395

The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: effect of elevated temperature on $N₂$ reduction

Michael J. DILWORTH,* Marie E. ELDRIDGE† and Robert R. EADY†

*School of Biological and Environmental Sciences, Murdoch University, Murdoch, Western Australia 6150, and tAFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Falmer, Brighton BN1 9RQ, U.K.

During the reduction of N_2 by V-nitrogenase at 30 °C, some hydrazine (N_aH_a) is formed as a product in addition to NH₃ [Dilworth and Eady (1991) Biochem. J. 277, 465-468]. We show here the following. (1) That over the temperature range 30–45 °C the apparent K_m for the reduction of N₂ to yield these products is the same, but increases from 30 to 58 kPa of N_a . On increasing the temperature from 45 °C to 50 °C, little change occurred in the rate of reduction of protons to $H₂$; the rate of $N₂H₄$ production increased, but the rate of $NH₃$ formation decreased 7-fold. (2) Temperature-shift experiments from 42 to 50 °C or from 50 to 42 °C showed that this selective loss of the ability to reduce N_2 to NH_3 was reversible. The effects we observe are consistent with the existence of different conformers of the VFe-protein at the two temperatures, that predominating at 50 °C being largely unable to reduce $N₂$ to ammonia. (3) Measurement of the ratio between H_2 evolution and N_2 reduced

INTRODUCTION

Azotobacter chroococcum contains two types of nitrogenase: the extensively studied Mo-containing enzyme and the more recently discovered V-containing nitrogenase (Eady, 1990). Both enzymes have similar requirements for activity and similar physicochemical properties, both being two-component enzymes made up of a distinct Fe-protein and a MoFe- or VFe-protein in the Mo- and V-nitrogenases respectively. Despite this general overall similarity, the two enzymes display significant differences in substrate reduction in that the V-nitrogenase produces hydrazine $(N₂H₄)$ as a minor product of N₂ reduction (Dilworth and Eady, 1991) and ethane as a minor product during acetylene reduction (Dilworth et al., 1988), reactions which are not normally shown by Mo-nitrogenase.

Studies on the effects of temperature on nitrogenase action are limited and have focused on the abrupt discontinuity at about 18-22 °C in the Arrhenius plot for the reduction of $N₂$, acetylene and H+, and for ATP hydrolysis (see Hardy et al., 1968; Burns, 1969; Watt and Burns, 1977), which has been interpreted as arising from a sharp change in the temperature-dependence of complex-formation between the two protein components of Monitrogenase (Thorneley et al., 1975). However, the underlying mechanism for this change is not understood. Comparative studies of the dependence of the rate of N_2 reduction on temperature with Mo- and V-nitrogenases have shown that N_2 remains a more effective substrate for the V-nitrogenase as the temperature is decreased from ³⁰ to ⁵ °C than is the case for Monitrogenase (Miller and Eady, 1988). N_2H_4 resulting from N_2 reduction by V-nitrogenase is also markedly influenced by temperature, increasing 17-fold between 20 and 40 °C (Dilworth and Eady, 1991), while Mo-nitrogenase does not produce free $N₁H₂$. Further, increasing temperature also increases the proportion of ethane relative to ethylene resulting from acetylene to $NH₃$ at N₂ pressures up to 339 kPa for both Mo- and Vnitrogenases gave limiting H_2/N_2 values of 1.13 ± 0.13 for Monitrogenase and $3.50 + 0.03$ for V-nitrogenase. Since for Monitrogenase our measured value for the ratio at 339 kPa is the same as that derived by Simpson and Burris [(1984) Science 224, 1095-1097] at 5650 kPa, there appears to be little or no divergence from the predictions based on the apparent K_m for $N₂$. These data then suggest that there may be a fundamentally fferent mechanism for N₂ binding to V-nitrogenase compared ith Mo-nitrogenase. (4) We did not detect any N_2H_4 as a product of $N₂$ reduction by Mo-nitrogenase over the temperature range investigated; however, at 50 °C this system reduced acetylene (C_2H_2) to yield some ethane (C_2H_6) , in addition to ethylene (C_2H_4) , a reaction normally associated with Mo-independent nitrogenases.

reduction with V-nitrogenase, while Mo-nitrogenase has been reported not to catalyse ethane formation from acetylene.

