k-mers in interval A are highly repetitive,
then the true size of MODsðAÞ can be significantly less than
m. To avoid selecting too few k-mers in a window, we intro-
duce a threshold set to half the expected number of modim-
izers. If the size of MODsðAÞ is less than this threshold,
modimizers are iteratively recomputed at half the sparsity un-
til the modimizer count threshold is met or the sparsity hits
one (i.e. every k-mer in A is included in the sketch).

Once the input sequence is partitioned and sketched,
ModDotPlot produces a similarity matrix Mw by estimating
the identity between each pairwise combination of intervals
A and B, which we refer to as a cell in the matrix. We esti-
mate the proportion of k-mers in A that are contained in B,
and vice-versa, via the containment index (Broder 1997):

ĉmodðA;BÞ ¼
jMODsðAÞ \MODsðBÞj

jMODsðAÞj
(3)

Hera et al. (2023) show that for the FracMinHash scheme, a
correction factor is needed for an unbiased estimate of the
containment index, to account for cases where jMODsðAÞj
differs greatly from jMODsðBÞj. In practice, this can occur
when interval A occurs in a repetitive genomic interval while
interval B does not. Since modulo hashing is a variant of frac-
tional minhashing, the same correction applies and we in-
clude the expected value in the denominator to achieve an
unbiased estimate of the containment index:

cmod A;Bð Þ ¼
jMODsðAÞ \MODsðBÞj

jMODs Að Þj 1 − 1 − 1
s

� �jfAgj
� � (4)

Furthermore, since the containment index drops exponen-
tially with respect to the mutation rate (Koslicki and Zabeti

2 Sweeten et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data

2019), it is useful to represent this as an estimate of percent
sequence identity. As implemented in MashScreen (Ondov
et al. 2019), we model the probability of mutation at each po-
sition in a k-mer with the binomial distribution to estimate
the ANI as:

ANIcðA;BÞ ¼ cmodðA;BÞ
1
k (5)

For self-identity plots, ModDotPlot sets MwðA;BÞ ¼
maxfANIcðA;BÞ;ANIcðB;AÞg to ensure the resulting matrix is
symmetric. We note that the containment index is not a dis-
tance metric, as it neither satisfies the symmetry property nor
the triangle inequality property; however, for two equally sized
intervals, we show that ANIc correlates well with an alignment-
based ANI. Furthermore, the containment index has the
desirable property of not requiring a set operation in its denom-
inator, meaning it is possible to increase the length of interval B
without penalizing ANIc. We take advantage of this property
to overcome segmentation artifacts, as described later.

Once the matrix of containment indices is computed,
ModDotPlot outputs an identity heatmap analogous to a geno-
mic dot plot. The heatmap is assigned a range of color values,
ranging from t (a user provided threshold identity threshold) to
100. Any cells in the matrix < t are left uncolored. Use of t<85
is not recommended, as the identity estimate rapidly loses accu-
racy below this value for typical values of k and m, since the
higher divergence may result in very few, or zero, k-mers shared
between the two intervals. Given a symmetric self-identity dot
plot, the upper diagonal of the dot plot can be used to produce
a triangular dot plot in addition to the standard square.

2.1 Modimizer hierarchy
Modimizers present a quick and efficient sketching approach,
as given a sparsity of s¼ 2d, only the first d bits of each

k-mer hash need to be checked to verify membership in
MODs. In addition, modimizers are context-independent,
providing a guarantee that any k-mer selected as a modimizer
in one set will also be a modimizer in every other set, regard-
less of the neighboring context or genomic interval. Given
these properties, it is guaranteed that any modimizer in
MODs1ðAÞ will also occur in MODs2ðAÞ when s1 is an integer
multiple of s2:

MODs1ðAÞ �MODs2ðAÞ if
s1

s2
2 Zþ (6)

Thus, for a geometric sequence of sparsity values, the
smaller modimizer sets will always be subsets of the larger
ones. We call this the hierarchical property of modimizers.
This property distinguishes hierarchical modimizers from us-
ing a modulo function to uniformly sample k-mers (Das and
Schatz 2022), and to the best of our knowledge is a novel in-
troduction of this property. As we describe below, we lever-
age this property in order to reduce the memory and runtime
overhead when generating dot plots at multiple zoom levels.

