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Abstract
Motivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via a dot plot. Innovative 
approaches such as StainedGlass have improved upon this classic visualization by rendering dot plots as a heatmap of sequence identity, enabling 
researchers to better visualize multi-megabase tandem repeat arrays within centromeres and other heterochromatic regions of the genome. However, 
computing the similarity estimates for heatmaps requires high computational overhead and can suffer from decreasing accuracy.
Results: In this work, we introduce ModDotPlot, an interactive and alignment-free dot plot viewer. By approximating average nucleotide identity 
via a k-mer-based containment index, ModDotPlot produces accurate plots orders of magnitude faster than StainedGlass. We accomplish this 
through the use of a hierarchical modimizer scheme that can visualize the full 128 Mb genome of Arabidopsis thaliana in under 5 min on a laptop. 
ModDotPlot is bundled with a graphical user interface supporting real-time interactive navigation of entire chromosomes.
Availability and implementation: ModDotPlot is available at https://github.com/marbl/ModDotPlot.

1 Introduction
Large tandemly repeating blocks of DNA, such as satellite 
repeats and their complex higher-order structures, are ubiqui-
tous in many eukaryotic genomes, yet have been notoriously 
difficult to sequence and assemble. These motifs occur dis-
proportionately in telomeric, centromeric, and heterochro-
matic regions of the genome (Logsdon and Eichler 2022), 
and are commonly referred to as genomic “dark matter” due 
to their prior absence from reference genomes (Sedlazeck 
et al. 2018). Recent advances in long-read sequencing and as-
sembly tools have enabled genomics researchers to success-
fully assemble these complex regions, culminating in the first 
complete human genome (Nurk et al. 2022) as well as impor-
tant model organisms such as Arabidopsis (Naish et al. 2021) 
and nonhuman primates (Makova et al. 2024). More 
broadly, with tools such as Verkko (Rautiainen et al. 2023) 
and hifiasm (UL) (Cheng et al. 2024) now able to automati-
cally assemble complete “telomere-to-telomere” chromo-
somes, developing new methods to analyze these previously 
dark regions of the genome has taken on new importance.

Traditionally, dot plots have been useful visualizations to 
characterize the structure of complex repeats (Maizel and 
Lenk 1988). To generate such a plot, a sequence S is typically 
aligned with itself using software such as MUMmer (Marçais 
et al. 2018), and plotted in a 2D space. This approach results 
in a set of line segments from ½x;y� to ½xþ l −1;yþ l − 1� for 
all matches of length l (above some minimum length 

threshold) beginning at positions x and y in S. This yields a 
single diagonal line segment, representing the sequence 
aligned with itself, and all off-diagonal segments representing 
the location of paralogous repeat copies. If based on a gapped 
sequence alignment, these segments may also be colored by 
their average sequence identity, but the internal, fine-grained 
structure of the repeats cannot be represented by 
this technique.

To overcome this limitation, recent work by Vollger et al. 
(2022) introduced StainedGlass, which relies on a rasterized 
rather than vectorized approach. In this framework, the aim 
is to generate a similarity matrix Mw where each cell 
MwðAi;BjÞ relates two genomic intervals Ai and Bj of length 
w beginning at positions wi and wj in S. By re-framing the 
problem in terms of intervals rather than single bases, a per-
cent identity can be computed between all pairs of intervals 
and the matrix Mw can be rendered as a heatmap where each 
cell (pixel) represents the percent identity between the two 
substrings at the corresponding interval positions. This tech-
nique has extended the previously binary dot plot into a rich 
spectrum of information and proven highly effective for visu-
alizing patterns of sequence evolution within tandem repeat 
arrays of both humans and plants (Wlodzimierz et al. 2023, 
Logsdon et al. 2024).

Although heatmaps produced by StainedGlass have been 
useful in practice, the workflow used to generate them has in-
herent limitations. First, StainedGlass uses Minimap2 
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(Li 2018) to determine sequence identity by computing the 
number of matches, mismatches, insertions, and deletions be-
tween pairs of substrings. Minimap2’s alignment heuristic is 
not well-suited for repetitive sequences (Sahlin et al. 2023) 
and leads to long runtimes, especially for short tandem 
repeats. For example, a single 3-Mb human centromere 
requires over one hour to plot when running on a high- 
performance compute cluster. Furthermore, StainedGlass 
partitions the input sequence into intervals of a fixed size. 
Similar substrings that are split across this boundary may fail 
to align, leading to inaccurate identity estimates.

