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Abstract
Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the 
understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it 
remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing 
complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We dis-
cuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such 
as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more 
detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher- 
order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent break-
throughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communi-
ties, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and 
long-term vision for network biology.
Availability and implementation: Not applicable.

1. Introduction
A network (or graph) comprises a set of nodes (or vertices) 
that are connected by a set of edges (or links); see InfoBox 1. 
Networks allow us to study the properties of a complex sys-
tem that emerge from interactions between its individual 
components. Networks have been a powerful way to repre-
sent a variety of real-world phenomena, including technologi-
cal, information, transportation, social, financial, software, 
ecological, chemical, and biological systems (Barab�asi 2016, 
Newman 2018). Our focus is on biological networks, which 
offer the understanding of complex functions at the levels of 
genes, proteins, cells, tissues, organs, etc., by representing a 
given biological system as an interconnected entity rather 
than a collection of individual components. In a biological 
network, nodes typically represent biomolecules (e.g. amino 
acid residues within a protein, proteins within a cell, or cells 
within a tissue), and edges typically indicate interactions be-
tween the biomolecules (e.g. physical, functional, or chemi-
cal). While the main focus of our article is on such biological 
networks that model relationships between biomolecules, i.e. 
on molecular/cellular networks, our article touches on other 
types of biological networks, such as biomedical knowledge 
graphs (BKGs), ontologies, patient similarity networks 
modeling, e.g. electronic health record data, brain networks 
constructed from medical imaging data, and even social and 
contact networks relevant for the spread of disease. We ac-
knowledge that other types of biological networks exist that 
are not the focus of our article and that we thus do not cover, 
such as ecological ones.

Network biology (Fig. 1) is an interdisciplinary field span-
ning computational (e.g. algorithms, graph theory, network 
science, data mining, and machine learning) and biological 
sciences. While the field has existed for nearly two decades, it 
has undergone numerous rapid changes and new computa-
tional challenges have arisen. This is caused by many factors, 
including increasing data complexity, such as multiple types 
of data becoming available at different levels (or scales) of bi-
ological organization, as well as growing data size. Ironically, 
despite the massive increase in available data, the data remain 
incomplete and noisy. This means that the research directions 
in the field also need to evolve.

This article discusses the current state as well as the future 
of the field. Its goal is to identify pressing challenges with 
well-established as well as emerging topics in network biol-
ogy, which are shown in Fig. 1: inference and comparison of 
biological networks (Section 2), multimodal data integration 

and heterogeneous networks (Section 3), higher-order net-
work analysis (Section 4), machine learning on networks 
(Section 5), and network-based personalized medicine 
(Section 6). We comment on why these topics have been stra-
tegically chosen for discussion in this article.

Noting again that a key focus of our article is on molecu-
lar/cellular (i.e. -omics) data, certain types of -omics data are 
explicitly captured as networks. That is, interactions between 
biomolecules are measured explicitly by biotechnological 
data collection platforms. A prominent example is protein– 
protein interaction (PPI) networks. In these networks, nodes 
are proteins and edges correspond to physical bindings be-
tween the proteins. In human and some model organisms, ex-
tensive high-throughput yeast two-hybrid and other 
experimental efforts have resulted in large sets of “reference” 
PPIs (such as HURI for humans), along with substantial 
knowledge about protein binding specificities (Stark et al. 
2006, Luck et al. 2020).

Other types of -omics data are not captured as networks 
explicitly, but interactions between biomolecules can be in-
ferred computationally, resulting in, e.g. association, correla-
tion, regulatory, or knowledge graphs (InfoBox 1). Section 2 
addresses several aspects of the task of inferring a homoge-
neous network, including a condition-specific network, typi-
cally from up to a couple of -omics data types/modes, along 
with a related topic of differential network analysis, which is 
one type of network comparison. Section 3 addresses the task 
of inferring a heterogeneous network, typically from diverse 
-omics or other multimodal data types (InfoBox 1), along 
with several other tasks related to multi-omics data integra-
tion, including network alignment, which is another type of 
network comparison. By a homogeneous network, we mean 
a network with a single node type and a single edge type, 
while by a heterogeneous network, we mean any nonhomo-
geneous network (i.e. multiple node types or multiple edge 
types or both); see InfoBox 1 and Section 3 for details.

Given (explicitly captured or inferred) network data, the 
next step is to analyze the data. While Sections 2 and 3 al-
ready address network analysis from the perspective of net-
work comparison and several other tasks, Sections 4 and 5 
further discuss prominent tasks related to network analysis. 
Namely, Section 4 discusses topics of capturing higher-order 
network structures called graphlets (subgraphs) in tradition-
ally used pairwise graphs, which capture interactions be-
tween pairs of nodes, as well as shifting from pairwise graphs 
to hypergraphs, which are capable of capturing interactions 
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between more than two nodes (InfoBox 1). Section 5 dis-
cusses machine learning advances in network biology, which 
have grown exponentially in the last decade. Key topics dis-
cussed include graph representation learning, incorporating 
knowledge into machine learning models, generative graph 
modeling, and transfer learning.

Section 6 complements the other, computationally focused 
sections by discussing an applied aspect of network biology: 
network-based personalized (or precision) medicine. 
Precision medicine aims to provide tailored treatment strate-
gies for individuals (Aronson and Rehm 2015, Kaiser 2015). 
This personalized characterization may include molecular, 
environmental, lifestyle, and other factors. Integrating such 
different data types via network approaches can expand the 
potential for precision therapeutics while providing robust-
ness to various types of data noise (Wang et al. 2014).

The five topics are not mutually exclusive. For example, 
multimodal (including multi-omics) data integration is a 
topic relevant to almost all of Sections 2–6. After the current 
research network biology advances are presented in these five 
sections, Section 7 discusses future research directions in 
the field, and Section 8 provides additional discussion on 
scientific communities, education/training, and diversity in 
computational (including network) biology.

2. Inference and comparison of 
biological networks
Inference of a network from nonnetwork data. Biological net-
works that are computationally inferred from nonnetwork 
-omics data can be categorized into three broad types: 

InfoBox 1. Basic terminology used in the article. Note that distinct scientific communities in network biology, including graph the-
ory, network science, data mining, machine learning, and artificial intelligence, may use varied terminology for the same concepts 
or identical terms for different concepts.

� A (pairwise, homogeneous) graph (or network) G ¼ ðV;EÞ is defined by a set of nodes (or vertices) V and a set of edges (or links) E. All 
nodes v 2 V are of the same type. An edge eu;v 2 E indicates a relationship between exactly two nodes u;v 2 V. 

� In a PPI network, nodes are proteins and edges correspond to physical bindings between proteins. Such a network of physical PPIs is 
also referred to as interactome. 

� A (physical) PPI network is a special type of an association network between proteins. In addition to physical PPIs, an association 
network may contain links between proteins derived from sequence or 3D structural similarities, genetic interactions, literature-mined 
edges, or other protein association types. 

� Correlation networks are calculated from -omics data collected across multiple samples. A prominent type isgene co-expression networks, 
where nodes (genes) are linked by undirected edges if the genes’ expression levels are correlated strongly enough across the samples. 

� Regulatory networks capture directed relationships between regulators and their targets and describe causal (rather than correlative) 
relationships between biomolecules. A prominent type is gene regulatory networks where the regulators are transcription factor (TF) 
proteins (or other molecules that impact gene expression, such as microRNAs) and the targets are genes. 

� BKGs describe semantic relationships between diverse biomedical entities (e.g. genes, diseases, and patients, as well as associated 
measurements). They represent facts using “subject–predicate–object” triples as the fundamental unit; the subject and object are 
nodes in the graph and the predicate (or relation) corresponds to a directed edge between the nodes. 

� A condition-unspecific (or context-unaware) network spans multiple conditions/contexts such as diseases, ages, cell types, tissues, 
etc., and ultimately, individuals. 

� A condition-specific network is inferred by integrating a context-unaware network with condition-specific node measurement (e.g. 
gene expression or mutation) data. The outcome of the data integration is the identification of network regions that are “active” in the 
given condition, which can be seen as condition-specific or disease-dysregulated pathways (sparse, tree-like subnetworks) or 
functional modules (dense, clique-like subnetworks). 

� A heterogeneous graph contains multiple types of nodes and/or edges. 
� A multiplex graph is a heterogeneous graph with multiple edge types between the same nodes, possibly nodes of a single type, in 

which case the heterogeneity comes from the different edge types. 
� A network-of-networks is a heterogeneous graph in which different node types exist at different scales (or levels) and nodes at a 

higher level are graphs themselves at the lower level. 
� Multimodal data that are represented as a heterogeneous graph in network biology include multi-omic data such as epigenomic, 

transcriptomic, proteomic, and metabolomic molecular measurements as well as nonmolecular data such as text and images from, e.g. 
patients’ electronic health records. 

� A hypergraph is a generalization of a (pairwise) graph in which an edge (also called a hyperedge) can connect any number (including 
more than two) of the nodes. 

� A subgraph (or subnetwork) GS ¼ ðVS ;ESÞ of a graph G ¼ ðV;EÞ consists of a set of nodes VS � V and a set of edges ES � E such that for 
each edge e 2 ES , both of its end nodes must be in VS . 

� A subgraph is induced if and only if all edges between the nodes in VS that exist in E are in ES . 
� Graphlets are connected, nonisomorphic, induced subgraphs of a (pairwise) graph. 
� Hypergraphlets are graphlet extensions from (pairwise) graphs to hypergraphs. 
� A cluster or community in a graph is a set of topologically related nodes, typically densely connected to each other and loosely 

connected to nodes in other clusters. 
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association networks, correlation networks, and regulatory net-
works. The three network types are defined briefly in InfoBox 
1, discussed in detail in the following text, and illustrated 
in Fig. 2A.

Association networks typically capture undirected and 
unsigned relationships between biological molecules; while 
they might contain experimentally derived interactions, they 
may also contain interactions derived computationally from 
a variety of possible data sources. One of the most common 
types of association networks is (physical) PPI networks, 
which are explicitly derived via high-throughput experiments 
(Section 1) (Luck et al. 2020). These experiments, primarily 
co-immunoprecipitation and yeast two-hybrid, differ in their 
estimated error rates and can produce both false positives 
and false negatives (Von Mering et al. 2002, Sprinzak et al. 

2003, Bader et al. 2004). In addition, for all but the yeast 
interactome, where a substantial fraction of pairs of proteins 
have been assayed, even in most model organisms, the major-
ity of pairs of proteins have not been tested for interaction 
(Sledzieski et al. 2021). Thus, even across all the myriad sour-
ces of PPI networks, there is much missing data (Sledzieski 
et al. 2021). In addition to physical PPIs, many public resour-
ces curate associations between biomolecules from many 
data sources (Bajpai et al. 2020, Wright et al. 2024). For ex-
ample, the widely used STRING association network 
(Szklarczyk et al. 2023) contains interactions between pro-
teins derived from sequence or 3D structural similarities, ge-
netic interactions, literature-mined edges, or other types of 
pairwise protein associations that are distinct from physical 
binding between proteins.
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Figure 1. Overview of the network biology field and five research topics discussed in this article. The word cloud in the center, generated using 
WordClouds.com, contains the top 30 most representative words from this article. Note that each word’s rank is based on the sum of the weights of the 
core word (e.g. learn) and its derived words (e.g. learns, learning, learned).
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In an association network composed of genetic interactions 
(also known as a genetic interaction network), an edge be-
tween nodes (genes/proteins) indicates that mutations or 
other perturbations to the two nodes produce an unexpected 
cellular phenotype (Baryshnikova et al. 2013). An example of 
a genetic interaction is when mutations in both genes/proteins 
result in cell death, i.e. they are lethal, while the cell remains 
viable when there is a mutation in just one of them. A 
weighted version of a genetic interaction network also exists, 
in which edge weights indicate how strong or weak the ob-
served double mutant phenotype, such as cell growth rate, is 
compared to the expected phenotype (Costanzo et al. 2016).

Challenges with association networks are that they are gen-
erally not condition-specific and contain interactions derived 
from multiple types of evidence, with different evidence sour-
ces having different quality levels and representing different 
types of biological relationships. Additional investigation of 
how different evidence sources influence network analysis 
results is often required (Kim et al. 2021). Although the bio-
logical relationships represented in PPI networks and genetic 
interaction networks are easier to interpret, these networks 
tend to be incomplete and noisy and only exist for a limited 
number of species and biological conditions, limiting their 
use (Rolland et al. 2014, Zitnik et al. 2019b).