In the present work, we show that, at 50 $^{\circ}$ C, V-nitrogenase selectively and reversibly loses the ability to reduce $N₂$ to ammonia while continuing to form N_2H_4 and H_2 . Over the temperature range 30–50 °C the apparent K_m for N₂ reduction to $NH₃$ or $N₂H₄$ increases for Mo- and V-nitrogenases, respectively. In contrast with its behaviour at 30 $\mathrm{^{\circ}C}$, Mo-nitrogenase is shown to produce ethane during acetylene reduction at 50 'C. The significance of these findings is discussed in the context of perturbations of cofactor-polypeptide interactions.

MATERIALS AND METHODS

The components of the V-nitrogenase of A. chroococcum MCD1155 were purified as described previously (Eady et al., 1987, 1988). When assayed under standard conditions at 30 'C, the specific activities were: VFe protein $(Ac1^v)$, 1700 nmol of $H₂$ produced/min per mg of protein; Fe protein $(Ac2^v)$, 1013 nmol of $H₂$ produced/min per mg of protein. The components of the Mo-nitrogenase were purified from strain MCD50 essentially as described by Yates and Planqué (1975) and had specific activities of 2350 nmol of $H₂$ produced/min per mg of MoFe protein $(Ac1^{Mo})$ and 1230 nmol H₂ produced/min per mg of Fe protein (Ac2^{Mo}). For reasons discussed below, all proteins were in ⁵⁰ mM Hepes buffer, pH 7.4, containing 0.2 g/litre dithionite, but in the absence of $MgCl₂$.

Enzyme assays were conducted in glass serum vials (8 ml) capped with a rubber closure held in place by a screw cap perforated by a small hole to allow needle access for addition of gases and liquids, essentially as described by Eady et al. (1972). The assays contained, in a final volume of 1 ml, 25 μ mol of Hepes buffer, pH 7.4, 5 μ mol of ATP, 12.5 μ mol of MgCl₂, 20 μ mol of phosphocreatine, 100 μ g of creatine phosphokinase and 10 μ mol of Na₂S₂O₄. Reactions were initiated by injection of nitrogenase components (0.015 ml of a mixture of nitrogenase components with a 4-fold molar excess of Fe protein). For assays conducted at 50 °C, and in assays subjected to temperature shifts, nitrogenase components (in buffer not containing $MgCl₂$), were pre-mixed with creatine phosphokinase and pre-equilibrated to the required temperature for 2 min before addition to a reaction mixture that did contain MgCl₂. This procedure was adopted because at 50 °C creatine kinase is unstable in the presence of Mg^{2+} , as indicated by precipitation occurring on prolonged incubation. We did not undertake ^a systematic study of this instability, but minimized the length of time that the kinase was exposed to Mg^{2+} at 50 °C. The linearity of product formation over the time period of the measurements (up to ⁶ min) indicates that inhibitory levels of MgADP did not accumulate and inhibit V-nitrogenase. In assays where the temperature was shifted up from 42 to 50 °C, or down over the same range, 95% temperature equilibration occurred within 30 s.

Assays were conducted in ^a Braun Certomat WR water bath shaking at ¹⁸⁰ strokes/min over 2.5 cm. The change in pH of the assay mixtures at different temperatures as a consequence of the ΔpK_a °C of Hepes buffer is too small (0.28 pH) to affect the activity of V-nitrogenase significantly because of the broad pH optimum of the enzyme (see Dilworth et al., 1988).

In assays under an atmosphere of N_2 or Ar only, the gases were introduced by flushing for 15 min. Gas mixtures were prepared in the vial by injection followed by withdrawal of the same volume of mixed gases. unic of finaculates.
The reaction was terminated by injection of 0.3 ml of EDTA

The reaction was terminated by injection of 0.3 ml of EDTA
nH 7.5; 0.1 M for V-nitrogenase and 0.4 M for Mo-($pH 7.5$; 0.1 M for V-nitrogenase and 0.4 M for Monitrogenase); the higher EDTA concentration was necessary to completely inactivate Mo-nitrogenase. The products $H₂$, ethylene and ethane were measured by methods described in Ashby et al. (1987) and $N₉H₄$ as described by Dilworth and Eady (1991).