To improve upon these limitations, we propose a k-mer- 
based approach that bypasses the computationally expensive 
requirement of sequence alignment. Estimating sequence 
identity from sets of k-length substrings (k-mers) has seen in-
creasing use in genomics (Ondov et al. 2016). Such tools typi-
cally utilize downsampling methods, such as minhash, to 
reduce the size of each k-mer set before estimating sequence 
identity using the Jaccard index or related set similar-
ity measure.

In this work, we introduce ModDotPlot, a novel heatmap 
visualization tool that rapidly estimates sequence identity us-
ing hierarchical modimizers, a form of fractional minhashing 
(Irber et al. 2022). Modimizers are defined as hashed k-mer 
values that have no remainder when divided by some number 
s, which we refer to as the sparsity. Here we restrict s to pow-
ers of two, s¼ 2d, which conveniently results in the set of 
modimizers being: (i) precisely those hash values with d zeros 
in their least significant bits, and (ii) a strict subset of the 
modimizers defined by s¼ 2d − 1. We use this efficient mem-
bership test and hierarchical property to efficiently downsam-
ple genomic k-mers at multiple levels of sparsity. We show 
that the resulting modimizers can be used to accurately esti-
mate the average nucleotide identity (ANI) of two substrings, 
while being resistant to segmentation artifacts and orders of 
magnitude faster than StainedGlass. To conclude, we demon-
strate ModDotPlot’s ability to elucidate the centromeric sat-
ellite structure of both plants and animals.

2 Materials and methods
ModDotPlot takes as input a list of sequences in FASTA for-
mat and outputs a self-identity heatmap for each sequence, as 
well as comparative heatmaps for all pairwise combinations 
of sequences. In describing our methods, we assume the con-
struction of a self-identity heatmap, but the necessary modifi-
cations for constructing comparative heatmaps is 
straightforward. ModDotPlot can be run one of two ways, 
specified at runtime: Static mode produces a static image file 
for each plot, while Interactive mode builds a plot hierarchy 
using multiple modimizer values so that the plot resolution 
can be adjusted in real time as the user adjusts the zoom level. 
We outline the workflow of both possible modes of 
ModDotPlot in Fig. 1.

ModDotPlot first decomposes each sequence S of length n 
into a list of its constituent k-mers Sk. Each k-mer and its re-
verse complement are passed through a hash function h :

Ω ! ½0;H� for some H 2 R, with the smaller of the two val-
ues added into Sk. Once broken down into k-mers, 
ModDotPlot partitions Sk into evenly sized and nonoverlap-
ping genomic intervals of size w, also referred to as the win-
dow size. We define the number of intervals as r¼ n −kþ1

w , 
which we refer to as the resolution. This determines the 

height and width of the resulting heatmap. To reduce the run-
time and space complexity of handling large sequences, 
ModDotPlot sketches each interval A into sets based on a 
modulo function, as originally proposed by Broder (1997). 
We formally define our algorithm for sketching Sk in 
Supplementary Algorithm S1. This generates the following 
set for each interval: 

MODsðAÞ ¼ 8a 2 fSk½A�g : a � 0 mod s (1) 

We refer to any k-mer present in the sketch MODsðAÞ as a 
modimizer. We define s 2 Zþ as the modimizer sparsity and 
restrict s to powers of 2. Note that the sparsity value is in-
versely related to the number of modimizers selected (i.e. the 
density), with s¼2 resulting in approximately every second 
k-mer being selected, s¼4 with every fourth k-mer, and so 
on. Given a set of k-mers sampled from a long random string, 
the expected number of modimizers per window is: 

m ¼ E½jMODsðAÞj� ¼
w
s

(2) 

We refer to m as the modimizer sketch size, with larger values 
of m increasing the accuracy of the minhash similarity esti-
mates. Given a desired plot resolution r and target sketch size 
m, the corresponding window size w¼ n

r and required spar-
sity s¼ w

m can be automatically derived. Based on prior work 
(Ondov et al. 2016), we use m¼1000 as a good compromise 
between accuracy and efficiency.