Correlation networks are typically calculated from -omics 
data collected across multiple samples (time points, tissues, 
patients, ages, drugs, or other conditions); relationships in 
correlation networks are typically undirected and signed, 
depending on how the network is inferred. Among the most 
prominent types of correlation networks are gene co- 
expression networks. Namely, given transcriptomics data 
containing the expression (i.e. mRNA abundance) levels of 
genes across multiple samples, a gene co-expression network 
can be constructed by linking nodes (genes) via edges if the 
genes’ expression levels are correlated strongly enough across 
the samples. In addition to being used to capture gene co- 
expression, correlation networks have been applied in bio-
medicine to study relationships between many other types of 
elements, such as metabolites (Perez De Souza et al. 2020), 
disease biomarkers (Hwa Chu et al. 2014, Nishihara et al. 
2017, Huang et al. 2019), and even foods (Kim et al. 2015, 
Samieri et al. 2020). Correlation networks are widely used in 
biomedical applications due to their simplicity and the ease 
with which they can be generated and interpreted (Pierson 
et al. 2015, Huang et al. 2019, Samieri et al. 2020, Lee et al. 
2021). Pearson correlation is the most common measure for 
calculating correlation networks, i.e. determining which gene 
pairs should be linked by edges, although other measures, 
such as Spearman correlation or mutual information, are also 
used, depending on the nature of the data and nonlinearity of 
the relationships being captured (Reshef et al. 2011). 
Multiple algorithms and tools have been developed for infer-
ring correlation networks, including ARACNe (Margolin 
et al. 2006), which calculates the mutual information be-
tween pairs of nodes and then removes indirect relationships; 
CLR (Faith et al. 2007), which calculates the mutual informa-
tion between pairs of nodes and then z-score normalizes; 
WGCNA (Zhang and Horvath 2005), which scales the 
Pearson correlation to generate a scale-free network topology 
(or network structure); and wTO (Gysi et al. 2018), which 
normalizes the chosen correlation by all other correlations 
and calculates a probability for each edge.

One advantage of correlation networks compared to asso-
ciation networks, especially PPI networks resulting from 
high-throughput experiments, is that correlation networks 
are explicitly derived from condition-specific -omics data, 
while association networks generally do not capture 
condition-specific information (Sonawane et al. 2019). 
However, despite their popularity, correlation networks have 
multiple known limitations. One limitation is difficulty trans-
lating to biological mechanisms (Larsen et al. 2019). Another 
limitation is that different network inference methods yield 
significant dissimilarities in the topology as well as functional 
content between the resulting correlation networks (Rider 
et al. 2014). For example, when multiple methods are applied 
to infer gene co-expression networks based on the same un-
derlying data, the resulting networks tend to capture different 
sets of edges between the same nodes; furthermore, when 
those networks are used to predict genes’ functional annota-
tions such as Gene Ontology (GO) terms, the results often 
differ (Li et al. 2023b). Sometimes it might be helpful to com-
bine networks inferred using different methods into a consen-
sus network (Gysi et al. 2018, Li et al. 2023b), where edges 
are reweighted so that the more networks support an edge 
and the more strongly they support it, the higher its consen-
sus weight or probability. A further limitation of gene co- 
expression networks is that co-expression between two genes 
occurs when one gene regulates another or when two genes 
are targeted by the same regulator (Ku et al. 2012, Yin et al. 
2021). However, these two distinct biological scenarios are 
represented in the same way in a co-expression network, by 
linking the two genes with an undirected edge. Instead, regu-
latory networks can distinguish between the different scenar-
ios, as discussed next.

Regulatory networks capture directed relationships be-
tween regulators and their targets and describe causal (rather 
than just correlative) relationships between biomolecules; al-
though these networks in theory should be signed, in practice 
deriving the sign of regulatory relationships from high- 
throughput biological data is challenging. There are many 
types of regulatory networks in biology. However, for most 
inferred regulatory networks, the regulators are TF proteins 
(or other molecules that impact gene expression such as 
microRNAs) and the targets are genes; these are commonly 
referred to as gene regulatory networks. There are many 
approaches to infer gene regulatory networks. For example, 
TF–gene relationships can be measured experimentally 
through ChIP-sequencing. In this case, the presence of a TF 
binding in the regulatory region(s) of a gene can be used to in-
fer an edge from that TF to the gene. However, the cost and 
experimental limitations make it impossible to infer a com-
plete gene regulatory network in this way. Therefore, many 
computational approaches have been developed to infer gene 
regulatory networks. For example, the DNA sequence of 
gene regulatory regions can be scanned to identify matching 
patterns (known as sequence motifs) that indicate a potential 
TF binding site; however, linking TFs to genes based on DNA 
sequence alone does not give a condition-specific network. 
Thus, methods to infer gene regulatory networks typically 
use gene expression data, either alone or in combination with 
computational evidence for TF binding in gene promoters, to 
infer TF–gene relationships (Marbach et al. 2012a). Popular 
algorithms of this type include Inferelater (Bonneau et al. 
2006), which uses linear regression, L1 shrinkage, and 
LASSO to identify a set of parsimonious models to predict 

Current and future directions in network biology                                                                                                                                                                 5 



target gene expression levels from TF expression levels (and 
other factors); GENIE3 (Huynh-Thu et al. 2010), which uses 
tree-based ensemble methods to develop a set of regression 
problems that predict the expression pattern of each target 
gene from the expression of a set of input TF genes; and 
PANDA (Glass et al. 2013), which uses message passing to 
amplify consistent structures across three input data types: 
TF–TF PPIs, computationally inferred TF–gene relationships, 
and gene–gene co-expressions. As opposed to Inferelator and 
GENIE3, PANDA does not consider the expression levels of 
TFs but instead uses evidence of co-expression in genes as evi-
dence of targeting by the same TF. In contrast, a recent 

method NETREX-CF incorporates, among other techniques, 
a machine learning approach known as collaborative filtering 
to deal with missing data (Wang et al. 2022e).

Other methods to infer regulatory networks incorporate 
epigenetic data. In particular, chromatin state can indicate 
whether the DNA is “open” and available to be bound by a 
TF; thus, computational evidence for TF binding in gene reg-
ulatory regions that also overlap with open chromatin can be 
used to estimate cell type-specific networks (Neph et al. 
2012). Specific algorithms to infer gene regulatory networks 
using epigenetic data include TEPIC (Schmidt et al. 2017, 
2019), which combines TF binding affinities, chromatin state 

A

B

C D

Figure 2. Prominent topics related to network inference and comparison. (A) Inference of an association (left), correlation (middle), or regulatory (right) 
network from nonnetwork data. (B) Link prediction: inference of new interactions from existing network data via neighborhood- (left) or embedding-based 
(middle) approaches, or from sequence data (right). For the former, shown are nodes that may be linked by new edges because two given nodes have 
high degrees (preferential attachment) or share many common neighbors; other neighborhood-based approaches exist, as discussed in the text. (C) 
Inference of a condition-specific network. The second approach category is illustrated. The thicker an edge in the network for a given condition, the more 
relevant the edge is for that condition. (D) Differential network analysis. Illustrated is a potential differential network between conditions 1 and 2, 
containing edges that are highly relevant for condition 1 but not condition 2, edges that are highly relevant for condition 2 but not condition 1, and edges 
that have consistent relevance patterns in both conditions.
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data, and gene annotation data to predict TF–gene relation-
ships, and SPIDER (Sonawane et al. 2021), which uses mes-
sage passing to infer and amplify consistent structure in an 
epigenetically pruned gene regulatory network constructed 
by combining computational evidence for TF binding with 
open chromatin data. Both TEPIC and SPIDER can also (op-
tionally) incorporate gene expression data. Despite multiple 
methods in this area (including many beyond those described 
here), it remains challenging to integrate multiple types of 
-omics data to effectively infer accurate condition-specific 
regulatory networks; we elaborate on this challenge in sub-
section “Inference of a heterogeneous network from multi-
modal data” of Section 3.

Link prediction: inference of new interactions from exist-
ing network data. Link prediction is applicable to any net-
work type, but in network biology, it has prominently been 
used in association networks containing interactions between 
proteins. Regardless of the type of data used to construct an 
association network, the resulting network is often incom-
plete. For example, many pairs of proteins in an organism 
may yet to be assayed for physical interaction. However, the 
“guilt by association” principles that underlie the topological 
organization of most of these networks (Cowen et al. 2017) 
mean that the patterns of connection of existing links can re-
liably predict some of the missing edges. We refer to this as 
network-based link prediction (Fig. 2B). Network-based pre-
diction of new interactions between proteins often uses either 
a relatively simple rule (e.g. it may be desirable to link nodes 
that have high degrees, that have many common interacting 
partners—or neighbors—either direct or extended ones, that 
share many paths, or that are topologically similar; 
Hulovatyy et al. 2014) or more sophisticated diffusion-based 
network embeddings (Cowen et al. 2017, Hamilton et al. 
2018, Kov�acs et al. 2019, Devkota et al. 2020, Huang et al. 
2020, Yuen and Jansson 2020, Coşkun and Koyut€urk 2021). 
A mixture of these strategies, where simple rules are 
employed in the core of the network, and diffusion-based net-
work embeddings are employed outside the core, perform 
particularly well. However, the set of rules and the embed-
ding used matters (Devkota et al. 2020), especially because 
interaction patterns may be quite different in networks con-
taining physical PPIs versus those containing inferred, non-
physical associations between proteins.

Link prediction: other techniques to infer missing interac-
tions. Beyond methods that leverage the topology of the 
known interactions, the other methods to infer missing inter-
actions will vary based on the underlying type of protein as-
sociation data used to construct the network. For example, 
for physical PPI prediction, classical techniques such as dock-
ing can also be used when protein 3D structural models are 
available. With the rise of deep learning methods such as 
AlphaFold (Jumper et al. 2021), ESMFold (Lin et al. 2023), 
and OmegaFold (Wu et al. 2022), now a 3D structural model 
is usually available for most proteins. AlphaFold-Multimer 
(Evans et al. 2021) is a recent deep learning-based extension 
of AlphaFold that allows for predicting protein complexes, 
i.e. the quaternary structure of multiple proteins; then, it 
might be possible to use the confidence score of the predicted 
structure to predict whether the proteins interact or not. The 
predicted quaternary structure also provides the interaction 
interfaces between the proteins.

When the goal is ultrafast prediction (e.g. in order to per-
form genome-wide scans), there are alternative deep learning 

methods (Hashemifar et al. 2018, Zhang et al. 2018, Chen 
et al. 2019, Sledzieski et al. 2021) that have had success in 
sequence-based prediction of PPIs (Fig. 2B). These methods 
focus on computational speed. That is, like the network- 
based methods, they seek to predict only whether (rather 
than also how, which is more challenging) two protein 
sequences interact, so that it is tractable to make predictions 
for all the protein pairs in the network. However, we note 
that some of these sequence-based methods manage to im-
plicitly incorporate information about protein 3D structures. 
For example, D-SCRIPT (Sledzieski et al. 2021) uses a pre-
trained protein language model (Bepler and Berger 2021) and 
implicitly learns a fuzzy contact map representation.

How to simultaneously leverage network- and sequence- 
based link prediction for physical PPI data remains an open 
problem, with valuable initial work (Bepler and Berger 
2021). Also, evaluating link prediction methods and espe-
cially hybrid methods is tricky. This is because existing 
ground-truth networks (other than HURI; Luck et al. 2020) 
are biased by the portions of the networks containing well- 
studied proteins and pathways (Schaefer et al. 2015). So, it is 
difficult to come up with fair performance measures that are 
not biased by node degrees, and that do not advantage 
network-based methods while disadvantaging sequence- 
based methods (Singh et al. 2022, Wang et al. 2023d). On 
the other hand, sequence-based approaches do better on close 
homologs of known interacting protein pairs (Sledzieski 
et al. 2023).

Other researchers have noted that databases that amalgam-
ate physical PPI data have not always kept up with the litera-
ture, and have proposed text-mining approaches to predict 
these “missing” links (Kim et al. 2008, van Haagen et al. 
2009, Papanikolaou et al. 2015).

Inference of a condition-specific network. While existing 
biological network data resulting from extensive experimen-
tal efforts are an incredible resource, they typically do not 
capture how interactions in biological networks differ across 
conditions, i.e. they are context-unaware. By conditions, we 
mean diseases, ages, cell types, tissues, etc., and ultimately, 
individuals. Indeed, while human genomes in both healthy 
and disease populations are rapidly being sequenced, the cor-
responding condition-specific networks remain largely un-
known. Moreover, the substantial amount of genetic 
variation across populations makes it infeasible in the near 
term to experimentally determine the full impact of this varia-
tion on interactions. So, computational methods have played 
and will continue to play a major role in inferring condition- 
specific networks.

We divide computational approaches for inferring 
condition-specific networks into several broad categories. 
(i) The first category is approaches that assess whether muta-
tions observed in disease alter protein interactions. (ii) The 
second category is approaches that combine mutation data 
(e.g. on how many patients with a disease have genes contain-
ing significantly associated single nucleotide polymorphisms, 
indels, etc.) or condition-specific gene expression data (e.g. 
information on which genes are significantly expressed—or 
active—in a given condition; here, typically multiple data 
samples are needed per condition) with a PPI network. The 
goal is to identify PPIs that are dysregulated in a given disease 
or active in a given condition, i.e. to infer a condition-specific 
PPI network (Fig. 2C). (iii) The third category is approaches 
that use gene expression data to infer a correlation network 
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specific to the condition or sample of interest. (iv) The fourth 
category is analogs of the previous approaches but applied to 
regulatory networks rather than PPI or correlation networks.