Where assays under hyperbaric pressures of $N₂ (339 kPa)$ were required, a standard 0.1 ml of methane was injected, followed by the nitrogenase components, and then the appropriate volume of N. Excess pressure was relieved by venting immediately before \mathbf{v}_2 . EXCOS prossure was reneved by venting immediately before injection of EDTA. After gas-chromatographic estimation of H_2 and methane on a molecular-sieve column (50 nm) fitted with a katharometer, the methane peak was used to calculate the full amount of $H₂$ produced during the assay. Although the katharometer was less sensitive for methane than flameionization detection, its use allowed both gases to be measured on the same sample. The same sample.
To determine the amount of NH3 proof, and the allied of the the City

Following the amount of m_3 produced, an anguot of the EDTA-stopped reaction mixture was passed through a column $(25 \text{ mm} \times 6 \text{ mm} \text{ diam.})$ of Dowex-1X2 (Cl⁻, 200–400 mesh) in a Pasteur pipette and the column washed with two 0.5 ml aliquots
of water. The creatine concentration was measured in the μ water. The creating concentration was incastrict in the volume of ϵ in σ omomen charge by the method of Elliot (1937) , and the volume taken for NH₃ estimation adjusted to contain less than 1.5 μ mol of creatine. NH₃ was then measured by the indophenol method as described by the independence of $\frac{1}{2}$, and $\frac{1}{2}$ and $\frac{1}{2}$ α corrected by DHWOTH and THOMETRY (1701), and the values corrected for creatine interference from a standard calibration curve (Dilworth et al., 1992). The ATP/2e ratio was determined from H2 evolution under $\frac{1}{2}$ evolution under Archives under Archives under Archives and Archi

and π in π and π and π are action mixtures in reaction mixtures which had been and the amount of creatine in reaction mixtures which had been similarly passed through Dowex-1 columns.

RESULTS AND DISCUSSION

Effect of temperature on product formation by V-nitrogenase

Since with V-nitrogenase we have previously observed that the

proportion of electron flux resulting in N_2H_4 formation increased over the temperature range 20-40 'C (Dilworth and Eady, 1991), the effect of higher temperatures was further studied. The data in Figure 1 show that N_2H_4 production increased 3-fold from 40 to 50 °C; surprisingly, while the rate of reduction of N₂ to NH₃ increased up to 45 °C, it decreased 7-fold between 45 and 50 'C. This abrupt decrease in the rate of reduction of $N₂$ to $NH₃$ cannot be due to simple inactivation of nitrogenase or creatine phosphokinase, since $H₂$ evolution under either $N₃$ or Ar does not change with this 5 °C temperature increase, and the rate of formation of H₂ was linear with time over the 5 min assay period. Further, NH₃ did not disappear when added to assays conducted at 50 $\mathrm{^{\circ}C}$, indicating that the low amounts of NH₃ found were not due to losses at high temperature.

While H₂ evolution increased steadily up to 45 \degree C, no further increase occurred between 45 and 50 'C. Under standard assay conditions at 30 °C and, indeed (as Figure 1 shows), up to 45 °C, the total of electron pairs utilized for the reduction of $N₂$ plus electron pairs resulting in $H₂$ evolution under N₂ is the same as for $H₂$ evolution under Ar. However, the decrease in $NH₃$ formation at 50 °C is not balanced by any increase in H_2 evolution.

The sudden decrease in $NH₃$ production at 50 °C is unlikely to be due to ^a large change in the efficiency of ATP utilization, ^a parameter known to affect product distribution, since the ATP/2e ratio measured for $H₂$ evolution under Ar varied only from 5.0 at 30 °C to 5.5 at 50 °C. The constancy of both the ATP/2e ratio and $H₂$ evolution under Ar indicates that the interaction of the Fe protein with MoFe protein and the coupling of ATP hydrolysis to electron transport is not seriously perturbed at the higher temperature.