In practice, if the k-mers in interval A are highly repetitive, 
then the true size of MODsðAÞ can be significantly less than 
m. To avoid selecting too few k-mers in a window, we intro-
duce a threshold set to half the expected number of modim-
izers. If the size of MODsðAÞ is less than this threshold, 
modimizers are iteratively recomputed at half the sparsity un-
til the modimizer count threshold is met or the sparsity hits 
one (i.e. every k-mer in A is included in the sketch).

Once the input sequence is partitioned and sketched, 
ModDotPlot produces a similarity matrix Mw by estimating 
the identity between each pairwise combination of intervals 
A and B, which we refer to as a cell in the matrix. We esti-
mate the proportion of k-mers in A that are contained in B, 
and vice-versa, via the containment index (Broder 1997): 

ĉmodðA;BÞ ¼
jMODsðAÞ \MODsðBÞj

jMODsðAÞj
(3) 

Hera et al. (2023) show that for the FracMinHash scheme, a 
correction factor is needed for an unbiased estimate of the 
containment index, to account for cases where jMODsðAÞj
differs greatly from jMODsðBÞj. In practice, this can occur 
when interval A occurs in a repetitive genomic interval while 
interval B does not. Since modulo hashing is a variant of frac-
tional minhashing, the same correction applies and we in-
clude the expected value in the denominator to achieve an 
unbiased estimate of the containment index: 

cmod A;Bð Þ ¼
jMODsðAÞ \MODsðBÞj

jMODs Að Þj 1 − 1 − 1
s

� �jfAgj
� � (4) 

Furthermore, since the containment index drops exponen-
tially with respect to the mutation rate (Koslicki and Zabeti 
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2019), it is useful to represent this as an estimate of percent 
sequence identity. As implemented in MashScreen (Ondov 
et al. 2019), we model the probability of mutation at each po-
sition in a k-mer with the binomial distribution to estimate 
the ANI as: 

ANIcðA;BÞ ¼ cmodðA;BÞ
1
k (5) 

For self-identity plots, ModDotPlot sets MwðA;BÞ ¼
maxfANIcðA;BÞ;ANIcðB;AÞg to ensure the resulting matrix is 
symmetric. We note that the containment index is not a dis-
tance metric, as it neither satisfies the symmetry property nor 
the triangle inequality property; however, for two equally sized 
intervals, we show that ANIc correlates well with an alignment- 
based ANI. Furthermore, the containment index has the 
desirable property of not requiring a set operation in its denom-
inator, meaning it is possible to increase the length of interval B 
without penalizing ANIc. We take advantage of this property 
to overcome segmentation artifacts, as described later.

Once the matrix of containment indices is computed, 
ModDotPlot outputs an identity heatmap analogous to a geno-
mic dot plot. The heatmap is assigned a range of color values, 
ranging from t (a user provided threshold identity threshold) to 
100. Any cells in the matrix < t are left uncolored. Use of t<85 
is not recommended, as the identity estimate rapidly loses accu-
racy below this value for typical values of k and m, since the 
higher divergence may result in very few, or zero, k-mers shared 
between the two intervals. Given a symmetric self-identity dot 
plot, the upper diagonal of the dot plot can be used to produce 
a triangular dot plot in addition to the standard square.

2.1 Modimizer hierarchy
Modimizers present a quick and efficient sketching approach, 
as given a sparsity of s¼ 2d, only the first d bits of each 

k-mer hash need to be checked to verify membership in 
MODs. In addition, modimizers are context-independent, 
providing a guarantee that any k-mer selected as a modimizer 
in one set will also be a modimizer in every other set, regard-
less of the neighboring context or genomic interval. Given 
these properties, it is guaranteed that any modimizer in 
MODs1ðAÞ will also occur in MODs2ðAÞ when s1 is an integer 
multiple of s2: 

MODs1ðAÞ �MODs2ðAÞ if
s1

s2
2 Zþ (6) 

Thus, for a geometric sequence of sparsity values, the 
smaller modimizer sets will always be subsets of the larger 
ones. We call this the hierarchical property of modimizers. 
This property distinguishes hierarchical modimizers from us-
ing a modulo function to uniformly sample k-mers (Das and 
Schatz 2022), and to the best of our knowledge is a novel in-
troduction of this property. As we describe below, we lever-
age this property in order to reduce the memory and runtime 
overhead when generating dot plots at multiple zoom levels.