Regarding the first approach category, significant compu-
tational efforts have focused on characterizing whether muta-
tions observed in disease and variants across populations 
alter protein interactions. Early work mapping mutations ob-
served in Mendelian diseases onto protein structures demon-
strated that there is a statistically significant enrichment of 
Mendelian disease mutations in protein interaction interfaces, 
as compared to neutral polymorphisms observed across 
populations (Gao et al. 2015b). Homology modeling and 
domain-based approaches to identify sites that participate in 
interactions with DNA, RNA, peptides, ions, and small mole-
cules have revealed that missense mutations observed in 
Mendelian diseases and somatic missense mutations in cancer 
are both enriched in these sites, with the strongest enrich-
ments for DNA-binding sites, while common variants are de-
pleted from these sites (Ghersi and Singh 2014, Kobren and 
Singh 2019). Further, these enrichments can be leveraged to 
identify cancer-relevant genes by developing statistical 
approaches to uncover proteins with more somatic missense 
mutations in their binding sites than expected (Ghersi and 
Singh 2014, Kobren et al. 2020). Protein interaction interfa-
ces, as identified by homology modeling (Mosca et al. 2013) 
and machine learning (Meyer et al. 2018), have also been 
shown to be enriched in somatic missense mutations as com-
pared to noninterface residues, and specific protein interac-
tions relevant for cancer have been identified (Cheng et al. 
2021). High-throughput experimental screens have led to 
estimates that two-thirds of disease-causing polymorphisms 
perturb protein interactions, with about half of these inter-
rupting specific protein interactions while leaving other inter-
actions unaffected (Sahni et al. 2015).

Regarding the second approach category, numerous com-
putational efforts have focused on integrating condition- 
specific molecular measurements, mainly gene mutation or 
expression data (also referred to as gene activity data), with 
PPI network data (which is generally not condition-specific, i. 
e. context-unaware). They do so by mapping the gene activi-
ties onto the corresponding proteins in the PPI network, in 
order to assign condition-specific weights to the proteins or 
PPIs (or both) in the network (Fig. 2C). Then, highly 
weighted PPI network regions are hypothesized to be path-
ways dysregulated in disease (if using mutation data) or 
condition-specific subnetworks (if using expression data) 
(Leiserson et al. 2015, Newaz and Milenkovi�c 2022). The set 
of all such PPIs/pathways/subnetworks is a condition-specific 
PPI network. The data integration step is often performed via 
network propagation (Cowen et al. 2017), which diffuses the 
gene activities through the PPI network via random walks. 
Nonetheless, other approach types exist such as kernel, 
Bayesian, or nonnegative matrix factorization methods 
(Newaz and Milenkovi�c 2022).

Prominent applications of approaches from the second cat-
egory have been studying cancer (Leiserson et al. 2015, 
Silverbush et al. 2019), tissue-specificity (Basha et al. 2020), 
aging (Li et al. 2022c), and genome-wide associations 
(Vanunu et al. 2010, Carlin et al. 2019). As an example, 
cancer-related gene mutation data was integrated with PPI 
data using the HotNet2 algorithm to identify the parts of the 
PPI network that are likely to be active in cancer (Leiserson 
et al. 2015). Such a cancer-specific network is not necessarily 

connected, i.e. it might consist of multiple connected compo-
nents, each of which can be thought of as a cancer-specific 
pathway or subnetwork. As another example, a general 
framework was proposed for assessing the ability of 
condition-specific PPI network inference approaches to illu-
minate tissue-specific processes and disease genes (Basha 
et al. 2020). This framework integrated RNA-sequencing 
profiles for 34 human tissues with a PPI network to create 34 
tissue-specific PPI networks. Here, all tissue-specific PPI net-
works contained the same nodes and interactions, and they 
differed “only” in the weights associated with them. Then, 
given data associating GO biological processes to their rele-
vant human tissues, this framework allows different 
condition-specific PPI network inference approaches to be 
benchmarked via enrichment tests in terms of their ability to 
recover tissue-specific processes. As a final example, unlike in 
the above applications where the inferred cancer- and tissue- 
specific networks were static, when studying human aging, 
which is a dynamic biological process, it is desired to infer a 
dynamic aging-specific network. Of the pioneering 
approaches towards this goal (Li et al. 2021, 2022c, Li and 
Milenkovi�c 2022, Newaz and Milenkovi�c 2022), a recent 
finding is that inferring an aging-specific PPI network that is 
both weighted and dynamic (as opposed to unweighted or 
static) results in the most accurate prediction of aging-related 
genes (Li et al. 2021). To infer this network, network propa-
gation was used to map gene expression-based weights at dif-
ferent ages onto nodes in a PPI network. This resulted in a 
weighted network snapshot for each age, where the different 
snapshots had the same nodes and PPIs and “only” differed 
in their age-specific weights. The collection of all age-specific 
snapshots formed a weighted dynamic aging-specific PPI net-
work. Then, aging-related genes can be predicted from this 
network, as discussed below (Li et al. 2021, 2022c).

An important issue in identifying condition-specific net-
works and especially disease-altered subnetworks via the 
above approaches is to determine whether the resulting (sub) 
networks are due to the molecular measurements (i.e. muta-
tion or expression data) alone, the PPI network topology 
alone (e.g. due to ascertainment bias in PPI network data), or 
a combination of molecular measurement and network data. 
Recent work has shown that in some applications there may 
be a narrow regime where both molecular data and network 
information contribute to the identification of disease- 
dysregulated subnetworks (Reyna et al. 2021, Chitra 
et al. 2022).

Regarding the third approach category, condition-specific 
correlation networks are most often derived by applying a 
correlation measure to subsets of related samples (Pierson 
et al. 2015). However, since correlation measures rely on de-
fining a distribution, this approach is inappropriate when a 
specific condition is represented by only a few (or even a sin-
gle) sample(s). However, recently methods have been devel-
oped to infer “sample-specific correlations.” That is, given a 
set of gene expression samples (across which correlation can 
be measured), these approaches can estimate one network for 
each individual sample in the input dataset. In particular, 
both SSN (Liu et al. 2016) and LIONESS (Kuijjer et al. 
2019a, 2019b) work by computing two correlation net-
works, one with all samples and one with all samples except 
an individual sample of interest. Then, they use the difference 
between the two networks to estimate a correlation network 
specific to the sample of interest.
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Finally, regarding the fourth approach category, genetic 
variants can impact gene regulatory networks by, e.g. altering 
TF binding or allele-specific expression (Przytycki and Singh 
2020). Recall that missense mutations are enriched in sites 
that participate in interactions with DNA, RNA, peptides, 
ions, and small molecules, with the strongest enrichments for 
DNA-binding sites (Ghersi and Singh 2014, Kobren and 
Singh 2019). Also, recall that statistical approaches to iden-
tify proteins with more somatic missense mutations in their 
binding sites than expected by chance have identified cancer- 
relevant genes (Kobren and Singh 2019, Kobren et al. 2020). 
Deep learning approaches trained on DNA binding data from 
ENCODE (Moore et al. 2020) have also been used to assess 
whether DNA mutations impact TF binding in a tissue- 
specific manner (Zhou and Troyanskaya 2015). For some 
TFs, altered DNA-binding specificities can be predicted 
de novo using machine learning (Christensen et al. 2012, 
Persikov and Singh 2014, Sahni et al. 2015, Wetzel et al. 
2022). However, if a DNA-binding protein’s specificity is 
known a priori, then it is more accurate to instead predict 
how mutations alter that specificity rather than predict spe-
cificities de novo. For example, accurate predictions about 
how mutations alter DNA-binding specificities for homeodo-
main proteins were made by simultaneously learning interac-
tion interfaces between DNA-binding proteins and their 
binding sites together with a predictive approach for DNA- 
binding specificity (Wetzel et al. 2022). Extending this ap-
proach to all DNA-binding proteins represents an important 
avenue for future work.

There has been also significant work done to infer 
condition-specific regulatory networks from various types of 
-omics data, as has been extensively reviewed in Baur et al. 
(2020). As one example, PANDA was applied to subsets of 
GTEx gene expression data to infer 38 tissue-specific gene 
regulatory networks (Sonawane et al. 2017); then, it was 
found that changes in TF targeting patterns led to the crea-
tion of new regulatory paths, giving them transcriptional con-
trol of tissue-specific processes. There also exist approaches 
that can be used to infer sample-specific networks for differ-
ent -omics data types. For example, EGRET integrates pre-
dicted TF binding sites with genotype and expression 
quantitative trait loci data to create individual genotype- 
specific regulatory networks (Weighill et al. 2022). The 
SPIDER (Sonawane et al. 2021) and TEPIC (Schmidt et al. 
2017, 2019) methods (described above) can be applied to in-
dividual epigenetic profiles to generate sample-specific regu-
latory networks. PSIONIC learns patient-specific TF 
regression weights by using chromatin-filtered TF–gene rela-
tionships to predict gene expression. Finally, the LIONESS 
method (Kuijjer et al. 2019b) can be used together with exist-
ing gene regulatory network reconstruction approaches that 
leverage gene expression data. When applying it in the same 
way as already described for correlation networks (the third 
approach category above), the LIONESS framework uses 
two estimated gene regulatory networks, one inferred with all 
gene expression samples and one inferred with all samples ex-
cept one, to estimate a gene regulatory network specific to 
that sample (Kuijjer et al. 2019b).

Differential network analysis: comparison of condition- 
specific networks. Condition-specific networks often have the 
same set of nodes and differ only in terms of their edges. 
Many approaches have been developed to identify network 
regions that differ the most between condition-specific 

networks; such regions have been shown to be responsible 
for the underlying biological differences between, e.g. healthy 
and disease conditions, between different tissues, or between 
young and old ages (Lichtblau et al. 2017, Basha et al. 2018), 
as discussed in more detail below. In general, approaches for 
this task can be characterized in several ways.

One category is based on the stage of network analysis, i.e. 
when differences between condition-specific networks are 
measured. Given condition-specific networks, one option is 
to first compute some topological property of a network re-
gion (at the level of a node, edge, network cluster—group of 
highly interconnected nodes—or entire network; see below) 
in each condition-specific network and then measure the ex-
tent of change in that property across the networks/condi-
tions; the goal is to identify network regions that change the 
most (Zhu et al. 2016, Lichtblau et al. 2017). By a topologi-
cal property, we mean a quantifiable measure of network 
structure such as the degree distribution of a network (the 
percentage of nodes in the network that have a given number 
of neighbors, i.e. degree), or centrality measures that rank 
nodes in a network from most to least central/important 
(examples are degree centrality according to which nodes 
with high degrees are central, and betweenness centrality 
according to which nodes that are on many shortest paths are 
central) (Barab�asi 2016, Newman 2018, Newaz and 
Milenkovi�c 2019).

A potential issue is that some topological properties, and 
especially centrality measures, are meaningful when used 
within a network but not necessarily when compared across 
networks (Newman 2018). As an alternative, approaches ex-
ist that first use the condition-specific networks to infer a sin-
gle differential network that intuitively captures edges that 
differ between the conditions (Fig. 2D); only then, a desired 
topological property (e.g. centrality of each node) in the dif-
ferential network is computed to identify network regions 
that are the most relevant (e.g. central/important) for the un-
derlying condition-specific differences (Ruan et al. 2015).