Effect of temperature shifts on product formation by V-nitrogenase

We investigated how rapidly an increase in temperature was reflected in differences in the rates of product formation by shifting steady-state assays from 42 to 50 $^{\circ}$ C after 1.5 min reaction time. Figure 2(a) shows that the rate of H₂ evolution under $N₂$ showed only a marginal increase, as would be expected from the temperature profile shown in Figure 1. The adjustment in rate

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and $\frac{1}{2}$ parametermined in the Material in the Materials and $\frac{1}{2}$ and $\frac{1}{2}$ 69 μ g of Ac1^V and 46 μ g of Ac2^V. Products were determined as described in the Materials and methods section: \blacksquare , NH₃; \boxtimes , N₂H₄; \Box , H₂ under N₂; \boxtimes , H₂ under Ar. Note that the scale for N₂H₄ as a product is expanded 50-fold. The numerical values for the total electron flux under N_2 at each temperature are shown on the Figure.

Figure 2 Effect of a temperature shift up from 42 to 50 °C on the rate of $H₂$ evolution under N₂ and product formation from N₂

Assay mixtures contained 130 μ g of Ac1^V and 154 μ g of Ac2^V under N₂ and the reactions were initiated at 42 °C; after 1.5 min the experimental assays were shifted to 50 °C, while the control assays under N_2 or Ar remained at 42 °C. The time course of the reaction was monitored over the subsequent 3.5 min, and NH₃, N₂H₄ and H₂ were measured as described in the Materials and methods section. (a): \blacktriangle , H₂ evolution under Ar at 50 °C; \bigcirc , H₂ evolution under N₂ at 42 °C; \bullet , H₂ evolution under N₂ following temperature shift to 50 °C. (b): \bigcirc , N₂H₄ production at 42 °C; \bullet , N₂H₄ production following temperature shift to 50 °C. (c): \bigcirc , NH₃ formation at 42 °C; \bullet , NH₃ formation following temperature shift to 50 °C.

appeared to be complete within about 0.5 min. The rate of $N_{a}H_{a}$ formation increased nearly 3-fold, again within the same time frame (Figure 2b), while the rate of $NH₃$ production decreased to 27% of its rate at 42 °C, also within 0.5 min (Figure 2c).

Temperature shift-down experiments from 50 to 42 °C were used to determine whether the change(s) to the enzyme at 50 $^{\circ}$ C were reversible. The rate of H_2 evolution under N_2 fell back essentially to the control rate at 42 °C (Figure 3a), while N_2H_4 formation fell (Figure 3b). Although this step-down experiment has been performed several times, the rate of $N₂H₄$ formation after step-down was always less than the control rate of assays maintained at 42 "C throughout. The reasons for this difference remain unknown. However, NH₃ production by assays shifted from 50 to 42 "C returned to the control rate at 42 °C (Figure 3c). For all three products, the changes in rate appeared to be complete within 0.5 min.

Temperature clearly alters N_2 reduction by V-nitrogenase in a rapid and reversible manner. The effects we observe are consistent with the existence of different conformers of the VFe-protein at

Figure 3 Effect of temperature shift-down from 50 to 42 \degree C on the rate of H₂ evolution under N_2 and product formation from N_2

Assay mixtures contained 130 μ g of Ac1^V and 154 μ g of Ac2^V and the reactions were initiated under N₂ at 50 °C; after 1.5 min the experimental assays were shifted to 42 °C, while control assays remained at 50 °C. The time course of the reaction was monitored over the subsequent 3.5 min, and NH₃, N₂H₄ and H₂ were measured as described in the Materials and method section. (a): \bullet , H₂ evolution under N₂ at 50 °C; \bigcirc , H₂ evolution under N₂ at 42 °C; \bigtriangleup , H₂ evolution under N₂ following temperature shift to 42° °C. (b): \bullet , N₂H₄ production at 50 °C; \triangle , N₂H₄ production following temperature shift to 42 °C; \bigcirc , N₂H₄ production in assays maintained at 42 °C. (c): \bullet , NH₃ formation at 50 °C; \triangle , NH₃ formation following temperature shift to 42 °C; \bigcirc , NH₃ formation in assays maintained at 42 °C.