A hierarchical modimizer index consists of l modimizer 
sets with window sizes ŵ; 2ŵ, …, 2ðl − 1Þŵ and correspond-
ing sparsities ̂s; 2ŝ, …, 2ðl − 1Þŝ. Given a user-specified modim-
izer sketch size m̂ and minimum window size ŵ, the initial 
sparsity is defined as ŝ ¼ 2b log 2

ŵ
m̂ð Þc. To construct progres-

sively sparser levels of the hierarchy, let A be an interval of 
size 2w, and AL and AR be the w-sized left and right halves of 
A respectively. Due to the hierarchical property, the modim-
izers for the next sparser level can be sampled from the previ-
ous level since MOD2sðAÞ �MODsðALÞ [MODsðARÞ. 
Repeating this process, additional levels of the hierarchy are 
sampled until the window size exceeds jSjr , i.e. the resulting 
number of intervals would be less than the minimum resolu-
tion. For example, a 250-Mb sequence plotted with a 

Figure 1. Overview of ModDotPlot’s workflow for producing a self-identity plot. Static mode: Hashed k-mers are evenly partitioned into intervals of 
length w. Modimizers are selected based on an estimated sketch size m within each interval. For each pairwise combination of intervals, identity is 
computed and stored in a matrix Mw. Finally, a heatmap is created based on the color thresholds provided. Interactive mode: Three distinct modimizer 
partitions are produced from a minimum interval length of ŵ¼1 up to w¼4. At launch, a heatmap is rendered for the largest window size (here, w¼4). 
When the field of view is zoomed by half (highlighted region), the dot plot is rendered using a submatrix created from the partition at w¼2. This process 
can extend until a plot produced from the minimum interval length ŵ is reached, with m remaining constant among all layers. While m¼1 is used here 
for demonstration, ModDotPlot adjusts the modimizer sparsity such that m � 1000 in practice
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minimum window size of 10 Kbp and a resolution of 1000 
would result in 5 layers, since l¼5 is the largest l such that 
2ðl − 1Þŵ≤ jSjr . We formally define our algorithm for producing 
the modimizer hierarchy in Supplementary Algorithm S2.

The runtime and space complexity for building the initial 
modimizer layer is OðnÞ, as this requires linear scan of the se-
quence of size n. The expected complexity of each successive 
layer is half the previous due to the sparsity increasing by 
powers of two, so the overall runtime and space complexity 
of Supplementary Algorithm S2 remains OðnÞ. This approach 
mirrors the “multilevel winnowing” (Jain et al. 2018) or 
“SHIMMER” (Chin and Khalak 2019) indices, but our use 
of modimizers rather than minimizers allows for unbiased 
containment estimates. From this index, similarity matrices 
can be efficiently computed for any pair of genomic ranges of 
the input sequence, with the maximum resolution determined 
by the minimum window size chosen when building 
the hierarchy.

2.2 Offset and window expansion
When partitioning the input sequence into discrete intervals, 
it’s possible that two highly similar sequences can be parti-
tioned in different ways, resulting in an inaccurate sequence 
identity estimate between them (Fig. 2). This occurs whenever 
the two similar sequences are “out of register” and have a dif-
ferent offset relative to the start of the full sequence and that 
difference is not a multiple of the interval length. The result is 
that the sequences of the two intervals only partially overlap, 
rather than fully match. This can also occur within tandem 
repeats when the unit size is larger than the interval length, 
such as the rDNA arrays of human acrocentric 
chromosomes.

To overcome this offset issue, ModDotPlot extends each 
interval B by w2 in each direction to form the expanded inter-
val B0. The containment index is then computed as 
cmodðA;B0Þ

1=k, accounting for any sequence similarities that 
extend beyond the boundaries of B. We show the effect of 
this approach when computing the containment index in  
Fig. 2, as well as a practical example with human rDNA in 
Supplementary Fig. S1. Since B does not appear in the de-
nominator of Equation (4), expanding the size of B does not 
penalize or bias the containment index. Doubling the size of 
B accounts for the worst-case scenario of a match diagonal 
beginning in the middle of the interval, and so is the default 
behavior, but this expansion factor can be turned off or ad-
justed if necessary.