A hierarchical modimizer index consists of l modimizer
sets with window sizes ŵ; 2ŵ, …, 2ðl − 1Þŵ and correspond-
ing sparsities ̂s; 2ŝ, …, 2ðl − 1Þŝ. Given a user-specified modim-
izer sketch size m̂ and minimum window size ŵ, the initial
sparsity is defined as ŝ ¼ 2b log 2

ŵ
m̂ð Þc. To construct progres-

sively sparser levels of the hierarchy, let A be an interval of
size 2w, and AL and AR be the w-sized left and right halves of
A respectively. Due to the hierarchical property, the modim-
izers for the next sparser level can be sampled from the previ-
ous level since MOD2sðAÞ �MODsðALÞ [MODsðARÞ.
Repeating this process, additional levels of the hierarchy are
sampled until the window size exceeds jSjr , i.e. the resulting
number of intervals would be less than the minimum resolu-
tion. For example, a 250-Mb sequence plotted with a

Figure 1. Overview of ModDotPlot’s workflow for producing a self-identity plot. Static mode: Hashed k-mers are evenly partitioned into intervals of
length w. Modimizers are selected based on an estimated sketch size m within each interval. For each pairwise combination of intervals, identity is
computed and stored in a matrix Mw. Finally, a heatmap is created based on the color thresholds provided. Interactive mode: Three distinct modimizer
partitions are produced from a minimum interval length of ŵ¼1 up to w¼4. At launch, a heatmap is rendered for the largest window size (here, w¼4).
When the field of view is zoomed by half (highlighted region), the dot plot is rendered using a submatrix created from the partition at w¼2. This process
can extend until a plot produced from the minimum interval length ŵ is reached, with m remaining constant among all layers. While m¼1 is used here
for demonstration, ModDotPlot adjusts the modimizer sparsity such that m � 1000 in practice

ModDotPlot 3

minimum window size of 10 Kbp and a resolution of 1000
would result in 5 layers, since l¼5 is the largest l such that
2ðl − 1Þŵ≤ jSjr . We formally define our algorithm for producing
the modimizer hierarchy in Supplementary Algorithm S2.

The runtime and space complexity for building the initial
modimizer layer is OðnÞ, as this requires linear scan of the se-
quence of size n. The expected complexity of each successive
layer is half the previous due to the sparsity increasing by
powers of two, so the overall runtime and space complexity
of Supplementary Algorithm S2 remains OðnÞ. This approach
mirrors the “multilevel winnowing” (Jain et al. 2018) or
“SHIMMER” (Chin and Khalak 2019) indices, but our use
of modimizers rather than minimizers allows for unbiased
containment estimates. From this index, similarity matrices
can be efficiently computed for any pair of genomic ranges of
the input sequence, with the maximum resolution determined
by the minimum window size chosen when building
the hierarchy.

2.2 Offset and window expansion
When partitioning the input sequence into discrete intervals,
it’s possible that two highly similar sequences can be parti-
tioned in different ways, resulting in an inaccurate sequence
identity estimate between them (Fig. 2). This occurs whenever
the two similar sequences are “out of register” and have a dif-
ferent offset relative to the start of the full sequence and that
difference is not a multiple of the interval length. The result is
that the sequences of the two intervals only partially overlap,
rather than fully match. This can also occur within tandem
repeats when the unit size is larger than the interval length,
such as the rDNA arrays of human acrocentric
chromosomes.