Figure 4 Effect of temperature on the rate of formation of ethylene and ethane as products of C_2H_2 reduction by V-nitrogenase

Assays were conducted for 5 min under Ar containing 10 kPa of C₂H₂ and 69 μ g of Ac1^V, 46μ g of Ac2^v, and the products were separated as described in the Materials and methods section. \mathbb{S} , ethylene; \Box , ethane; \blacksquare , total electron pairs used in acetylene reduction.

the two temperatures, that predominating at 50 °C being largely unable to reduce $N₂$ to $NH₃$.

Another characteristic of V-nitrogenase which has distinguished it from Mo-nitrogenase is its ability to catalyse the reduction of ethylene to ethane. The temperature-dependence of the reduction of acetylene to ethylene and ethane is shown in Figure 4. Over the temperature range 30-40 °C all products increased linearly, reaching a maximum at 45 °C, but showing only a marginal decrease between 45 and 50 $^{\circ}$ C. This is clearly different from the behaviour of the enzyme during $N₀$ reduction to $NH₃$.

Effect of temperature on kinetics of V-nitrogenase

Both Mo- and V-nitrogenases are routinely assayed at 30 °C, and there are consequently no data of which we are aware on the effect of temperature on apparent K_m for $N₂$. One possible explanation for the failure of N_2 to give rise to NH_3 at 50 °C is that $N₂$ binds with very different affinity to different sites on Vnitrogenase which lead to the formation of $NH₃$ or $N₂H₄$.

The apparent K_m of V-nitrogenase for N_2 was therefore measured at temperatures ranging from 30 to 50 °C. The data in Table 1 show that the apparent K_m for N_2 increases markedly over this temperature range, but is the same for both $NH₃$ and N_2H_4 (where both can be measured) at any particular temperature. These data suggest that N_2 binds at a single type of binding site and generates an intermediate with the potential to be reduced further either to $NH₃$ or $N₂H₄$ (as discussed by Dilworth and Eady, 1991). Consistent with this view is the finding that at 50 °C the inhibition by H₂ of N₂H₄ production is competitive with respect to N_2 , as it is for NH_3 formation at $42 \degree$ C (results not shown). The differential effect of temperature on the rates of formation of $NH₃$ or N_aH_a by V-nitrogenase over the range $30-45$ °C would then imply that the activation energies for the conversion of an enzyme-bound dinitrogen hydride intermediate into these products must be significantly different (see Dilworth and Eady, 1991). At 50 'C, different activation energies cannot adequately explain why the rate of formation of NH₃ decreases to 27% of its rate at 45 °C. Similarly, an explanation involving different activation energies for reactions leading to $H₂$ evolution or to $NH₃$ formation is inconsistent with the fact that no compensating increase in $H₂$ evolution is observed when N_2 reduction to NH_3 is curtailed at 50 °C.

The best characterized aqueous system based on vanadium which reduces N_2 is the V^{II}-catechol complex formed at highly alkaline pH values (Nikonova and Shilov, 1977). This system provides a useful model for nitrogenase in that it reduces N_a to $NH₃$, it also reduces H⁺ to $H₂$, a reaction which is inhibited by N_2 , and produces low levels of N_2H_4 when the reacting system is quenched with acid (as does Mo-nitrogenase; Thorneley et al., 1978). A second system based on vanadium is the heterogeneous V^{II} Mg alkaline gel, which catalyses the reduction of N₂ to both $NH₃$ and $N₂H₄$. The environment of the vanadium in this system is obviously very different from that in the VFe protein of Vnitrogenase; nevertheless it shows a temperature-dependence in product ratio. However, unlike our findings for V-nitrogenase, the product ratio shifts to favour NH₃ over N₂H₄ at higher temperatures (Shilov, 1977).

Effect of temperature on Mo-nitrogenase activity

For Mo-nitrogenase, for which the apparent K_m for N_2 reduction to NH₃ also increased 3-fold from 30 to 50 °C (Table 1), the rate of NH₃ formation under 56 kPa of N₂ at 50 °C is in fact higher

Table 1 Apparent K_m (kPa) for N₂ as a function of temperature for Moand V-nitrogenases

The assay times varied between 5 and 30 min, depending upon the temperature; the times used were such that product formation was linear. The assay conditions and product analyses were as described in the Materials and methods section. Apparent K_m values were calculated using direct linear plots (Cornish-Bowden and Eisenthal, 1974).