2.3 Implementation and user interface
ModDotPlot is implemented in the Python programming lan-
guage (version 3.7 or later). By default, ModDotPlot runs in 
interactive mode using Plotly with Dash (Hossain 2019), 
which itself uses the Flask web framework. Consequently, 
plots are visualized on a web browser connected to the user’s 
localhost. Interactive ModDotPlot can also be run remotely, 
e.g. on a compute cluster, via port forwarding over an ssh 
tunnel. In static mode, containment indices are saved into a 
compressed BED file, and dot plots are produced using the 
Plotnine plotting library (Kibirige et al. 2024). In addition to 
the standard rectangular plots, static mode also supports tri-
angular plot styles.

An important parameter common to all k-mer based meth-
ods is the choice of k, as this represents a trade-off between 
sensitivity and specificity. Smaller k-mers are more sensitive 

for detecting identity within divergent intervals, but lose spe-
cificity due to chance k-mer collisions. ModDotPlot allows 
for flexibility in setting k, but based on prior work (Ondov 
et al. 2016), we set a default k¼21 to ensure accurate esti-
mates in most cases.

k-mers are hashed using MurmurHash3 (Appleby 2016) 
and all similarity matrices are stored in the form of NumPy 
arrays (Harris et al. 2020). The size of a similarity matrix is 
proportional to Oðr2Þ rather than the length of the genome 
sequence. By default, ModDotPlot uses a resolution of 
r¼1000 for efficient visualizations on most standard dis-
plays. To enable a responsive interface in interactive mode, a 
full similarity matrix is precomputed for each level of the 
modimizer hierarchy. However, since the number of layers 
scales logarithmically with the sequence length, only a few 
layers are needed in practice (e.g. l≤5). When zooming on 
the plot, the appropriate matrix is chosen such that the num-
ber of cells in the matrix is at least the number of pixels in the 
plot. To prevent redundant computations of similarity matri-
ces for future exploration, NumPy matrices can be saved as 
binary files and loaded directly as input.

Supplementary Figure S2 shows a screenshot of 
ModDotPlot’s user interface in interactive mode. Hovering 
over the plot shows the exact genomic coordinates, along 
with the corresponding estimated identity of each section. 
This example shows a plot highlighting the repeat-rich 30- 
Mb Y chromosome from a siamang gibbon (Symphalangus 
syndactylus). Users can select a number of preset color- 
schemes, including high contrast schemes to aid visually im-
paired or color-blind users, or specify custom colors, either in 
hex code or RGB format. ModDotPlot also supports the crea-
tion of fully customizable static plots as PDF and PNG files.

3 Results
3.1 Plot accuracy
To showcase the improvements of ModDotPlot over 
StainedGlass, Fig. 3 shows the plots produced by both tools 
for the centromeric alpha satellite array of the human 
HG002 X chromosome. The StainedGlass default window 
size of 2000 produces a highly “checkered” plot containing 
streaks of apparently low identity within the array. However, 
this is not representative of any sort of centromere biology; 
rather, it is an artifact of partitioning the genome into win-
dows of a fixed size. The canonical DXZ1 higher-order re-
peat (HOR) present in this array consists of twelve 
monomers totaling �2050 bp (Miga et al. 2014), which is 
slightly longer than the selected window size. Using a window 
size of 5000 is sufficient to contain a complete HOR and alle-
viate this problem, but this comes at the cost of a lower reso-
lution plot and requires advance knowledge of the repeat 
structure. In contrast, ModDotPlot produces an accurate plot 
regardless of window length and HOR size.

Figure 4 shows the strong correlation between 
ModDotPlot ANIc values and an alignment-based ANIm 

computed by MUMmer (Marçais et al. 2018), but with the 
accuracy of ANIc decreasing with increasing sparsity (re-
duced sketch size), as expected (Supplementary Fig. S3). For 
each pairwise combination of HORs present in 
chrX:58,000,771–58,200,827, the MUMmer ANIm was 
taken from the “AvgIdentity” of one-to-one alignments com-
puted by the v4.0.1 “dnadiff” program. The vast majority of 
HORs, representing the canonical 12-mer structure, fall 
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within the consensus range of 97%–100% sequence identity 
(Miga et al. 2014) with high concordance (r¼0.965) be-
tween ModDotPlot and MUMmer. Larger differences be-
tween the two methods arise from pairs of windows 
containing structural variation that confound MUMmer’s 
alignment-based similarity.