To overcome this offset issue, ModDotPlot extends each
interval B by w2 in each direction to form the expanded inter-
val B0. The containment index is then computed as
cmodðA;B0Þ

1=k, accounting for any sequence similarities that
extend beyond the boundaries of B. We show the effect of
this approach when computing the containment index in
Fig. 2, as well as a practical example with human rDNA in
Supplementary Fig. S1. Since B does not appear in the de-
nominator of Equation (4), expanding the size of B does not
penalize or bias the containment index. Doubling the size of
B accounts for the worst-case scenario of a match diagonal
beginning in the middle of the interval, and so is the default
behavior, but this expansion factor can be turned off or ad-
justed if necessary.

2.3 Implementation and user interface
ModDotPlot is implemented in the Python programming lan-
guage (version 3.7 or later). By default, ModDotPlot runs in
interactive mode using Plotly with Dash (Hossain 2019),
which itself uses the Flask web framework. Consequently,
plots are visualized on a web browser connected to the user’s
localhost. Interactive ModDotPlot can also be run remotely,
e.g. on a compute cluster, via port forwarding over an ssh
tunnel. In static mode, containment indices are saved into a
compressed BED file, and dot plots are produced using the
Plotnine plotting library (Kibirige et al. 2024). In addition to
the standard rectangular plots, static mode also supports tri-
angular plot styles.

An important parameter common to all k-mer based meth-
ods is the choice of k, as this represents a trade-off between
sensitivity and specificity. Smaller k-mers are more sensitive

for detecting identity within divergent intervals, but lose spe-
cificity due to chance k-mer collisions. ModDotPlot allows
for flexibility in setting k, but based on prior work (Ondov
et al. 2016), we set a default k¼21 to ensure accurate esti-
mates in most cases.

k-mers are hashed using MurmurHash3 (Appleby 2016)
and all similarity matrices are stored in the form of NumPy
arrays (Harris et al. 2020). The size of a similarity matrix is
proportional to Oðr2Þ rather than the length of the genome
sequence. By default, ModDotPlot uses a resolution of
r¼1000 for efficient visualizations on most standard dis-
plays. To enable a responsive interface in interactive mode, a
full similarity matrix is precomputed for each level of the
modimizer hierarchy. However, since the number of layers
scales logarithmically with the sequence length, only a few
layers are needed in practice (e.g. l≤5). When zooming on
the plot, the appropriate matrix is chosen such that the num-
ber of cells in the matrix is at least the number of pixels in the
plot. To prevent redundant computations of similarity matri-
ces for future exploration, NumPy matrices can be saved as
binary files and loaded directly as input.

Supplementary Figure S2 shows a screenshot of
ModDotPlot’s user interface in interactive mode. Hovering
over the plot shows the exact genomic coordinates, along
with the corresponding estimated identity of each section.
This example shows a plot highlighting the repeat-rich 30-
Mb Y chromosome from a siamang gibbon (Symphalangus
syndactylus). Users can select a number of preset color-
schemes, including high contrast schemes to aid visually im-
paired or color-blind users, or specify custom colors, either in
hex code or RGB format. ModDotPlot also supports the crea-
tion of fully customizable static plots as PDF and PNG files.

3 Results
3.1 Plot accuracy
To showcase the improvements of ModDotPlot over
StainedGlass, Fig. 3 shows the plots produced by both tools
for the centromeric alpha satellite array of the human
HG002 X chromosome. The StainedGlass default window
size of 2000 produces a highly “checkered” plot containing
streaks of apparently low identity within the array. However,
this is not representative of any sort of centromere biology;
rather, it is an artifact of partitioning the genome into win-
dows of a fixed size. The canonical DXZ1 higher-order re-
peat (HOR) present in this array consists of twelve
monomers totaling �2050 bp (Miga et al. 2014), which is
slightly longer than the selected window size. Using a window
size of 5000 is sufficient to contain a complete HOR and alle-
viate this problem, but this comes at the cost of a lower reso-
lution plot and requires advance knowledge of the repeat
structure. In contrast, ModDotPlot produces an accurate plot
regardless of window length and HOR size.