* N/A, not accessible due to low rates of $N₂$ conversion into NH₃.

Figure 5 Time course of the reduction of acetylene to ethylene and ethane by Mo-nitrogenase at 50 $^{\circ}$ C

Assays were performed at 50 °C under an atmosphere of Ar containing 10 kPa of acetylene, Ac1^{Mo} (109 μ g) and Ac2^{Mo} (126 μ g); the reaction was terminated at the times indicated, and the reaction products were measured as described in the Materials and methods section. \bigcirc , H_2 ; A, ethylene; \triangle , ethane. Note that the scale for the amount of ethane formed is expanded 2000-fold relative to that for ethylene as a product.

than at 30° C, showing that the dramatic decline in NH₃ formation shown by the V-nitrogenase does not occur.

In addition, Mo-nitrogenase did not give rise to any detectable N_2H_4 as a product at temperatures up to 50 °C. However, temperature did affect product formation by Mo-nitrogenase; at 50 "C the enzyme catalysed the formation of a small amount of ethane from acetylene (Figure 5), a reaction not observed within the temperature range 20 °C to 40 °C (Dilworth et al., 1988).

H₂ evolution under N₂ by Mo- and V-nitrogenases

Extensive studies of the mechanism of Mo-nitrogenase have such suggested that, under N_{eff} the evolution of a minimum of 1 mol degested that, there is $_2$, the evolution of a minimum of $\overline{1}$ mol of H_2 /mol of N_2 reduced is obligatory (Thorneley and Lowe, 1985). A crucial experiment supporting such a conclusion was performed at 5650 kPa of N₂, giving a limiting result of 1.13 ± 0.13 $(H_2/N_2 \text{ ratio})$ (Simpson and Burris, 1984). However, since the apparent K_m for N₂ reduction by Mo-nitrogenase at 30 °C is in pparent x_m for x_2 feduction by the introgenate at 50° C is in me range o 22 km a, encenve saturation should be achieved at much lower pressures than 5650 kPa. Using our measured value
of 19 kPa of N₂ at 30 °C leads to the conclusion that, at 339 kPa (3 atm)-N₂, the enzyme should be functioning at 94 $\%$ of its

maximum rate. Accordingly, we have measured the ratio between H_2 evolution and N_2 reduced to NH_3 at N_2 pressures up to 339 kPa for both Mo- and V-nitrogenases. The assays contained a 20-fold molar excess of Fe protein, conditions which maximize electron allocation to $N₂$. The limiting values we obtained were 1.13 ± 0.13 for Mo-nitrogenase and 3.50 ± 0.03 for V-nitrogenase. Since for Mo-nitrogenase our measured value for the ratio at 339 kPa is the same as that derived by Simpson and Burris (1984) at 5650 kPa, there appears to be little or no divergence from the predictions based on the apparent K_m for $N₂$. On the basis of similar calculations for V-nitrogenase and an apparent K_m of 29 kPa-N₂ at 30 °C (Table 1), the value of 3.5 for the H_2/N_2 ratio at 339 kPa-N₂ would suggest a limiting value of 3.0–3.2 mol of H_2 evolved/mol of N_2 reduced. These data then suggest that there may be a fundamentally different mechanism for N_2 binding or reduction for the V-nitrogenase compared with Monitrogenase.

The most detailed model for the mechanism of reduction of $N₂$ by Mo-nitrogenase is consistent with $H₂$ being displaced from the MoFe protein by N_2 from a species which is three electrons reduced compared with the resting state (Thorneley and Lowe, 1985). Pre-steady-state analysis of the rates of product formation shows that the initial rate of $H₂$ evolution is inhibited as $N₂$ is reduced to $NH₃$. If the difference in stoichiometry between $H₂$ evolution and N_2 reduction between Mo- and V-nitrogenases discussed above is mechanistically significant, pre-steady-state studies of the V-nitrogenase should show different kinetics with respect to $H₂$ production.