The containment index used by ModDotPlot does not pe-
nalize k-mer copy number differences or large insertions/dele-
tions (indels) in the same way a global alignment would. For 
example, within the chromosome X centromeric array we ob-
served a small number of windows where the ANIm and 
ANIc values differed substantially. Closer investigation 
revealed the presence of a single noncanonical HOR, consist-
ing of a shorter 10 monomer repeat that was scored higher 
by ANIc when compared to the canonical 12 monomer repeat 
(Fig. 4). The difference between these two repeats is 

interpreted as a large indel by MUMmer, resulting in a re-
duced ANIm. However, this difference is not penalized by 
ANIc, as the 10 monomers present in the shorter HOR are 
well-contained within the canonical 12 monomer.

Thus, ANIc is more akin to a local alignment similarity, i.e. 
the average similarity between the sequences that are shared, 
and reflects the point mutation rate between two sequences 
rather than the rate of larger structural variants. This is an 
important distinction, because in this case MUMmer ANIm 

confounds these two evolutionary processes, while ANIc iso-
lates the point mutation rate of the individual monomers. 
Such differences between ANIc and ANIm are most pro-
nounced within HOR satellite arrays, which are prone to un-
equal crossing over leading to frequent expansion and 
contraction of the arrays (Altemose et al. 2022). For this rea-
son, the UniAligner (Bzikadze and Pevzner 2023) tool, which 

Figure 2. Sample cases for different interval offsets. k-mers shared between intervals A and B are underlined. (a) In an ideal partition, the shared k-mers 
are perfectly captured in both intervals. (b) In a worse-case partition, only half of the shared k-mers are captured in the cell, leading to a misleading 
identity estimate for this region. (c) By keeping A fixed, but expanding B to B0, ModDotPlot is able to better capture the similarity between two similar 
sequences with different offsets. The containment index of A in B0 is then used to determine the score of the dot plot matrix cell Mw ðA;BÞ
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is specifically built for aligning long tandem repeats, similarly 
uses an indel penalty of zero during its k-mer align-
ment phase.

3.2 Modimizer sparsity
Compared to other sketching approaches, modimizers lack 
any sort of “window guarantee,” meaning that no lower 
bounds exist on the number of k-mers that will be selected 
for each interval. In addition, the containment index is com-
puted on sets of k-mers, not multisets (i.e. only the presence 
or absence of a k-mer is considered), so highly repetitive 
intervals will typically result in smaller k-mer sets, which can 
lead to reduced accuracy when estimating the containment. 
Although this is partially taken into account by the error 
term provided in Equation (4), we demonstrate that by dy-
namically modifying the sparsity, as done in Supplementary 
Algorithm S1, the number of modimizers selected per win-
dow can be kept above acceptable levels. Figure 5 shows this 
on a 4-Mb centromeric region of CHM13 chromosome 1. 
Regions of alpha satellite repeats show a steep decline in the 
number of distinct k-mers; however, this can be corrected by 
adaptively reducing the modimizer sparsity in this region to 
boost the number of k-mers selected per window to at least m2 
and thus improve the containment estimates. Without this 
correction, we find that real similarities between low- 
complexity satellite arrays can go entirely undetected.

3.3 Comparative plots
In addition to self-identity plots, ModDotPlot is also able to 
generate comparative plots between two different sequences. 
As an example, we showcase a pairwise dot plot between the 
DXZ1 alpha satellite arrays of two different human X chro-
mosome centromeres, one from the HG002 genome and one 
from the CHM13 genome (Fig. 6). These two arrays have been 
previously assembled and compared (Altemose et al. 2022), 
but it is difficult to understand their structural differences by 
comparing only their self-identity plots. By plotting the two 
arrays against each other, their orthology relationship becomes 
clear. The comparative dot plot of the HG002 and CHM13 
DXZ1 arrays reveals a faint diagonal representing the shared 
history of the two sequences, punctuated by over 300 large 
duplications/deletions distributed throughout the array 
(Bzikadze and Pevzner 2023). As noted above, centromeric sat-
ellite arrays are one of the fastest evolving regions of the hu-
man genome and accumulate many such structural variants 
through various recombinational mechanisms. Because of their 
unique evolutionary patterns, and propensity for bulk inser-
tions/deletions, they have been one of the most difficult regions 
of the genome to align using traditional approaches.