Figure 4 shows the strong correlation between
ModDotPlot ANIc values and an alignment-based ANIm

computed by MUMmer (Marçais et al. 2018), but with the
accuracy of ANIc decreasing with increasing sparsity (re-
duced sketch size), as expected (Supplementary Fig. S3). For
each pairwise combination of HORs present in
chrX:58,000,771–58,200,827, the MUMmer ANIm was
taken from the “AvgIdentity” of one-to-one alignments com-
puted by the v4.0.1 “dnadiff” program. The vast majority of
HORs, representing the canonical 12-mer structure, fall

4 Sweeten et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data

within the consensus range of 97%–100% sequence identity
(Miga et al. 2014) with high concordance (r¼0.965) be-
tween ModDotPlot and MUMmer. Larger differences be-
tween the two methods arise from pairs of windows
containing structural variation that confound MUMmer’s
alignment-based similarity.

The containment index used by ModDotPlot does not pe-
nalize k-mer copy number differences or large insertions/dele-
tions (indels) in the same way a global alignment would. For
example, within the chromosome X centromeric array we ob-
served a small number of windows where the ANIm and
ANIc values differed substantially. Closer investigation
revealed the presence of a single noncanonical HOR, consist-
ing of a shorter 10 monomer repeat that was scored higher
by ANIc when compared to the canonical 12 monomer repeat
(Fig. 4). The difference between these two repeats is

interpreted as a large indel by MUMmer, resulting in a re-
duced ANIm. However, this difference is not penalized by
ANIc, as the 10 monomers present in the shorter HOR are
well-contained within the canonical 12 monomer.

Thus, ANIc is more akin to a local alignment similarity, i.e.
the average similarity between the sequences that are shared,
and reflects the point mutation rate between two sequences
rather than the rate of larger structural variants. This is an
important distinction, because in this case MUMmer ANIm

confounds these two evolutionary processes, while ANIc iso-
lates the point mutation rate of the individual monomers.
Such differences between ANIc and ANIm are most pro-
nounced within HOR satellite arrays, which are prone to un-
equal crossing over leading to frequent expansion and
contraction of the arrays (Altemose et al. 2022). For this rea-
son, the UniAligner (Bzikadze and Pevzner 2023) tool, which

Figure 2. Sample cases for different interval offsets. k-mers shared between intervals A and B are underlined. (a) In an ideal partition, the shared k-mers
are perfectly captured in both intervals. (b) In a worse-case partition, only half of the shared k-mers are captured in the cell, leading to a misleading
identity estimate for this region. (c) By keeping A fixed, but expanding B to B0, ModDotPlot is able to better capture the similarity between two similar
sequences with different offsets. The containment index of A in B0 is then used to determine the score of the dot plot matrix cell Mw ðA;BÞ

ModDotPlot 5

is specifically built for aligning long tandem repeats, similarly
uses an indel penalty of zero during its k-mer align-
ment phase.

3.2 Modimizer sparsity
Compared to other sketching approaches, modimizers lack
any sort of “window guarantee,” meaning that no lower
bounds exist on the number of k-mers that will be selected
for each interval. In addition, the containment index is com-
puted on sets of k-mers, not multisets (i.e. only the presence
or absence of a k-mer is considered), so highly repetitive
intervals will typically result in smaller k-mer sets, which can
lead to reduced accuracy when estimating the containment.
Although this is partially taken into account by the error
term provided in Equation (4), we demonstrate that by dy-
namically modifying the sparsity, as done in Supplementary
Algorithm S1, the number of modimizers selected per win-
dow can be kept above acceptable levels. Figure 5 shows this
on a 4-Mb centromeric region of CHM13 chromosome 1.
Regions of alpha satellite repeats show a steep decline in the
number of distinct k-mers; however, this can be corrected by
adaptively reducing the modimizer sparsity in this region to
boost the number of k-mers selected per window to at least m2
and thus improve the containment estimates. Without this
correction, we find that real similarities between low-
complexity satellite arrays can go entirely undetected.