Among the range of substrates reduced by nitrogenase, N₂ has the most stringent requirements for reduction, and this activity can be lost preferentially when Mo-nitrogenase is modified. When site-directed mutations are made at residues (Gln¹⁹¹ or His¹⁹⁵) located in the putative FeMoco (iron- and molybdenumcontaining cofactor)-binding domain in the α -subunit of the MoFe protein, the ability to reduce N_2 is lost, but acetylene remains an effective substrate. Furthermore, acetylene reduction by the mutant MoFe protein results in the formation of significant amounts of ethane as well as ethylene (Scott et al., 1990). A similar pattern for substrate reduction is observed when homocitrate $[(R)-2-hydroxybutane-1,2,4-tricarboxylic acid]$, a normal constituent of FeMoco, is replaced with other homocitrate analogues (Madden et al., 1990). These data indicate that perturbation of subtle interactions between FeMoco and the MoFe protein can result in the selective loss of the ability to reduce $N₂$ and in a change in the products of acetylene reduction. In the present case, it is apparent that, when Mo-nitrogenase is assayed at ⁵⁰ °C, the MoFe protein assumes a conformation in which these interactions are only partially disrupted.

The VFe protein of the V-nitrogenase has a vanadium- and iron-containing cofactor (FeVaco) analogous to the FeMoco in MoFe proteins. Transfer of isolated FeVaco to the inactive MoFe protein synthesized by a nifB mutant of Klebsiella pneumoniae results in a hybrid protein which has the characteristic substrate-reducing properties of VFe protein with respect to acetylene, is capable of reducing H^+ to H_2 , but is unable to reduce N₂ (Smith et al., 1988). These observations provided the first indication of the subtlety of the cofactor-polypeptide interactions which have subsequently been identified between FeMoco and the MoFe protein polypeptides. Comparison of the DNA sequences of the genes encoding the α -subunits of MoFe and VFe proteins (see Pau, 1991) show that the residues implicated as forming part of the FeMoco-binding site of MoFe proteins are conserved in the VFe proteins. These residues are therefore likely candidates for interacting with FeVaco and defining substrate specificity. In addition, there is strong cir-

$$
N_2 + E \longleftarrow N_2 - E''
$$

Scheme 1 How product formation from N, may occur with V-nitrogenase

This scheme assumes that the enzyme-bound dinitrogen hydride species proposed as intermediates in the reduction of $N₂$ to NH₃ by Mo-nitrogenase by the multi-step process 2 (Thorneley and Lowe, 1985) are also valid for V-nitrogenase. The bound dinitrogen species which gives rise to N_2H_4 as a product by reaction 1 is assumed to occur with V-nitrogenase. The reversible reaction 3 represents the temperature-dependent conformational change to E" which results in the suppression the reduction of N₂ to NH₃ at temperatures above 45 °C, but does not perturb the rate of N_2H_4 formation.

cumstantial evidence that FeVaco contains homocitrate, based on the requirement for $ni fV$ (a gene showing DNA sequence similarity to that of homocitrate synthase; Dean and Jacobson, 1992) for the synthesis of functional N_2 -reducing V-nitrogenase.

Scheme 1 summarizes how product formation from N_2 may occur with V-nitrogenase. The binding of N_2 occurs by displacement of $H₂$ displacement, as suggested for Monitrogenase; whatever the form of co-ordinated N_2 , it can be reduced via a set of enzyme-bound intermediates to give NH₃, essentially as proposed (Thorneley and Lowe, 1985) for Monitrogenase. Since bridging dinitrogen in metal complexes can under some circumstances give rise to $N_sH₄$, V-nitrogenase could give rise to $N₂H₄$ in such a way rather than from an intermediate directly involved in NH₃ formation, as previously suggested (Dilworth and Eady, 1991). In either case, the relative activation energies presumably control the effects of temperature on the balance between NH_3 and N_2H_4 as products. At 50 °C, the enzyme would be in a form essentially unable to produce NH₂; it remains to be seen whether this represents a form which can carry out none of the multi-step process ² (as implied in Scheme 1) or a form where only the later ones, following a reduced intermediate common with the N_2H_4 pathway, are inhibited.