3.4 Runtime and memory
In Table 1, we compare the runtime and memory usage of 
ModDotPlot to StainedGlass across input sequences of 

Figure 3. Plots produced by StainedGlass (column 1) and ModDotPlot (column 2), representing the upper diagonal self-identity heatmap of the HG002 
DXZ1 satellite array (ChrX:57,680,000–61,000,000). Rows represent a window size of 2000 (r¼ 1570 in ModDotPlot) and 5000 (r¼ 678) respectively. 
ModDotPlot was run with a default m¼ 1000. Plotting artifacts in the StainedGlass w¼ 2000 example are due to interactions between the partitioning 
window size and tandem repeat periodicity
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Figure 4. Scatterplots showing the linear relationship between MUMmer ANIm and ModDotPlot ANIc, using CHM13 chrX:58 000 771–58 200 827. The 
outlier group labeled on the left represents a noncanonical 10-mer HOR (chrX:58 060 405–58 062 120), which is scored differently by the two methods 
due to the presence of a large deletion when compared to the 12-mer HOR. The dashed line represents ANIm ¼ ANIc

Figure 5. Self-identity plot of the centromere of CHM13 Chromosome 1, overlaid with a smoothed unique k-mer frequency chart. Using a window size 
w¼4000 and a sparsity s¼ 4, the expected number of modimizers per window is m¼1000. When using an uncorrected sparsity value, the number of 
unique modimizers per window can drop to under 200. By detecting the unexpectedly small set sizes and adjusting the sparsity of these windows, the 
total number of modimizers in each window can be increased to at least m2 (or, in pathological cases, all k-mers in the window)
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various species and sizes. These include the HG002 X chro-
mosome centromere (same sequence as Fig. 3), the gibbon Y 
chromosome (Supplementary Fig. S2), the human Y chromo-
some (Rhie et al. 2023), and the entire gap-free reference 
genomes of Arabadopsis (Naish et al. 2021) and CHM13 

(Nurk et al. 2022), containing 5 and 24 chromosomes, re-
spectively. For each input, both a static matrix and interactive 
matrices containing three layers were produced, based on a 
window size proportional to the length of the largest chromo-
some in the input group. Interactive StainedGlass plots were 

Figure 6. Comparative dot plot of chromosome X DXZ1 satellite array from the HG002 and CHM13 genomes, overlaid with self-identity plots, using a 
99% identity threshold. A faint, high-identity diagonal is visible in the comparative plot, indicating the orthologous sequences between these two highly 
variable arrays

Table 1. Analysis of memory and runtime needed to produce the similarity matrixa

ModDotPlot StainedGlass
Sequence n (mbp) Plot Type w (bp) CPU time (s) Memory (GB) CPU time (s) Memory (GB)

Human CHM13 
Chr1 Centromere

4.0 Static 4000 11.10 0.43 1871.31 12.95
Interactive 1000 204.85 1.16 2812.49 13.44

Gibbon mSymSyn1 
ChrY

29.9 Static 32 000 51.16 2.05 9857.57 30.13
Interactive 8000 193.22 2.41 11 264.01 33.50

Human HG002 
ChrY

62.5 Static 64 000 80.47 4.06 11 214.19 43.18
Interactive 16 000 269.84 5.90 14 806.91 48.95

Arabadopsis Col-CEN 
Whole Genome

128.5 
c¼5

Static 32 000 289.12 6.13 16 014.17 33.41
Interactive 8000 1734.11 9.57 20 187.19 35.20

Human CHM13 
Whole Genome

3117.3 
c¼24

Static 256 000 15 238.04 40.24 — —
Interactive 64 000 29 101.76 44.31 — —

a This does not include plot runtime, as that is the same between StainedGlass and ModDotPlot. ModDotPlot was run with a target sketch size of 
m¼1000 for all samples. For the whole genome assemblies of Arabadopsis and CHM13, the runtime includes the comparative matrix between each pairwise 
combination of chromosomes, in addition to self-identity comparisons. StainedGlass was unable to complete CHM13 whole genome within 72 h of 
CPU time.
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created in a similar way to ModDotPlot (i.e. a bottom-up ap-
proach based on a minimum window size), and stored in 
Cooler format (Abdennur and Mirny 2020).