3.3 Comparative plots
In addition to self-identity plots, ModDotPlot is also able to
generate comparative plots between two different sequences.
As an example, we showcase a pairwise dot plot between the
DXZ1 alpha satellite arrays of two different human X chro-
mosome centromeres, one from the HG002 genome and one
from the CHM13 genome (Fig. 6). These two arrays have been
previously assembled and compared (Altemose et al. 2022),
but it is difficult to understand their structural differences by
comparing only their self-identity plots. By plotting the two
arrays against each other, their orthology relationship becomes
clear. The comparative dot plot of the HG002 and CHM13
DXZ1 arrays reveals a faint diagonal representing the shared
history of the two sequences, punctuated by over 300 large
duplications/deletions distributed throughout the array
(Bzikadze and Pevzner 2023). As noted above, centromeric sat-
ellite arrays are one of the fastest evolving regions of the hu-
man genome and accumulate many such structural variants
through various recombinational mechanisms. Because of their
unique evolutionary patterns, and propensity for bulk inser-
tions/deletions, they have been one of the most difficult regions
of the genome to align using traditional approaches.

3.4 Runtime and memory
In Table 1, we compare the runtime and memory usage of
ModDotPlot to StainedGlass across input sequences of

Figure 3. Plots produced by StainedGlass (column 1) and ModDotPlot (column 2), representing the upper diagonal self-identity heatmap of the HG002
DXZ1 satellite array (ChrX:57,680,000–61,000,000). Rows represent a window size of 2000 (r¼ 1570 in ModDotPlot) and 5000 (r¼ 678) respectively.
ModDotPlot was run with a default m¼ 1000. Plotting artifacts in the StainedGlass w¼ 2000 example are due to interactions between the partitioning
window size and tandem repeat periodicity

6 Sweeten et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data

Figure 4. Scatterplots showing the linear relationship between MUMmer ANIm and ModDotPlot ANIc, using CHM13 chrX:58 000 771–58 200 827. The
outlier group labeled on the left represents a noncanonical 10-mer HOR (chrX:58 060 405–58 062 120), which is scored differently by the two methods
due to the presence of a large deletion when compared to the 12-mer HOR. The dashed line represents ANIm ¼ ANIc

Figure 5. Self-identity plot of the centromere of CHM13 Chromosome 1, overlaid with a smoothed unique k-mer frequency chart. Using a window size
w¼4000 and a sparsity s¼ 4, the expected number of modimizers per window is m¼1000. When using an uncorrected sparsity value, the number of
unique modimizers per window can drop to under 200. By detecting the unexpectedly small set sizes and adjusting the sparsity of these windows, the
total number of modimizers in each window can be increased to at least m2 (or, in pathological cases, all k-mers in the window)

ModDotPlot 7

various species and sizes. These include the HG002 X chro-
mosome centromere (same sequence as Fig. 3), the gibbon Y
chromosome (Supplementary Fig. S2), the human Y chromo-
some (Rhie et al. 2023), and the entire gap-free reference
genomes of Arabadopsis (Naish et al. 2021) and CHM13

(Nurk et al. 2022), containing 5 and 24 chromosomes, re-
spectively. For each input, both a static matrix and interactive
matrices containing three layers were produced, based on a
window size proportional to the length of the largest chromo-
some in the input group. Interactive StainedGlass plots were

Figure 6. Comparative dot plot of chromosome X DXZ1 satellite array from the HG002 and CHM13 genomes, overlaid with self-identity plots, using a
99% identity threshold. A faint, high-identity diagonal is visible in the comparative plot, indicating the orthologous sequences between these two highly
variable arrays

Table 1. Analysis of memory and runtime needed to produce the similarity matrixa

ModDotPlot StainedGlass
Sequence n (mbp) Plot Type w (bp) CPU time (s) Memory (GB) CPU time (s) Memory (GB)