The other category is based on the level of topology, i.e. 
where differences between condition-specific networks are 
measured: at the node (Weighill et al. 2021), edge (Glass 
et al. 2015), cluster (Padi and Quackenbush 2018), or entire 
network level (Newaz and Milenkovi�c 2022). At the node 
level, differences in centrality (e.g. degree or betweenness) are 
often used to identify the biomolecules around which net-
work connectivity varies the most between the compared 
conditions. For example, “differential targeting,” i.e. the dif-
ference in gene targeting—or the sum of the weights for all in-
coming edges to a gene—between two gene regulatory 
networks was used in combination with standard gene set en-
richment tools to identify overrepresented biological pro-
cesses in pancreatic ductal adenocarcinoma subtypes 
(Weighill et al. 2021). At the edge level, the goal is typically 
to determine edges specific to a given condition. This can be 
done in multiple ways, by taking, e.g. a certain percentage of 
the highest-weight edges, all edges above a given threshold, 
edges that have higher weights in one condition compared to 
others (Sonawane et al. 2017), or a combination of these 
(Glass et al. 2015). For example, the tissue-specific PPI net-
works discussed above, which were defined by differential 
edge scores, were correctly enriched in their respective tissue- 
associated biological processes; also, when the top 1% of the 
differential edges were considered, the resulting differential 
network regions were correctly enriched in genes related to 
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diseases associated with their respective tissues (Basha et al. 
2020). Linking this discussion to the first approach category 
described above, it is important to note that although node 
centralities are often determined for each condition-specific 
network and then compared across the networks, they can 
also be calculated for a network defined by condition-specific 
edges. For example, degree and betweenness centralities of all 
genes in 38 tissue-specific gene regulatory networks were 
used to show that tissue-specific genes tended to assume bot-
tleneck positions in their corresponding networks; in parallel, 
tissue-specific edges were identified by comparing the weight 
of each edge in a given tissue to the distribution of that edge’s 
weight across all tissues, and it was found that the tissue- 
specific edges were enriched for connections between tissue- 
specific genes and depleted for canonical interactions 
(Sonawane et al. 2017). At the cluster level, e.g. given two 
condition-specific networks, ALPACA (Padi and 
Quackenbush 2018) identifies clusters that are shared be-
tween networks and distinct to each network. Heterogeneous 
(specifically, multiplex; Section 3) clustering algorithms 
(Mucha et al. 2010) could be useful for identifying such clus-
ters. At the level of entire networks, typically their pairwise 
edge overlaps, as measured by, e.g. the Jaccard index, are 
used to quantify their pairwise (dis)similarities (Newaz and 
Milenkovi�c 2022).

We comment on two additional aspects of differential net-
work analysis. First, while some condition-specific networks 
are derived from multiple data samples, sample-specific net-
works have the additional benefit of being able to be com-
pared while accounting for other potentially relevant 
biomedical information (Kuijjer et al. 2019b). For example, 
the same statistical tools employed for differential gene ex-
pression analysis can be used to determine significant changes 
in the node-, edge-, cluster-, and network-level topological 
properties between sets of sample-specific networks. 
Importantly, this allows topological properties to be evalu-
ated in the context of relevant biological and phenotypic vari-
ables, as well as potential confounders. For example, limma 
(Ritchie et al. 2015) was applied to compare features between 
male and female sample-specific gene regulatory networks 
while controlling for relevant confounders such as body mass 
index and age; node, edge, and TF-targeting was identified 
specific to males and females across 29 different tissues 
(Lopes-Ramos et al. 2020), as well as sex-specific targeting of 
the drug metabolism pathway in colon cancer (Lopes-Ramos 
et al. 2018).

Second, while the above discussion applies to all condition 
types, including temporal ones, we explicitly wish to com-
ment more on approaches for characterizing how networks 
change over time (Teschendorff and Feinberg 2021). A prom-
inent application in this context has been studying the change 
of PPI network topology with age. The process of inferring 
an aging-specific PPI network has already been discussed 
above. Here, we comment on how such a network, consisting 
of network snapshots corresponding to different ages, is ana-
lyzed. Original studies asked whether the overall, or global, 
topology changed with age, by: measuring pairwise edge 
overlaps between the snapshots; evaluating whether the snap-
shots’ properties such as the average clustering coefficient, di-
ameter, and graphlet degree distributions changed with age; 
and evaluating the fit of each snapshot to random (e.g. scale- 
free or geometric) graphs (Faisal and Milenkovi�c 2014, 
Newaz and Milenkovi�c 2022). Global topologies of the age- 

specific snapshots did not significantly change with age. It 
was then analyzed whether local topological positions of 
nodes as measured by (normalized) centralities changed with 
age. Hundreds of such genes were identified and predicted as 
aging-related; the predictions were validated via functional 
enrichment analyses (Faisal and Milenkovi�c 2014, Newaz 
and Milenkovi�c 2022).

Unlike such unsupervised prediction of aging-related genes, 
in recent work (Li et al. 2021, 2022c), supervised prediction 
was performed: by relying on knowledge about which genes 
are aging- versus nonaging-related (de Magalh~aes et al. 
2009), new aging-related genes were predicted if their evolv-
ing topologies in a dynamic aging-specific PPI network 
matched topologies of the known aging-related genes. Recall 
that the state-of-the-art aging-specific dynamic PPI network 
is weighted. So, weighted node topological measures were 
used as features for supervised prediction that were simple 
extensions of unweighted centralities. Also, more advanced 
measures were proposed, which account for how the distribu-
tion of edge weights in the given node’s (extended) network 
neighborhood changes with age, i.e. across the network snap-
shots (Li et al. 2021). A parallel line of work focused on 
studying how clusters, i.e. community structure, in a dynamic 
aging-specific human PPI network changed with age, and it 
was shown that the most prominent changes in the commu-
nity structure correspond to ages that reflect known shifts 
from one stage of human lifespan to another (Hulovatyy and 
Milenkovi�c 2016, Crawford and Milenkovi�c 2018).

Another prominent point of discussion in the temporal/dy-
namic context is theoretical studies of molecular networks 
and observations of cell differentiation (i.e. the transition of a 
cell from one type to another), which indicate that cellular 
transitions can be smooth or nonlinear, gradual, or abrupt 
(Nykter et al. 2008, Moris et al. 2016). Computational meth-
ods to characterize these transitions using single-cell gene ex-
pression data include MuTrans (Zhou et al. 2021b), QuanTC 
(Sha et al. 2020), and BioTIP (Yang et al. 2022). These meth-
ods use different statistical approaches (stochastic differential 
equations, unsupervised learning of cell plasticity, or co- 
expression) and underlying theories (entropy and energy or 
tipping-point theory), but converge at the same best-studied 
bifurcations in six datasets (Yang et al. 2022).

Other types of network comparison. Differential network 
analysis is one type of network comparison, in which net-
works being compared have the exact same nodes and differ 
“only” in their edges (or edge weights). In other words, the 
mapping between the nodes of the compared networks is 
known. A complementary category of network comparison 
includes approaches that compare networks when their node 
mapping is unknown. Here, there are two distinct types: 
(i) network alignment or alignment-based network compari-
son and (ii) alignment-free network comparison (Yavero�glu 
et al. 2015).

Alignment-based network comparison aims to find a map-
ping between the nodes of the compared networks that opti-
mizes some objective function; this typically means 
conserving many edges and a large subgraph between the net-
works (Faisal et al. 2015a, Yavero�glu et al. 2015, Guzzi and 
Milenkovi�c 2017). This approach category is useful for com-
paring biological networks of different species to identify 
evolutionary conserved parts of the networks. Consequently, 
network alignment allows for transferring biological knowl-
edge (e.g. proteins’ functional annotations or PPIs) between 
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aligned network regions across the compared species; also, it 
can complement sequence alignment by allowing for identifi-
cation of protein orthology relationships based on the pro-
teins’ PPI network rather than (just) sequence similarities. 
Note that even when aligning homogeneous networks, the 
problem of network alignment can be viewed as integrating 
these networks into a heterogeneous (specifically, multiplex; 
Section 3) network representation. For this reason, and be-
cause methods have recently been proposed that align hetero-
geneous networks, we discuss algorithmic aspects of network 
alignment in the more appropriate Section 3. Here, we mainly 
aim to contrast general working principles of the different 
types of network comparison.

In contrast to alignment-based comparison, alignment-free 
network comparison simply aims to quantify the overall to-
pological similarity between networks, regardless of a node 
mapping between the networks, and without intending to 
identify any conserved network regions; this typically means 
comparing some topological properties between networks, 
such as their (graphlet) degree distributions (Yavero�glu et al. 
2015, Newaz and Milenkovi�c 2019). Alignment-free network 
comparison is most often used to evaluate the fit of a random 
graph (e.g. scale-free or geometric) to a real-world network; 
also, it can identify groups/families of networks that are topo-
logically similar to each other (Yavero�glu et al. 2015). Given 
that alignment-free network comparison approaches do not 
aim to produce a node mapping between the compared net-
works, while alignment-based approaches do, the former are 
typically computationally more efficient than the latter 
(Yavero�glu et al. 2015).

3. Multimodal data integration and 
heterogeneous networks
Overview. Network representations of biological systems, 
from cells to ecosystems, are naturally heterogeneous, con-
sisting of multiple types of nodes and interactions (De 
Domenico 2023). This section focuses on prominent compu-
tational challenges related to inference and analysis of hetero-
geneous networks. Broadly, a heterogeneous network is 
defined as a representation of multimodal data where each 
data mode corresponds to a different node or edge type. In 
the literature, the term “heterogeneous network” has often 
been used as a synonym to, e.g. a multiplex, interdependent, 
multiscale, or multilayer network. The challenge is that some-
times different terminologies are used for the same concept, 
or the same terminology is used for different concepts; the 
disparate terminology associated with heterogeneous net-
works can reflect nuances in their frameworks (Kivel€a et al. 
2014). Here is the terminology from the existing literature (e. 
g. Pio-Lopez et al. 2021, Gu et al. 2022) that we use in this 
article (Fig. 3A).

A heterogeneous network is a network with multiple node 
types and/or multiple edge types. A multiplex network is a 
special type of heterogeneous network with multiple edge 
types between the same nodes, possibly nodes of a single 
type, in which case the heterogeneity comes from the different 
edge types. A multiplex network can be viewed as being com-
posed of different network layers sharing the same set (rep-
lica) of nodes but each layer having distinct edge types 
(Kinsley et al. 2020). An example of this type in biology is a 
molecular network capturing different types of relationships, 
such as physical interactions, functional relationships, and 

sequence similarities between proteins. A typical heteroge-
neous network, including those discussed in this section, con-
tains both distinct node types and (by definition) distinct 
edge types. An example of this type is a molecular network 
representing relationships among heterogeneous node types 
such as genes, transcripts, proteins, and metabolites. Another 
example is a knowledge graph representing semantic relation-
ships between node types such as genes, patients, drugs, and 
diseases. Another level of complexity is handling distinct 
node types at different scales (or levels) of biological organi-
zation, e.g. node types resulting from data modalities that 
capture molecular measurements in epigenomic, transcrip-
tomic, proteomic, and metabolomic assays and from nonmo-
lecular text and imaging data. Here, a network-of-networks 
is a special case in which a node at a given scale is a network 
at the lower scale. For example, a node (protein) in a PPI net-
work can be represented as a protein structure network in 
which nodes are the protein’s amino acids and edges link 
amino acids that are close enough in the protein’s 3D-fold 
(Gu et al. 2022).

The broad definition of a heterogeneous network that we 
use subsumes any network type that is not a homogeneous 
(single node type and single edge type) network. Note that in 
some scientific fields, such as physics, while a multiplex net-
work typically has the same meaning as above, heterogeneous 
network is a rarely used term. Instead, a heterogeneous net-
work is often referred to as a multilayer network, and a 
network-of-networks is sometimes used as a synonym for a 
multilayer network (De Domenico et al. 2013, Kivel€a et al. 
2014, De Domenico 2023).

Heterogeneous networks are a powerful framework for the 
representation, integration, and analysis of diverse data mo-
dalities of a complex system with multiple types of nodes or 
edges (or both), allowing for reconciling complementary 
measurements and providing a holistic view of the system. 
Here, we discuss the following major research directions 
encompassing heterogeneous networks: inference of a hetero-
geneous network from multimodal data, pathway reconstruc-
tion for interpretation of multi-omic data, network 
alignment, inference and reasoning with BKGs, and network- 
of-networks analysis. This is not an exhaustive list of topics 
on heterogeneous networks, and other sections touch on ad-
ditional topics. For example, Section 5 touches on graph rep-
resentation learning including but not limited to learning in 
heterogeneous networks, and Section 6 talks about integra-
tion of multimodal data for the purpose of patient stratifica-
tion, identification of disease-dysregulated molecular 
pathways and functional modules, and other precision medi-
cine applications.

Inference of a heterogeneous network from multimodal 
data. Heterogeneous network inference is the computational 
task of inferring the graph connectivity structure from multi-
modal—to date, typically multi-omic—measurements (Hawe 
et al. 2019). The vast majority of methods for this task infer 
connections between nodes corresponding to biomolecules 
such as genes, proteins, and metabolites (Fig. 3B) using bulk 
-omic datasets. Single-cell -omic datasets have posed new op-
portunities for network inference where nodes can represent 
individual cells. Heterogeneous network inference methods 
can be grouped into categories based on how much they rely 
on labeled positive examples of edges.

Probably the simplest category of approaches takes as in-
put labeled examples of edges and nonedges along with 
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pairwise node feature vectors derived from multimodal data 
and train binary classifiers to discriminate node pairs with 
edges from node pairs without edges (Marbach et al. 2012b, 
Greene et al. 2015). These binary classification approaches 
assume that all node pairs are independent of each other and 
are therefore limited in their ability to exploit the known con-
nectivity structure of the graph. An alternative is embedding 
methods (discussed in more detail in Section 5) that take as 
input an incomplete graph and multimodal measurement 
data as node features and learn an embedding of the nodes 
based on the (partial) graph structure and measured values, 
which are then used to infer edges based on link prediction 
(Lee et al. 2019, Yue et al. 2020) or matrix completion 
(Natarajan and Dhillon 2014). Graph embedding methods 
relax the independence assumption of binary classification 
methods. As graph embedding methods capture more of the 
network connectivity, it is conceivable that they need less 
training data to do as good prediction as simple binary classi-
fication. Graph neural networks (GNNs, discussed in more 
detail in Section 5) offer new ways to incorporate more 
global information about the network to inform the inference 
task (Yue et al. 2020). The biggest limitation of the above 
approaches is the need for positive training data (edges) and 
that negative examples (nonedges) are not truly observed but 
are assumed to be part of the complement of the positive set.