The effect of high temperature in apparently preventing N_2 reduction to $NH₃$ by V-nitrogenase could be explained as resulting from perturbation of interactions of FeVaco with important amino acid residues in the α -subunit of the VFe protein. If so, and bearing in mind that the liberation of $N₂H₄$ as a product implies that a four-electron reduced dinitrogen hydride species may exist on the enzyme, these residues are implicated in the final protonation step to yield $NH₃$. The reversible nature of the high-temperature switch-off in $NH₃$ formation is consistent with the predominant conformation of the VFe protein at 50 °C being one which does not allow these interactions to occur.

We thank Professor B. E. Smith, Dr. R. L. Richards and Dr. D. J. Lowe for helpful discussions, and the Underwood Fund of the Agriculture and Food Research Council for financial assistance to M.J. D.

REFERENCES

- Ashby, G. A., Dilworth, M. J. and Thorneley, R. N. F. (1987) Biochem. J. 247, 547-554
- Burns, R. C. (1969) Biochim. Biophys. Acta 171, 253-259
- Cornish-Bowden, A. and Eisenthal, R. (1974) Biochem. J. 139, 721-730
- Dean, D. R. and Jacobson, M. R. (1992) in Biological Nitrogen Fixation (Stacey, G., Evans, H. E. and Burris, R. H., eds.), pp. 763-834, Chapman & Hall, New York
- Dilworth, M. J. and Eady, R. R. (1991) Biochem. J. 277, 465-468
- Dilworth, M. J. and Thorneley, R. N. F. (1981) Biochem. J. 193, 971-983
- Dilworth, M. J., Eady, R. R. and Eldridge, M. E. (1988) Biochem. J. 249, 745-751
- Dilworth, M. J., Eldridge, M. E. and Eady, R. R. (1992) Anal. Biochem., in the press
- Eady, R. R. (1990) in Vanadium in Biological Systems (Chasteen, N. D., ed.), pp. 99-127, Kluwer Academic Publishers, Dordrecht
- Eady, R. R., Smith, B. E., Cook, K. A. and Postgate, J. R. (1972) Biochem. J. 128, 655-675
- Eady, R. R., Robson, R. L., Richardson, T. H., Miller, R. W. and Hawkins, M. (1987) Biochem. J. 244,197-207
- Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M. and Lowe, D. J. (1988) Biochem. J. 256, 189-196

Received 14 April 1992/23 July 1992; accepted 29 July 1992

- Ennor, A. H. (1957) Methods Enzymol. 3, 850-856
- Hardy, R. W. F., Holsten, R. D., Jackson, E. K. and Burns, R. C. (1968) Plant Physiol. 43, 1185-1207
- Madden, M. S., Kindon, N. D., Ludden, P. W. and Shah, V. K. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6517-6521
- Miller, R. W. and Eady, R. R. (1988) Biochem. J. 256, 429-443
- Nikonova, L. A. and Shilov, A. E. (1977) in Recent Developments in Nitrogen Fixation (Newton, W. E., Postgate, J. R. and Rodriguez-Barrueco, C., eds.), pp. 41-51, Academic Press, London
- Pau, R. N. (1991) in Biology and Biochemistry of Nitrogen Fixation (Dilworth, M. J. and Glenn, A. R., eds.), pp. 37-57, Elsevier, Amsterdam
- Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. and Dean, D. R. (1990) Nature (London) 343, 188-190
- Shilov, A. E. (1977) in Biological Aspects of Inorganic Chemistry (Dolphin, D., ed.), pp. 197-211, John Wiley and Sons, New York
- Simpson, F. B. and Burris, R. H. (1984) Science 224, 1095-1097
- Smith, B. E., Eady, R. R., Lowe, D. J. and Gormal, C. (1988) Biochem. J. 250, 299-302 Thorneley, R. N. F. and Lowe, D. J. (1985) in Molybdenum Enzymes (Spiro, T. G., ed.),
- pp. 221-284, John Wiley and Sons, New York
- Thorneley, R. N. F., Eady, R. R. and Yates, M. G. (1975) Biochim. Biophys. Acta 403, 269-284
- Thorneley, R. N. F., Eady, R. R. and Lowe, D. J. (1978) Nature (London) 272, 557-558
- Watt, G. D. and Burns, A. (1977) Biochemistry 16, 264-270
- Yates, M. G. and Planqué, K. (1975) Eur. J. Biochem. 60, 467-476