Human CHM13
Chr1 Centromere

4.0 Static 4000 11.10 0.43 1871.31 12.95
Interactive 1000 204.85 1.16 2812.49 13.44

Gibbon mSymSyn1
ChrY

29.9 Static 32 000 51.16 2.05 9857.57 30.13
Interactive 8000 193.22 2.41 11 264.01 33.50

Human HG002
ChrY

62.5 Static 64 000 80.47 4.06 11 214.19 43.18
Interactive 16 000 269.84 5.90 14 806.91 48.95

Arabadopsis Col-CEN
Whole Genome

128.5
c¼5

Static 32 000 289.12 6.13 16 014.17 33.41
Interactive 8000 1734.11 9.57 20 187.19 35.20

Human CHM13
Whole Genome

3117.3
c¼24

Static 256 000 15 238.04 40.24 — —
Interactive 64 000 29 101.76 44.31 — —

a This does not include plot runtime, as that is the same between StainedGlass and ModDotPlot. ModDotPlot was run with a target sketch size of
m¼1000 for all samples. For the whole genome assemblies of Arabadopsis and CHM13, the runtime includes the comparative matrix between each pairwise
combination of chromosomes, in addition to self-identity comparisons. StainedGlass was unable to complete CHM13 whole genome within 72 h of
CPU time.

8 Sweeten et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data

created in a similar way to ModDotPlot (i.e. a bottom-up ap-
proach based on a minimum window size), and stored in
Cooler format (Abdennur and Mirny 2020).

In all cases, ModDotPlot exhibits orders of magnitude
lower runtime and memory requirements than StainedGlass.
An analysis of the Snakemake report generated by
StainedGlass showed that the Minimap2 alignment domi-
nated the runtime and memory usage and was the clear bot-
tleneck of the pipeline. We note that despite both tools
requiring the sequence identity computation of r2 cells in
each matrix, importantly, ModDotPlot’s runtime is indepen-
dent of sequence length n. Computing ANIc for each cell
requires a set intersection operation on two sets of size m,
making Equation (5)’s runtime complexity OðmÞ. This can be
observed in Table 1, as in interactive mode with high r, both
Y chromosomes and the Human Chr1 centromere took a
similar amount of CPU time, despite each sequence being
vastly different in size. In contrast, StainedGlass requires each
cell to run Minimap2 on an unsketched sequence of length
w¼ n

r. The OðnÞ runtime for identity estimation hinders the
ability of StainedGlass to visualize whole genomes and
large sequences.

4 Discussion
Traditional dot plot methods have struggled with the com-
plexity and abundance of genomic repeats, often leading to
oversimplified or inaccurate representations. The use of heat-
maps offers a substantial improvement over classic vectorized
dotplots as they allow for a more natural and nuanced repre-
sentation of tandem repeats, thereby capturing subtle varia-
tions and patterns that vectorized plots obscure. This is
especially true for the typical use case where the genomic
sequences are manyfold larger than the resolution of the dis-
play so that a single pixel intrinsically represents many kilo-
bases of sequence (e.g. a gigabase genome plotted on a 4K
display). ModDotPlot improves upon previous methods in
terms of speed and computing requirements by an order of
magnitude, enabling visualization of whole genomes on a lap-
top. At the heart of ModDotPlot’s efficiency is its use of hier-
archical modimizers, which enable the interactive
visualization of vertebrate-sized genomes on a typical laptop.
Additionally, the use of expanded intervals combined with
the containment index efficiently corrects for registration
artifacts inherent to rasterized similarity heatmaps. This is es-
pecially important for centromeric and rDNA repeats that
are composed of large subunits that can straddle adja-
cent windows.

A number of additional features could be added to further
extend the utility of ModDotPlot. We note how readily satel-
lite arrays and other repeat classes can be visually identified
from the dot plots, e.g. satellite arrays appear as dense blocks
of color, segmental duplications as lines, and palindromes as
lines that cross the diagonal. This raises the possibility of re-
peat annotation and classification using automated interpre-
tation of dot plots, possibly through machine learning
techniques. Additionally, the integration of arbitrary annota-
tion tracks alongside the dot plots would add the ability to vi-
sualize genes and other notable features in the context of
structural repeats and variation, as is possible with other vi-
sualization tools such as HiGlass (Kerpedjiev et al. 2018).
Lastly, ModDotPlot currently computes similarity matrices in
advance of plotting, but with sufficiently fast set operations it

would be possible to compute similarity matrices directly
from the hierarchical modimizer index on the fly. This would
enable interactive exploration of plots with essentially arbi-
trary resolution.