On the other hand, unsupervised graph structure learning 
methods take as input node-level measurements and infer the 
graph structure from these measurements alone, without re-
quiring any labeled examples of edges/nonedges. These 
approaches can range from correlation-based networks infer-
ring pairwise dependencies between nodes representing dif-
ferent multimodal data (Vasaikar et al. 2018, Zhou et al. 
2021a) to more general approaches based on probabilistic 
graphical models (Koller and Friedman 2009, Hawe et al. 
2019). We note that several of these methods were originally 
developed for transcriptomic datasets and are thus discussed 
in Section 2. In probabilistic graphical models, nodes are 
modeled as random variables and edges correspond to statis-
tical dependencies (Koller and Friedman 2009), where each 
data modality is represented as a different node type (Chen 
et al. 2014, Sedgewick et al. 2018). A key modeling challenge 
when handling multiple types of measurements is to specify 
the appropriate probability distributions for each data mo-
dality (Chen et al. 2014, Sedgewick et al. 2018). 
Furthermore, the larger number of variables of multimodal 
data introduces additional scalability issues for learning the 
structure of probabilistic graphical models such as general 
Bayesian networks. Several heuristics such as focusing on 
promising parents (Friedman et al. 1999, Schmidt et al. 
2007), exploiting modularity of molecular networks (Segal 
et al. 2005), or approximating joint probability distributions 
as done in dependency networks (Heckerman et al. 2000, 
Greenfield et al. 2013, Roy et al. 2013) have enabled these 
models to scale to thousands of variables.

Once the networks have been defined, they can be further 
clustered into modules to identify potential functional group-
ings among the nodes (Newman 2006, Mitra et al. 2013, 
Choobdar et al. 2019). Unsupervised learning of graph struc-
ture from multi-omic data lends itself naturally to the infer-
ence of gene regulatory networks (Baur et al. 2020), where 
node types represent target genes and protein regulators. 
Protein regulators can be further modeled based on their ob-
served mRNA levels or their hidden activity levels (Miraldi 

et al. 2019). While such approaches do not need any edge- 
level information, if any, potentially noisy, information is 
available, this can be incorporated as a graph prior to guide 
the structure learning (Greenfield et al. 2013, Siahpirani and 
Roy 2017, Miraldi et al. 2019).

The availability of single-cell multi-omic datasets has also 
opened up challenges that can be tackled with heterogeneous 
network inference (Demetci et al. 2022, Heumos et al. 2023). 
One such problem is to infer cell–cell networks with nodes 
corresponding to cells, node types corresponding to different 
modalities (e.g. scRNA-seq, scATAC-seq) or time points (or 
both), and edges representing different semantics such as sim-
ilarity or lineage relationships. Due to the size and sparsity in 
these data, dimensionality reduction is typically performed 
prior to inference of network structure. Nonnegative matrix 
factorization, independent components analysis, and varia-
tional autoencoders are common dimensionality reduction 
approaches for single-cell multi-omic datasets. After dimen-
sionality reduction, graph learning can be done using the k- 
nearest neighbor approach (Butler et al. 2018) or with opti-
mal transport (Schiebinger et al. 2019, Demetci et al. 2022). 
Graphs based on k-nearest neighbors, with different distance 
measures, are straightforward to implement and frequently 
used in practice, while optimal transport’s framework to 
match probability distributions of cells can be used to capture 
fine-grained cell dynamics.

Pathway reconstruction for interpretation of multi-omic 
data. Heterogeneous networks offer a powerful framework 
to integrate, interpret, and reconcile missing and noisy meas-
urements commonly seen in multi-omic experiments (Haque 
et al. 2017, Peck Justice et al. 2021). The task of pathway re-
construction takes as input multi-omic measurements of dif-
ferent biomolecules represented as node types and a large 
background molecular network. It outputs a sparse subnet-
work with high-quality connections among the relevant bio-
molecules (Garrido-Rodriguez et al. 2022) (Fig. 3C). The 
background networks typically contain PPIs and may also in-
clude protein–DNA, protein–RNA, or protein–metabolite 
interactions to match the available -omic data. Paths from 
one relevant biomolecule to another in the background net-
work can help prune irrelevant biomolecules and identify 
those that may play critical roles in the overall biological pro-
cess but were missed in the -omic measurements (Paull et al. 
2013, Pirhaji et al. 2016, Tuncbag et al. 2016, Winkler et al. 
2022). Note that this task also relates to condition-specific 
network inference discussed in Section 2 and multi-omic 
module discovery discussed in Section 6 for discovery of dys-
regulated pathways in diseases such as cancer.

The sparse subnetwork obtained depends on the choice of 
optimization algorithm and its parameters. Some pathway re-
construction algorithms are computationally efficient, based 
on shortest paths (Ritz et al. 2016) or network flow (Yeger- 
Lotem et al. 2009). Despite their algorithmic simplicity, these 
methods can still effectively prioritize biologically relevant 
nodes and interactions. Network flow-based methods can 
scale across multiple experiments by relying on the multicom-
modity flow approach, which identifies nodes and edges that 
are unique and shared across conditions (Gosline et al. 
2012). General integer linear programming approaches 
(Ourfali et al. 2007, Chasman et al. 2014) support arbitrary 
node, edge, and path constraints. These provide the greatest 
customization for a particular multi-omic dataset but less 
scalability and reusability across applications. Intermediate 
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approaches such as the Prize-Collecting Steiner Forest 
(Tuncbag et al. 2013) are computationally difficult to solve 
exactly but can be approximated efficiently. For instance, the 
Omics Integrator software (Tuncbag et al. 2016) based on 
the Prize-Collecting Steiner Forest algorithm adds prizes to 
nodes that should be included in the sparse subnetwork and 
costs to edges based on their reliability. Omics Integrator also 
includes a module to estimate prizes for active TFs based on 
chromatin accessibility, gene expression, and DNA-binding 
motifs. Its parameters control the tradeoff between node 
prizes and edge costs, a penalty for including nodes with high 

degrees, and a penalty for the number of connected compo-
nents in the subnetwork.

Heterogeneous pathway reconstruction is especially pow-
erful because network connections between different types of 
biomolecules can be combined to reveal more complete and 
explanatory pathways. For instance, a TF that activates dif-
ferentially expressed genes detected with RNA-seq may be in-
ferred to be regulated by an upstream phosphorylated kinase 
detected with mass spectrometry. A study of Kaposi’s 
Sarcoma-associated Herpesvirus infection (Sychev et al. 
2017) illustrates the data types and algorithms involved, and 

A
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Figure 3. Prominent topics related to multimodal data integration and heterogeneous networks. (A) Heterogeneous networks can naturally represent 
multimodal data. A heterogeneous network can have only a single node type, with different data modalities representing multiple edge types. Or, there 
can exist both multiple node and edge types. Different node types can exist at different biological scales; e.g. in a network-of-networks, nodes at a given 
scale are networks at the lower scale. (B–E) Prominent topics related to heterogeneous networks. (B) Inference of a heterogeneous network aims to 
learn the graph topology from multimodal—to date, typically multi-omic—measurements. (C) Pathway reconstruction for interpretation of multi-omic 
data: the input is multi-omic data and a background molecular network, and the output is a sparse subnetwork. Typically input biomolecules with higher 
scores (indicated by node sizes) and higher-quality connections (indicated by edge thickness) are prioritized in the output. (D) Network alignment: input 
can be individual homogeneous networks (left) or heterogeneous networks. Even alignment of homogeneous networks leads to a heterogeneous 
network (right) whose “supernodes” contain mapped nodes and whose edge types indicate which edges of the original networks are conserved (e.g., 
between supernodes “a1!b1” and “a2!b2” where the edge exists in both network 1 and network 2) versus nonconserved (e.g. between supernodes 
“a1!b1” and “a3!b3” where the edge exists in network 1 but not in network 2) under the given node mapping. (E) Inference of and reasoning on BKGs. 
Shown is a condition-aware BKG. The middle nodes (hexagons) are statement sentences. The layers on their left represent fact tuples and those on their 
right represent the conditions associated with the facts. The tuples have relation nodes (circles), concept nodes (squares), and optional attribute 
nodes (triangles).
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biological insights gained in multi-omic pathway reconstruc-
tion. The authors profiled the proteomic and phosphoproteo-
mic changes in endothelial cells induced by viral infection 
using mass spectrometry and gene expression changes with 
RNA-seq. They used TF binding motifs and a statistical en-
richment test with the gene expression data to identify poten-
tially relevant transcriptional regulators. Then, they applied 
Omics Integrator (Tuncbag et al. 2016) to combine the tran-
scriptional regulators, proteomic changes, phosphoproteomic 
changes, and a PPI background network in order to obtain a 
holistic view of the endothelial cell response to infection. 
Ultimately, this analysis revealed peroxisome-related proteins 
to be an important part of the response. This network-based 
insight was supported with follow-up wet laboratory experi-
ments (Sychev et al. 2017).

Network alignment. In network biology, network align-
ment has traditionally been used to compare species’ PPI net-
works (Sharan and Ideker 2006, Faisal et al. 2015a, Emmert- 
Streib et al. 2016, Guzzi and Milenkovi�c 2017, Vijayan et al. 
2020, Ma et al. 2022). In this context, network alignment 
aims to find a node (protein) mapping between the compared 
networks that uncover regions of high topological (and often 
sequence) conservation, with the hypothesis that the resulting 
aligned nodes and network regions are evolutionary con-
served or functionally similar. Finding such a node mapping 
is closely related to the NP-complete subgraph isomorphism 
problem, making the network alignment problem NP-hard 
(Faisal et al. 2015a).

Even when comparing PPI networks, which are homoge-
neous, network alignment can be viewed as a multimodal 
data integration task. This is because an alignment (i.e. node 
mapping) in a “composed view” results in a heterogeneous 
(specifically, multiplex) network whose “supernodes” con-
tain mapped nodes from the individual homogeneous net-
works and whose edges are of distinct types, indicating which 
one(s) of the compared networks the given edge is present in 
under the given node mapping (Fig. 3D). More recently, 
approaches have been proposed for aligning heterogeneous 
networks in biology (Gu et al. 2018, Milano et al. 2020) and 
other domains (Chen et al. 2016, Yan et al. 2022). Below, we 
discuss algorithmic principles of traditional alignment of ho-
mogeneous networks and then comment on the alignment of 
heterogeneous networks.

Analogous to sequence alignment, alignment of homoge-
neous networks can be local or global (Meng et al. 2016). 
Both have (dis)advantages (Guzzi and Milenkovi�c 2017). 
Also, network alignment can be pairwise (between exactly 
two networks) or multiple (between more than two net-
works) (Vijayan and Milenkovi�c 2018a). The latter has tradi-
tionally been expected to lead to deeper biological insights as 
it aligns all considered networks simultaneously as opposed 
to one pair at a time; however, a recent evaluation showed 
that this is not always the case (Vijayan et al. 2020). At the 
same time, multiple network alignment is computationally 
more complex (Vijayan and Milenkovi�c 2018a).

Network alignment has two main algorithmic components 
(Faisal et al. 2015b). First, topological similarity between 
nodes across the compared networks is computed via some 
measure of node conservation; graphlet-based measures 
(Section 4) are among state-of-the-art (Gu et al. 2018, Newaz 
and Milenkovi�c 2019). Second, an alignment strategy quickly 
identifies alignments that optimize some objective function 
accounting for total node and ideally also edge conservation 

under the given node mapping. That is, a good alignment 
should both map similar nodes to each other and conserve 
many edges. Original alignment strategies were of the seed- 
and-extend type (Singh et al. 2008, Kuchaiev et al. 2010, Sun 
et al. 2015). The extension around highly similar “seed” 
nodes, by adding mapped nodes incrementally to build the 
alignment one step at a time, is intended to explicitly improve 
node conservation of the resulting alignment, but edge 
conservation only implicitly. To improve edge conservation 
explicitly as the alignment is constructed, rather than only 
evaluating it after the fact, another type of alignment strat-
egy—a search algorithm—was introduced. Here, entire align-
ments are explored, and the one that scores the highest based 
on the given (e.g. edge conservation-based) objective function 
is returned, using, e.g. genetic algorithms (Saraph and 
Milenkovi�c 2014, Vijayan et al. 2015, 2017, Vijayan and 
Milenkovi�c 2018a) or simulated annealing (Mamano and 
Hayes 2017).