In all cases, ModDotPlot exhibits orders of magnitude 
lower runtime and memory requirements than StainedGlass. 
An analysis of the Snakemake report generated by 
StainedGlass showed that the Minimap2 alignment domi-
nated the runtime and memory usage and was the clear bot-
tleneck of the pipeline. We note that despite both tools 
requiring the sequence identity computation of r2 cells in 
each matrix, importantly, ModDotPlot’s runtime is indepen-
dent of sequence length n. Computing ANIc for each cell 
requires a set intersection operation on two sets of size m, 
making Equation (5)’s runtime complexity OðmÞ. This can be 
observed in Table 1, as in interactive mode with high r, both 
Y chromosomes and the Human Chr1 centromere took a 
similar amount of CPU time, despite each sequence being 
vastly different in size. In contrast, StainedGlass requires each 
cell to run Minimap2 on an unsketched sequence of length 
w¼ n

r. The OðnÞ runtime for identity estimation hinders the 
ability of StainedGlass to visualize whole genomes and 
large sequences.

4 Discussion
Traditional dot plot methods have struggled with the com-
plexity and abundance of genomic repeats, often leading to 
oversimplified or inaccurate representations. The use of heat-
maps offers a substantial improvement over classic vectorized 
dotplots as they allow for a more natural and nuanced repre-
sentation of tandem repeats, thereby capturing subtle varia-
tions and patterns that vectorized plots obscure. This is 
especially true for the typical use case where the genomic 
sequences are manyfold larger than the resolution of the dis-
play so that a single pixel intrinsically represents many kilo-
bases of sequence (e.g. a gigabase genome plotted on a 4K 
display). ModDotPlot improves upon previous methods in 
terms of speed and computing requirements by an order of 
magnitude, enabling visualization of whole genomes on a lap-
top. At the heart of ModDotPlot’s efficiency is its use of hier-
archical modimizers, which enable the interactive 
visualization of vertebrate-sized genomes on a typical laptop. 
Additionally, the use of expanded intervals combined with 
the containment index efficiently corrects for registration 
artifacts inherent to rasterized similarity heatmaps. This is es-
pecially important for centromeric and rDNA repeats that 
are composed of large subunits that can straddle adja-
cent windows.

A number of additional features could be added to further 
extend the utility of ModDotPlot. We note how readily satel-
lite arrays and other repeat classes can be visually identified 
from the dot plots, e.g. satellite arrays appear as dense blocks 
of color, segmental duplications as lines, and palindromes as 
lines that cross the diagonal. This raises the possibility of re-
peat annotation and classification using automated interpre-
tation of dot plots, possibly through machine learning 
techniques. Additionally, the integration of arbitrary annota-
tion tracks alongside the dot plots would add the ability to vi-
sualize genes and other notable features in the context of 
structural repeats and variation, as is possible with other vi-
sualization tools such as HiGlass (Kerpedjiev et al. 2018). 
Lastly, ModDotPlot currently computes similarity matrices in 
advance of plotting, but with sufficiently fast set operations it 

would be possible to compute similarity matrices directly 
from the hierarchical modimizer index on the fly. This would 
enable interactive exploration of plots with essentially arbi-
trary resolution.

ModDotPlot highlights the power of minhashing as a fast 
yet accurate heuristic for sequence alignment, even within the 
most complex satellite repeat arrays. While our results show 
that using modimizers to estimate ANIC is accurate within 
the recommended 85% identity threshold, alternative sketch-
ing approaches may further the utility of this approach. 
Minmers, for example, allow for an unbiased and accurate 
identity estimate, with the added advantage of having a win-
dow guarantee (Kille et al. 2023). While such methods can 
improve sensitivity for more diverged sequences, this comes 
at the expense of being slower to compute. However, the 
results presented here suggest that such methods may be able 
to guide alignments through highly repetitive and variable 
satellite arrays, ultimately improving our understanding of 
the structure, function, and evolution of these previously 
dark regions of the genome.
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