ModDotPlot highlights the power of minhashing as a fast
yet accurate heuristic for sequence alignment, even within the
most complex satellite repeat arrays. While our results show
that using modimizers to estimate ANIC is accurate within
the recommended 85% identity threshold, alternative sketch-
ing approaches may further the utility of this approach.
Minmers, for example, allow for an unbiased and accurate
identity estimate, with the added advantage of having a win-
dow guarantee (Kille et al. 2023). While such methods can
improve sensitivity for more diverged sequences, this comes
at the expense of being slower to compute. However, the
results presented here suggest that such methods may be able
to guide alignments through highly repetitive and variable
satellite arrays, ultimately improving our understanding of
the structure, function, and evolution of these previously
dark regions of the genome.

Acknowledgements
We would like to thank Mitchell Vollger, Ian Henderson,
Karen Miga, and Nicholas Altemose for helpful discussions,
and Richard Durbin for suggesting the term “modimizer” to
describe an element of a modulo sketch. We would also like
to thank Bryce Kille and Nico Ritschel for their feedback and
improvements of this manuscript.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
This work was supported, in part, by the Intramural
Research Program of the National Human Genome Research
Institute, US National Institutes of Health [to A.P.S. and A.
M.P.]; NSF awards [IOS-2216612, IOS-1758800 to M.C.S.];
and the Human Frontier Science Program award [RGP0025/
2021 to M.C.S.]. This work utilized the computational
resources of the NIH HPC Biowulf cluster (https://hpc.
nih.gov).

References
Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and

other genomically labeled arrays. Bioinformatics 2020;36:311–6.
Altemose N, Logsdon GA, Bzikadze AV et al. Complete genomic and

epigenetic maps of human centromeres. Science 2022;
376:eabl4178.

Appleby A. Murmurhash3. Github, 2016. https://github.com/aappleby/
smhasher/wiki/Murmurhash3

Broder AZ. On the resemblance and containment of documents. In:
Proceedings: Compression and Complexity of SEQUENCES 1997
(Cat. No.97TB100171), Positano, Salerno, Italy. pp.21–9.
IEEE, 1997.

Bzikadze AV, Pevzner PA. UniAligner: a parameter-free framework for
fast sequence alignment. Nat Methods 2023;20:1346–54.

ModDotPlot 9

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae493#supplementary-data
https://hpc.nih.gov
https://hpc.nih.gov
https://github.com/aappleby/smhasher/wiki/Murmurhash3
https://github.com/aappleby/smhasher/wiki/Murmurhash3

Cheng H, Asri M, Lucas J et al. Scalable telomere-to-telomere assembly
for diploid and polyploid genomes with double graph. Nat Methods
2024;21:967–70.

Chin CS, Khalak A. Human genome assembly in 100 minutes. bioRxiv,
https://doi.org/10.1101/705616, 2019, preprint: not peer reviewed.

Das A, Schatz MC. Sketching and sampling approaches for fast and ac-
curate long read classification. BMC Bioinformatics 2022;23:452.

Harris CR, Millman KJ, van der Walt SJ et al. Array programming with
NumPy. Nature 2020;585:357–62.

Hera MR, Pierce-Ward NT, Koslicki D. Deriving confidence intervals
for mutation rates across a wide range of evolutionary distances us-
ing FracMinHash. Genome Res 2023;33:1061–8.

Hossain S. Visualization of bioinformatics data with dash bio. In:
Python in Science Conference 2019, Austin, Texas, United States.
SciPy, 2019.

Irber L, Brooks PT, Reiter T et al. Lightweight compositional analysis
of metagenomes with FracMinHash and minimum metagenome
covers. bioRxiv, https://doi.org/10.1101/2023.11.06.565843,
2022, preprint: not peer reviewed.