A recent algorithmic shift in network alignment has been 
from unsupervised to supervised, data-driven alignment (Gu 
and Milenkovi�c 2020, 2021). Traditional network alignment 
uses the notion of topological similarity to quantify how close 
to isomorphic two nodes’ extended network neighborhoods 
are. A major issue is that regardless of the considered similar-
ity measure, aligned nodes often do not correspond to nodes 
that should actually be mapped, i.e. that are functionally re-
lated (Gu and Milenkovi�c 2020). Specifically, when compar-
ing species’ PPI networks, aligned nodes do not correspond 
to proteins that are involved in same biological processes. 
This is why a move was made from optimizing topological 
similarity to learning from the data what kind of topological 
relatedness corresponds to functional relatedness, without as-
suming that topological relatedness means topological simi-
larity (Gu and Milenkovi�c 2020). For example, topological 
similarity will aim to match a triangle in one network to a tri-
angle in another network, and a square in the former to a 
square in the latter. Yet, due to biological variation or noise 
in PPI data, perhaps it is the triangle in the first network that 
is functionally related and should thus be matched to the 
square rather than the triangle in the second network, which 
is what topological relatedness would aim to learn from the 
data. This resulted in moving from traditional unsupervised 
alignment (functional labels of nodes, e.g. biological pro-
cesses of proteins in PPI networks, being used to evaluate an 
alignment only after it is produced) to supervised, data- 
driven alignment (functional labels of nodes being used 
during the process of constructing an alignment, to learn pat-
terns of topological relatedness). A pioneering data-driven 
network alignment method used traditional machine 
learning, i.e. user-predefined (graphlet-based) features 
(Gu and Milenkovi�c 2020, 2021) and standard classifiers 
(e.g. logistic regression), while a follow-up effort used deep 
learning and specifically GNNs (Ding et al. 2023).

Finally, going back to alignment of heterogeneous net-
works, an earlier attempt in biology was still to align homo-
geneous networks to each other, where the heterogeneity 
came from the fact that the individual homogeneous net-
works being compared were of different types: one was a hu-
man PPI network whose nodes were proteins, and the other 
was a disease–disease association network whose nodes were 
diseases (Wu et al. 2009). Then, the goal of aligning the two 
networks was to identify causative genes/proteins and their 
pathways underlying disease families. But, because each of 
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the compared networks was homogeneous, a homogeneous 
network alignment approach sufficed for their comparison. A 
more recent effort towards actually aligning one heteroge-
neous network to another, each with different node and edge 
types (or colors), was extending the existing notions of homo-
geneous graphlet-based node similarity/conservation as well 
as homogeneous edge conservation (discussed above) into 
their heterogeneous (or colored) counterparts, and then 
extending the existing seed-and-extend or search alignment 
strategies (discussed above) to find high-scoring alignments 
with respect to the new heterogeneous conservation measures 
(Gu et al. 2018). In evaluations on synthetic and real biologi-
cal networks, the heterogeneous methods led to higher- 
quality alignments and better robustness to noise in the data 
than their homogeneous counterparts (Gu et al. 2018). Two 
types of heterogeneous biological networks were considered: 
first, PPI networks were aligned to each other, where nodes 
(proteins) were colored according to whether they were in-
volved in aging, cancer, and/or Alzheimer’s disease; second, 
protein-GO term networks were aligned to each other, where 
such a network had two types of nodes—proteins and GO 
terms—and three types of edges—PPIs, protein-GO term 
annotations, and GO term-GO term semantic similarity asso-
ciations (Gu et al. 2018). This effort (Gu et al. 2018) aligned 
heterogeneous networks globally. In parallel, an approach 
for their local alignment was proposed (Milano et al. 2020).

Ideas from machine learning-based embedding of heteroge-
neous networks (Section 5) in biology (Pio-Lopez et al. 2021) 
and other domains (Wang et al. 2022d, 2023c) could be ex-
tended to heterogeneous network alignment. However, to 
our knowledge, such extension has not yet been carried out 
in biology but it has been carried out in other domains such 
as social, information, or technological networks (Zheng 
et al. 2018, Zhang et al. 2019b, 2020c, Xiong et al. 2021, 
Wang et al. 2022f, Cai et al. 2023). Note that in Zhang et al. 
(2019b, 2020c), the heterogeneity of considered networks 
came from node/edge attributes rather than explicit node/ 
edge types. In these two studies, GNNs were used to first find 
an embedding of nodes of the compared networks, and then 
the network alignment problem was viewed as a point regis-
tration problem (Zhang et al. 2019b) or a neural network 
transformation problem (Zhang et al. 2020c).

Inference of and reasoning on BKGs. BKGs, which describe 
semantic relationships between biomedical entities, are 
among the richest examples of heterogeneous networks 
(Nicholson and Greene 2020). BKGs aim to combine facts 
about diverse biomedical entities, which can range from 
genes to individual patients as well as measurements associ-
ated with them. BKGs represent biological facts using 
“subject–predicate–object” triples as the fundamental unit, 
with the subject and object corresponding to nodes in the 
graph and the predicate (also called a relation) corresponding 
to a directed edge, possibly of different types, between the 
nodes. For example, Chlorin e6-PDT (subject) reduced (pred-
icate) cell proliferation (object); Fig. 3E. Exemplar active 
BKG projects, each taking a unique approach, include 
Scalable Precision Medicine Knowledge Engine (SPOKE) 
(https://spoke.rbvi.ucsf.edu) (Morris et al. 2010), BioThings 
Explorer (https://explorer.biothings.io) (Fecho et al. 2022, 
Lelong et al. 2022), biomedical “corner” of Wikidata (https:// 
www.wikidata.org) (Manske et al. 2019, Waagmeester et al. 
2020, Page 2022), and PrimeKG (Chandak et al. 2023).

BKGs have emerged as powerful frameworks for diverse 
biomedical applications (Nicholson and Greene 2020) includ-
ing drug repurposing (e.g. Hetionet; Himmelstein et al. 2017
and SPOKE; Morris et al. 2010), rare disease diagnosis 
(Alsentzer et al. 2022), and biomarker discovery (e.g. 
SPOKE; Himmelstein and Baranzini 2015). BKGs leverage 
graph databases like Neo4j and Virtuoso, and semantic web 
standards like the Resource Description Framework for their 
backend. BKGs leverage over a hundred years of graph the-
ory to enable operations on first neighbors, paths, centrali-
ties, and other network components, as well as semantics, 
inference, and reasoning. There are a number of computa-
tional challenges that emerge to maximally extract the infor-
mation encoded in BKGs for diverse biomedical applications 
ranging from construction of BKGs to reasoning with BKGs 
(Peng et al. 2023). For example, advanced, multi-hop queries 
specifying node and edge types are essential to navigating het-
erogeneous network representations of biomedical knowl-
edge; “multi-hop” refers to having to traverse at least two 
edges in the graph. Many of these challenges have been 
approached using similar methods of network inference as 
previously described (e.g. link prediction) as well as more re-
cently with graph representation learning approaches dis-
cussed in Section 5.

Equally important is the question of the representation of 
biomedical and biological literature to enable advanced 
queries and reasoning. Traditional BKGs assume that all 
knowledge can be represented as subject–predicate–object 
tuples and are constructed using tuple extraction techniques 
based on machine learning. A simple postprocessing algo-
rithm can extract the tuples from any sentence and represent 
them as links between nodes on the BKGs. However, tradi-
tional BKGs have ignored the conditions (e.g. patient age or 
environment) of the facts, which capture essential contexts 
for knowledge exploration and inference. Recently, a new 
type of BKG, Condition-aware BKG (CondBKG; Jiang et al. 
2021), has been introduced, which considers both facts and 
their conditions in the biomedical statements. Unlike tradi-
tional BKGs which have only one layer of subject–predicate– 
object tuples, CondBKG is a three-layered information-loss-
less representation of BKGs. The first layer has biomedical 
concept and attribute nodes; the second layer represents both 
biomedical fact and condition tuples by nodes of the predi-
cate phrases, connecting to the subjects and objects in the 
first layer; the third layer has nodes that represent statement 
sentences as their textual attributes and connect to fact and/ 
or condition tuples in the second layer (Fig. 3E). CondBKG is 
constructed from a machine learning model’s output tuples. 
Given a statement sentence and its context (e.g. nearby sen-
tences) in a scientific article, the model learns from multiple 
types of input signals of sentence (e.g. word embeddings and 
part of speech tags) and predicts one or multiple tuples. 
CondBKG has 18.1 million fact tuples, 7.5 million condition 
tuples, 10.9 million concept nodes, and 703 000 attribute 
nodes. CondBKG preserves more knowledge from unstruc-
tured text than traditional flat BKGs and can be used to an-
swer tailored queries, such as what factors increase or reduce 
cell proliferation and their conditions (Fig. 3E). CondBKG 
can provide a good understanding of biomedical and biologi-
cal statements and supports diverse applications for biomedi-
cal knowledge discovery.

Network-of-networks analysis. Biological systems function 
at different scales of organization. Thus, network-of- 
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networks analysis (Fig. 3A) is an exciting, still relatively 
unexplored area of research. This topic has received an in-
creasing amount of attention only in recent years. This is 
likely because it has been increasingly recognized that 
network-of-networks representations of various biological 
data can be obtained: (i) given that different diseases tend to 
manifest in different tissues, nodes (diseases) in a disease simi-
larity network can be represented as their associated tissue- 
specific PPI networks (Ni et al. 2016); (ii) nodes in a PPI net-
work can be represented as protein structure networks (Gu 
et al. 2022, Gao et al. 2023); (iii) nodes in a network of inter-
acting molecules can be represented as molecular graphs 
(Wang et al. 2021a, 2022a); (iv) nodes in a bipartite graph 
containing interactions between drugs and their target pro-
teins can be represented as drug molecule graphs and target 
protein structure networks, respectively (Chu et al. 2022). 
Note that not all existing network-of-networks studies origi-
nate in the biology domain. Some have been proposed and 
evaluated in other domains, such as on text and social net-
work datasets (Li et al. 2022a).

The studies that have analyzed biological network-of- 
networks data typically perform different network analysis 
and application tasks, as follows. The task of node ranking 
was applied to candidate disease gene prioritization from the 
network-of-networks of type (i) above (Ni et al. 2016). The 
task of link prediction was applied to predicting interactions 
between proteins from the network-of-networks of type 
(ii) above (Gao et al. 2023), between molecules such as drugs 
from the network-of-networks of type (iii) above (Wang et al. 
2021a, 2022a), or between drugs and their target proteins 
from the network-of-networks of type (iv) above (Chu et al. 
2022). A new task was introduced—that of entity label pre-
diction—which merges the two traditionally isolated tasks of 
node (protein) classification at the higher scale containing a 
PPI network and graph (also protein) classification at the 
lower-scale containing protein structure networks (Gu et al. 
2022). This task was applied to predicting protein functions 
from the network-of-networks of type (ii) above (Gu et al. 
2022). Given that the different approaches were proposed for 
different tasks/applications, they have typically not been 
evaluated against each other. It remains unclear whether the 
different approaches can be effectively used in tasks/ 
applications other than those they were proposed for, as well 
as what (dis)advantages of each approach are on the method-
ological level. With the increasing availability of network-of- 
networks data and the increasing number of approaches for 
network-of-networks analysis, the need for proper method 
evaluation will only continue to gain importance. This will 
require all studies to make their data and code publicly avail-
able and easy to use. According to our exploration of the 
existing network-of-networks studies discussed above, this is 
not always true.

4. Higher-order network analysis
Need for higher-order graph representations of biological 
systems. This article, unless explicitly noted otherwise, deals 
with traditional pairwise graphs (or simply graphs). Such a 
graph represents the organization of a biological system as a 
network of pairwise interactions between biomolecules (e.g. 
a PPI is represented as an edge connecting two proteins, and 
a transcriptional regulatory interaction is represented as a di-
rected edge from a TF to a gene). However, these interactions 

often involve additional components and the interactions 
themselves can be regulated by other components (Battiston 
et al. 2020). In other words, there is often a need to capture 
interactions between multiple (two or more) nodes rather 
than between exactly two nodes (as is the case with pairwise 
graphs). Several higher-order graph ideas have been proposed 
in the literature to overcome the limitations of pairwise 
graphs. There are two general categories of such ideas.

The first category still works with pairwise graphs but 
relies on either higher-order dependencies between two nodes 
(Xu et al. 2016) or small subgraphs (Newaz and Milenkovi�c 
2019), as follows. Regarding higher-order dependencies, it 
was shown that when representing sequential data such as 
global shipping traffic as networks, assuming the first-order 
dependency, i.e. that the next movement of traffic depends 
only on the current node, and thus discounting the fact that 
the movement may depend on several previous steps, can 
yield inaccurate network analysis results (Xu et al. 2016). 
This is because data derived from many complex systems can 
show up to fifth-order dependencies between two nodes. 
Consequently, an approach was proposed for capturing vari-
able orders of dependencies between pairs of nodes (Xu et al. 
2016). Regarding subgraphs, these can be viewed as “higher- 
order coordinated patterns” between two or more nodes of a 
pairwise graph (Battiston et al. 2020); a subgraph captures 
first-order dependencies [as discussed above and defined in 
Xu et al. (2016)] between multiple nodes in a pairwise graph. 
Examples of subgraph types are cycles (e.g. a triangle or a 
square) or cliques (the densest of all subgraph types, contain-
ing all possible edges between their nodes) (Battiston et al. 
2020). Two general categories of subgraphs exist: graphlets 
(Pr�zulj 2007) and network motifs (Milo et al. 2004). Two 
key differences exist between them: graphlets are induced 
subgraphs while network motifs are not, and network motifs 
need to be statistically significantly overrepresented in a pair-
wise graph compared to a null (i.e. random graph) model 
while graphlets do not rely on a null model.

Both higher-order dependencies and subgraphs in pairwise 
graphs from the first category fail to directly account for 
interactions between more than two nodes in a network. An 
alternative is the second category of higher-order graph 
ideas—to explicitly consider higher-order graph structures. 
Here, while simplicial complexes are a theoretic possibility, 
they have assumptions that are practically too strong in some 
systems (Battiston et al. 2020). The next most general idea of 
higher-order interactions that is at the same time less con-
straining and thus more practical are hypergraphs (Battiston 
et al. 2020).

Higher-order dependencies [as discussed above and defined 
in Xu et al. (2016)] have not yet received attention in the biol-
ogy domain, which is why we do not discuss this idea further. 
Graphlets in pairwise graphs (or simply graphlets), hyper-
graphs, and graphlets in hypergraphs (i.e. hypergraphlets) 
have received significant attention in the biology domain, 
which is why the following sections discuss these topics in 
more detail. While network motifs have also received atten-
tion, it remains unclear which random graph model fits real- 
world networks the best and should thus be used for network 
motif identification (Artzy-Randrup et al. 2004, Newaz and 
Milenkovi�c 2019), which is why we do not discuss network 
motifs further.

Graphlets. Graphlets, small subgraphs, are Lego-like build-
ing blocks of a network. More formally, they are connected, 
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nonisomorphic, induced subgraphs of a graph (Pr�zulj et al. 
2004). Because counting of large graphlets in a large network 
is time-consuming, in practice, graphlets on up to five nodes 
have typically been studied. Graphlets were originally 
proposed as subgraphs of undirected, homogeneous, static, 
unordered, and pairwise graphs (Newaz and Milenkovi�c 
2019). More recently, they were extended to their directed 
(Lugo-Martinez and Radivojac 2014, Sarajli�c et al. 2016), 
heterogeneous (Gu et al. 2018), dynamic (Hulovatyy et al. 
2015), ordered (Malod-Dognin and Pr�zulj 2014, Faisal et al. 
2017), or hypergraph (Gaudelet et al. 2017, Lugo-Martinez 
et al. 2021) counterparts, respectively; the latter are called 
hypergraphlets and are discussed more below after hyper-
graphs are introduced. The following concepts are discussed 
for original graphlets, but they generalize to the more data- 
rich counterparts as well.

In a graphlet, nodes can correspond to different symmetry 
groups called automorphism orbits (or just orbits for simplic-
ity) (Pr�zulj 2007). For example, in a graphlet corresponding 
to the 3-node path (e.g. a − b − c), the two outer nodes (a and 
c in our illustration) are symmetric to each other and thus be-
long to the same orbit, while the middle node (b) is in its own 
orbit. As another example, in a clique, all nodes are symmet-
ric to each other and thus belong to the same orbit. There are 
15 orbits for 2- to 4-node graphlets and 73 for 2- to 5-node 
graphlets. This concept of graphlet orbits can be used to 
quantify a node’s extended network neighborhood into a 
15D or 73D embedding, often called the node’s graphlet de-
gree vector (GDV) (Milenkovi�c and Pr�zulj 2008). This vector 
counts how many times a node of interest touches (or partici-
pates in) each of the considered graphlets at each of their 
orbits. By computing GDV for each node in a network, one 
can obtain the network’s GDV matrix, whose entry ði; jÞ con-
tains the information of how many times node i touches orbit 
j (Milenkovi�c and Pr�zulj 2008, Newaz and Milenkovi�c 
2019). Note that there exists an analogous concept of edge 
(rather than node) as well as node pair orbits, GDVs, and 
GDV matrices (Solava et al. 2012, Hulovatyy et al. 2014).

GDV matrices of networks have been used as features to 
compare extended neighborhoods of nodes (edges, node 
pairs) in the same network, extended neighborhoods of nodes 
(edges, node pairs) across different networks, or structures of 
entire networks (Newaz and Milenkovi�c 2019). These, in 
turn, have been used in numerous computational tasks, such 
as network alignment, alignment-free network comparison, 
graph classification, node classification, network denoising 
via link prediction, inference of a condition-specific network 
or pathway reconstruction, network clustering, and node 
centrality computation, as well as for various application 
problems, such as studying human aging, protein folding and 
function, cancer and other diseases, pathogenicity, or mental 
health (e.g. depression and anxiety), as briefly discussed in 
other sections (Solava et al. 2012, Newaz and Milenkovi�c 
2019, Liu et al. 2020, 2021a, Magnano and Gitter 2021, 
Newaz et al. 2022, Arici and Tuncbag 2023).

Hypergraphs. Hypergraphs provide powerful representa-
tions by generalizing edges between exactly two nodes to 
hyperedges that involve multiple nodes (Berge 1985). For ex-
ample, protein complexes, which involve simultaneous inter-
actions among multiple proteins that carry out function only 
as a group, are effectively represented using undirected hyper-
graphs, where each node is a protein and each undirected 
hyperedge (a set of nodes) is a complex (Klamt et al. 2009). 

Under this representation, complexes that share interactors 
can be disambiguated, thus allowing more flexibility to cap-
ture multiple functionalities on the same set of nodes. 
Signaling pathways, on the other hand, are represented using 
directed hypergraphs in which proteins are represented by 
nodes and reactions are represented by directed hyperedges 
(Ritz et al. 2014).

Fig. 4 shows an example of nine reactions from the trans-
forming growth factor-beta (TGFβ) signaling pathway 
(Gillespie et al. 2022) and their representation using higher- 
order graph frameworks. In this example, TGFβ1 binds to 
the TFGβ receptor and phosphorylates SMAD2/3, which in 
turn binds to SMAD4; SMAD2/3 is subsequently dephos-
phorylated by MTMR4. The signaling reactions are captured 
by a directed hypergraph with nine hyperedges connecting 
proteins (which may be phosphorylated) and protein com-
plexes (Fig. 4A). Without the directed hyperedges, we have a 
series of overlapping protein complexes, the structure of 
which provides some insights into how the protein complexes 
form (Fig. 4B). Directed and undirected hypergraphs offer 
more information than a graph that only captures pairwise 
physical interactions in this cascade (Fig. 4C). If dealing with 
the pairwise graph representation in Fig. 4C, graphlets can 
help characterize the local topology of a specific node 
(Fig. 4D) or an entire network, as discussed above. If dealing 
with the hypergraph representation from Fig. 4A and B, 
hypergraphlets, discussed below, can be used to quantify to-
pology (Fig. 4E).

A shortcoming of pairwise graphs in representing multi- 
component interactions is that some paths may be lost 
(Murgas et al. 2022) or ghost paths can be created (Pandey 
et al. 2007) while contracting a multi-way interaction into a 
set of pairwise interactions. For example, as seen in Fig. 4A, 
the interaction between TGFβ1 and SMAD2/3 occurs when 
TGFβ1 is part of the TGFβ complex that is phosphorylated, 
but this information is lost in the pairwise graph representa-
tion shown in Fig. 4C. In addition, contracting multi-way 
interactions into pairwise interactions results in the replica-
tion of interactions between multiple components, inflating 
subgraph density, multiplicity of paths, and node degrees; 
while also shortening paths. Generalization of notions such 
as density or centrality to hypergraphs can therefore provide 
more reliable insights into the topology and dynamics of bio-
logical networks (Feng et al. 2021).

In addition to reducing representation loss, hypergraphs 
also offer meaningful algorithmic advantages. Owing to the 
graph duality property where each graph can be represented 
as a hypergraph by inverting nodes and edges of the original 
graph into hyperedges and nodes, respectively, of a dual 
graph, hypergraph representations offer a possibility to unify 
methodology. For example, node classification, edge classifi-
cation, and link prediction on pairwise graphs can all be seen 
as node classification on (extended) dual hypergraphs (Lugo- 
Martinez et al. 2021). This allows for the development of 
general methodologies and software that could support sta-
tistical inference tasks on biological networks.

To date, the application of hypergraphs in biological net-
work analysis is limited because of constraints posed by the 
availability of data and annotations (or lack thereof). In cellu-
lar signaling, posttranslational modifications play a central 
role in multi-way interactions among cellular components, 
yet only a small fraction of posttranslational modifications 
are well-characterized (Needham et al. 2019). As 
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biotechnology advances and more data are generated, the 
availability of algorithms that solve fundamental problems 
on hypergraph representations, therefore, has the potential to 
guide data generation and curation of annotations.

Hypergraph algorithms. In the broader computer science 
community, hypergraph algorithms exist for several problems 
including shortest paths, random walks, and clustering 
(Cambini et al. 1997, Zhou et al. 2006, Ducournau and 
Bretto 2014, Gao et al. 2015a, Ausiello and Laura 2017). 
Within the context of network biology, hypergraphs have 
been used to study metabolic networks (Klamt et al. 2009), 
clusters in PPI networks (Ramadan et al. 2004), and shortest 
paths in signaling pathways. This final application is the best- 
developed use of directed hypergraphs in network biology. 
Hence, we focus our discussion on it.

Defining reachability in directed hypergraphs is signifi-
cantly more complex than in pairwise graphs. A key principle 
is that the nodes in the head of a hyperedge are reachable 
from some source only if all the nodes in the tail are them-
selves reachable from that source. This principle expresses 
the natural concept that for any product of a reaction to 
form, all the reactants must be present. The notion of B- 
reachability formalizes this idea (Ritz et al. 2014, Ausiello 
and Laura 2017). The challenge now is that computing B- 
hyperpath with the smallest number of edges is an NP- 
complete problem, even when the tail and head of each 
hyperedge contain at most two nodes and we are interested 
only in acyclic hyperpaths (Ritz et al. 2014). An initial ap-
proach proposed a mixed-integer linear program to compute 
optimal hyperpaths (Ritz et al. 2014), applying it with success 
to the Wnt signaling pathway in the NCI Pathway 
Interaction Database. In practice, a drawback of this method 
was that a very large number of nodes without any incoming 
hyperedge had to be included among the sources for any 
meaningful hyperpath to exist. A later technique relaxed the 
definition of B-hyperpath (Franzese et al. 2019) to address 
this problem. As another alternative, an efficient heuristic ap-
proach can handle cyclic hyperpaths and compute optimal 
ones in practice (Krieger and Kececioglu 2022b). An exact 
cutting-plane algorithm can also compute the shortest hyper-
paths with cycles while being efficient in practice on both the 
NCI Pathway Interaction Database and Reactome (Krieger 
and Kececioglu 2023). Finally, similar problems have been 
studied in the context of metabolic networks. Here, the no-
tion of the shortest path is generalized to a factory, which 
also takes reaction stoichiometry into account. A mixed- 
integer linear program can find factories with the fewest reac-
tions and accommodate negative regulation (Krieger and 
Kececioglu 2022a).

Statistical learning on hypergraphs. Hypergraphs can be 
approximated by pairwise graphs (e.g. star expansion, clique 
expansion; Agarwal et al. 2006), but such approximations do 
not retain all properties of the original hypergraphs (e.g. the 
cut properties; Ihler et al. 1993). Therefore, methods directly 
developed for learning on hypergraph data can offer practical 
advantages. A number of such approaches have emerged 
(Cong et al. 1991, Wachman and Khardon 2007, Leordeanu 
and Sminchisescu 2012, Chitra and Raphael 2019, Lugo- 
Martinez et al. 2021, Maleki et al. 2022, Antelmi et al. 
2023); however, accurate learning on hypergraphs is often 
hindered by NP-hardness issues (G€artner et al. 2003, Hein 
et al. 2013, Purkait et al. 2017) and, thus, methods developed 

to directly deal with hypergraph data often trade accuracy 
for scalability.