Jain C, Dilthey A, Koren S et al. A fast approximate algorithm for map-
ping long reads to large reference databases. J Comput Biol 2018;
25:766–79.

Kerpedjiev P, Abdennur N, Lekschas F et al. HiGlass: web-based visual
exploration and analysis of genome interaction maps. Genome Biol
2018;19:125.

Kibirige H, Lamp G, Katins J et al. has2k1/plotnine: v0.13.6. Zenodo,
2024. https://doi.org/10.5281/zenodo.1325308

Kille B, Garrison E, Treangen TJ et al. Minmers are a generalization of
minimizers that enable unbiased local Jaccard estimation.
Bioinformatics 2023;39:btad512.

Koslicki D, Zabeti H. Improving MinHash via the containment index
with applications to metagenomic analysis. Appl Math Comput
2019;354:206–15.

Li H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 2018;34:3094–100.

Logsdon GA, Eichler EE. The dynamic structure and rapid evolution of
human centromeric satellite DNA. Genes (Basel)2022;14:92.

Logsdon GA, Rozanski AN, Ryabov F et al. The variation and evolu-
tion of complete human centromeres. Nature 2024;629:136–45.

Maizel JV, Jr., Lenk RP. Enhanced graphic matrix analysis of nucleic
acid and protein sequences. Proc Natl Acad Sci USA 1988;
78:7665–9.

Makova KD, Pickett BD, Harris RS et al. The complete sequence and
comparative analysis of ape sex chromosomes. Nature 2024;
630:401–11.

Marçais G, Delcher AL, Phillippy AM et al. MUMmer4: a fast and ver-
satile genome alignment system. PLoS Comput Biol 2018;
14:e1005944.

Miga KH, Newton Y, Jain M et al. Centromere reference models for hu-
man chromosomes X and Y satellite arrays. Genome Res 2014;
24:697–707.

Naish M, Alonge M, Wlodzimierz P et al. The genetic and epigenetic land-
scape of the Arabidopsis centromeres. Science 2021;374:eabi7489.

Nurk S, Koren S, Rhie A et al. The complete sequence of a human ge-
nome. Science 2022;376:44–53.

Ondov BD, Treangen TJ, Melsted P et al. Mash: fast genome and meta-
genome distance estimation using MinHash. Genome Biol 2016;
17:132.

Ondov BD, Starrett GJ, Sappington A et al. Mash screen: high-
throughput sequence containment estimation for genome discovery.
Genome Biol 2019;20:232.

Rautiainen M, Nurk S, Walenz BP et al. Telomere-to-telomere assembly
of diploid chromosomes with Verkko. Nat Biotechnol 2023;
41:1474–82.

Rhie A, Nurk S, Cechova M et al. The complete sequence of a human Y
chromosome. Nature 2023;621:344–54.

Sahlin K, Baudeau T, Cazaux B et al. A survey of mapping algorithms
in the long-reads era. Genome Biol 2023;24:133.

Sedlazeck JF, Lee H, Darby AC et al. Piercing the dark matter: bioinfor-
matics of long range sequencing and mapping. Nat Rev Genet 2018;
19:329–46.

Vollger MR, Kerpedjiev P, Phillippy AM et al. StainedGlass: interactive
visualization of massive tandem repeat structures with identity heat-
maps. Bioinformatics 2022;38:2049–51.

Wlodzimierz P, Rabanal FA, Burns R et al. Cycles of satellite and trans-
poson evolution in Arabidopsis centromeres. Nature 2023;
618:557–65.

Published by Oxford University Press 2024.
This work is written by (a) US Government employee(s) and is in the public domain in the US.
Bioinformatics, 2024, 40, 1–10
https://doi.org/10.1093/bioinformatics/btae493
Original Paper

10 Sweeten et al.

https://doi.org/10.1101/705616
https://doi.org/10.5281/zenodo.1325308

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Supplementary data
	Conflict of interest
	Funding
	References