A common theme in statistical learning on hypergraphs is 
finding a typically high-dimensional representation, or an 
embedding, of the data, and subsequently applying tradi-
tional machine learning to learn some concept; see Section 5 
for more details. These methods can work at the level of en-
tire graphs for graph classification, or at the level of nodes 
(edges), for node (edge) classification and link prediction. A 
well-known graph classification problem is the prediction of 
toxicity of chemical molecules (Vishwanathan et al. 2010), 
where the nodes are atoms, and the edges are bonds, both of 
different types, or prediction of protein function (Borgwardt 
et al. 2005). Examples of popular node/edge classification 
problems are function prediction for proteins/protein com-
plexes in PPI networks or for amino acid residues in protein 
structure networks (Vacic et al. 2010, Lugo-Martinez et al. 
2016). An example of a link prediction problem is the task of 
denoising and completion of the PPI network itself, as also 
discussed in Section 2.

Embeddings are often formalized via kernel-based 
approaches or representation learning (Section 5), thus allow-
ing the practitioners to use both finite- and infinite- 
dimensional representations. Well-performing kernel 
approaches (kernels are symmetric, positive semidefinite simi-
larity functions defined on pairs of objects, that allow effi-
cient learning; Shawe-Taylor and Cristianini 2004) include 
random walks (Wachman and Khardon 2007) and hypergra-
phlet counting (Lugo-Martinez et al. 2021). Hypergraphlets 
are typically defined as small, connected, (rooted) hyper-
graphs, often with a finite number of node and edge types 
(Lugo-Martinez et al. 2021). They are a nontrivial extension 
of (pairwise) graphlets discussed above (Pr�zulj et al. 2004, 
Pr�zulj 2007, Milenkovi�c and Pr�zulj 2008, Shervashidze et al. 
2009, Vacic et al. 2010, Lugo-Martinez and Radivojac 
2014), with both illustrated in Fig. 4D and 4E. As with 
graphlets, the appeal for counting hypergraphlets derives 
from the graph reconstruction conjecture (Bondy and 
Hemminger 1977). Though proved only for certain types of 
graphs (e.g. trees), the graph reconstruction conjecture postu-
lates that a large graph of size n can be reconstructed up to 
isomorphism from the counts of all subgraphs up to the size 
of n � 1. A stronger version of the conjecture allows for such 
reconstruction for subgraphs up to the size of some k<n − 1. 
Under these conditions, hypergraphlet counting approaches 
can lead to embeddings that allow universal approximation 
on hypergraph data. Another approach, relying on neural- 
network graph embeddings, allows for scaling hypergraph- 
based approaches to very large graphs (Maleki et al. 2022).

Additional approaches for hypergraphs exist, which are 
based on deep learning (Gui et al. 2016, Tu et al. 2018). 
Among these, a prominent example utilizes a GNN based on 
self-attention to effectively learn embeddings of the nodes 
and predict hyperedges for non-k-uniform heterogeneous 
hypergraphs, enhancing the generalizability (Zhang et al. 
2020b). This approach and its extensions have been applied 
to studying chromatin biology (Zhang and Ma 2020, Zhang 
et al. 2022a) and predicting genetic interactions for a group 
of genes, specifically trigenic interactions, thereby signifi-
cantly expanding the quantitative characterization of higher- 
order interactions (Zhang et al. 2020a).

Limitations. Three major issues confront the wide adop-
tion of hypergraph-based representations in network biology. 
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Databases such as Reactome (Gillespie et al. 2022) contain 
well-curated reaction networks that are amenable to repre-
sentations as generalizations of directed hypergraphs. The 
first issue is that these resources remain incomplete and rely 
on manual curation. One promising direction of research is 
to analyze pairwise graphs to automatically infer reactions. 
An elegant example is an approach that uses properties of 
chordal graphs to convert a graph representation of a signal-
ing pathway as a nested tree of protein complexes (Zotenko 
et al. 2006). A graph is chordal if every pair of nodes in every 

cycle of length four or more is connected by an edge. Since 
PPI networks are not necessarily chordal, the authors aug-
ment them with additional edges, e.g. those that connect 
weak siblings, i.e. pairs of nodes that have identical neighbor 
sets but are themselves not connected by an edge. If the 
resulting graph is chordal, it admits a representation as a tree 
of cliques, which can be converted into a tree of complexes in 
the original graph by deleting the artificially added edges. 
This method was applied to the TNF-α/NF-κB and phero-
mone signaling pathways (Zotenko et al. 2006). To further 
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Figure 4. Graph representations of nine reactions from Reactome’s TGFβ signaling pathway. (A) In a directed hypergraph, each hyperedge captures a 
reaction (“p” denotes phosphorylation). (B) In an undirected hypergraph, each hyperedge captures a protein complex. (C) In a (mixed) pairwise graph, 
each edge captures a pairwise interaction. “Mixed” refers to having both directed and undirected edges in the graph. Undirected edges denote physical 
interactions; directed edges denote either phosphorylation (the two right-most directed edges) or dephosphorylation (the left-most directed edge). (D) A 
node in a pairwise graph can be represented as a vector of graphlet counts. The number of 2-, 3-, and 4-node graphlet instances that include TGFB1 in the 
graph on the left are shown. (E) A node in an undirected hypergraph can be represented as a vector of hypergraphlet counts. The number of 2- and 3- 
node hypergraphlet instances that include TGFB1 in the hypergraph on the left are shown. In panels (D and E), only the (hyper)graphlet-level counts are 
shown for simplicity, i.e. (hyper)graphlet orbits are not shown nor considered when doing the counting. However, in practice, the more detailed orbit- 
level counts are computed rather than the (hyper)graphlet-level counts.
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the use of hypergraphs in network biology, it will be impor-
tant to generalize this method to apply to larger classes of 
graphs and to unify these methods of automated reconstruc-
tion with the results of manual curation. It may also be valu-
able to formulate hybrid network representations that 
combine the features of pairwise graphs and hypergraphs. A 
caveat here is that the need to develop a novel set of algo-
rithms for every new representation might prevent its wide 
adoption in the community.

The second issue is that the theory for (directed) hyper-
graphs is much less well-developed than for pairwise graphs. 
Problems that have well-established and simple polynomial- 
time solutions on pairwise graphs, e.g. shortest paths, turn 
out to be computationally intractable on directed hyper-
graphs (Ritz et al. 2014), as discussed above. Incorporating 
regulation into the definitions of shortest paths continues to 
be challenging (Krieger and Kececioglu 2022a). Moreover, 
graph-theoretic concepts such as clusters, flows, random 
walks, or convolutions that have been employed fruitfully in 
network biology are either challenging to generalize to hyper-
graphs or have found limited applications in biology.

The third issue is that it is not clear under what conditions 
or for which applications a higher-order representation is bet-
ter than a pairwise graph representation. Arguments often 
appeal to visual and qualitative reasoning (Fig. 4). We en-
courage the community to come forward with well- 
established datasets, evaluation measures, and benchmark 
frameworks that can pose these questions formally and de-
velop generalizable standards.

5. Machine learning on networks
Overview. Machine learning has emerged as a powerful para-
digm for creating predictive models specified as parameter-
ized functions with tunable parameters that operate on 
structured data, such as graphs, spatial geometries, relational 
structures, and manifolds. Applying machine learning meth-
ods to network data has demonstrated potential in a myriad 
of biological network analysis tasks (Yue et al. 2020, Hetzel 
et al. 2021, Li et al. 2022b, Theodoris et al. 2023). Recent 
methods are designed to produce graph representations as 
compact numerical vectors (or embeddings) corresponding to 
various graph elements, such as nodes, edges, subgraphs, and 
entire graphs, and capture essential information about the to-
pology of these elements. These learned representations can 
be fed into models trained toward a vast array of down-
stream analytic tasks.

Predictive models on graphs include models for predicting 
node labels (node classification), edge-level relationships (link 
prediction), subgraph-level labels (subgraph classification), 
and graph-level labels (graph classification) (Fig. 5). These 
models can be created through unsupervised, self-supervised, 
and supervised learning on all types of networks, including 
homogeneous, heterogeneous, temporal, and spatial net-
works, and with additional constraints and domain knowl-
edge imposed on the models. By leveraging deep graph 
learning models pretrained on large-scale general graph data-
sets, it is possible to adapt (or fine-tune) pretrained represen-
tations for diverse use cases in predictive and generative 
modeling (Gainza et al. 2020, 2023). As machine learning on 
graphs continues to be developed, appropriate model bench-
marking is necessary to ensure that task-specific evaluation 
measures are well-defined and predictions are fair and robust. 

The rest of this section discusses these topics, which are also 
summarized in Fig. 5.

Unsupervised, self-supervised, and supervised graph learn-
ing. Unsupervised learning of graph representations involves 
optimizing parameterized strategies, such as GNNs, graph 
transformers, or multi-layer neural message-passing models, 
to aggregate information from a node’s (e.g. a gene in a gene 
co-expression network or a patient in a patient similarity net-
work) neighbors in the network. The goal is to optimize the 
representations so that the proximity between entities in the 
embedding space mirrors their proximity in the network 
(Cao et al. 2020, Atz et al. 2021). Prevalent strategies for 
sampling neighbors in the network vicinity of nodes that get 
embedded in the latent space include biased and unbiased 
random walks as well as adaptive neighbor sampling 
(Hamilton et al. 2017a, Veli�ckovi�c et al. 2019). Objective 
functions of these methods aim to maximize embedding simi-
larity in the latent space for neighboring nodes in the network 
(Perozzi et al. 2014, Tang et al. 2015, Hamilton et al. 2017b, 
Hamilton 2020). For instance, nodes connected by edges 
should be embedded closer together in the latent space (i.e. 
have more similar embeddings) than nodes that are not con-
nected (Grover and Leskovec 2016, Liu et al. 2022, Xie et al. 
2022b, Wu et al. 2023).

Self-supervised graph representation learning, the predomi-
nant approach for machine learning on graphs, leverages not 
only the network structure but also additional context or 
auxiliary tasks to generate informative embeddings. Unlike 
unsupervised methods that solely rely on the network struc-
ture for optimization, self-supervised techniques utilize auxil-
iary (pretext) tasks, such as predicting node attributes or 
reconstructing graph substructures, to enhance the learning 
process and create more robust embeddings (Zitnik and 
Leskovec 2017, Zitnik et al. 2018, Hassani and Khasahmadi 
2020, Li et al. 2022b). An example of a self-supervised node- 
level auxiliary task is predicting each node’s degree. Link pre-
diction is a self-supervised edge-level task that predicts 
whether an edge exists between a pair of nodes (Kipf and 
Welling 2016, Li et al. 2022b) based on a self-supervised ob-
jective (Liu et al. 2021b), which can be formulated using con-
trastive learning (You et al. 2020), node or edge masking 
(Agarwal et al. 2023), and generative denoising (Yi et al. 
2024). Examples of self-supervised subgraph and graph tasks 
include predicting subgraph and graph properties, such as 
distributional statistics of shortest path lengths, network di-
ameter, and the presence or absence of specific higher-order 
structures and graphlets (Alsentzer et al. 2020, You et al. 
2020, Luo et al. 2022b).

Graph representation learning, whether unsupervised or 
self-supervised, can be applied to any type of network, in-
cluding but not limited to homogeneous, heterogeneous, tem-
poral, spatial, and physical networks. For example, in 
heterogeneous networks, GNN and graph transformer mod-
els leverage node- and edge-based attention weights to aggre-
gate neighborhood information depending on node and edge 
types (Wang et al. 2019, Zhang et al. 2019a, Xie et al. 2020, 
Fu et al. 2022, Kesimoglu and Bozdag 2023b). Other 
approaches treat each edge type as a homogeneous graph, ap-
ply a graph representation learning model to it, and then inte-
grate edge-type specific node representations into final 
representations (Wang et al. 2021b, Fu et al. 2022, 
Kesimoglu and Bozdag 2023a, 2023b). In a heterogeneous 
network, subgraphs can be sampled via metapaths (Sun et al. 
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2011), which are defined by sequences of relationships (or 
edge types) connecting different types of nodes to model se-
mantic nuances underlying the network in a self-supervised 
manner, such as through contrastive learning (Dong et al. 
2017, Zhao et al. 2021). These advancements in graph repre-
sentation learning have impacted areas like cancer biology, 
drug discovery, and disease diagnosis (Esteva et al. 2019, 
Stokes et al. 2020, Gysi et al. 2021, Huang et al. 
2022, 2023a).

Supervised graph representation learning uses networks 
with additional expert-curated or experimentally derived la-
beled data to directly optimize models for specific prediction 
tasks (Fig. 5A). In this paradigm, nodes, edges, subgraphs, or 
entire graphs are associated with labels, and the learning pro-
cess minimizes the discrepancy between the model’s predic-
tions and these labels (Schlichtkrull et al. 2018, Veli�ckovi�c 
et al. 2018). Common applications include node classifica-
tion, where individual nodes are assigned to predefined cate-
gories, and graph classification, wherein entire graphs are 
categorized based on their topological features (Gilmer et al. 
2017, Eyuboglu et al. 2023). Unlike unsupervised and self- 
supervised models, supervised graph learning directly uses la-
bel information, often leading to more task-specific and accu-
rate representations, albeit at the cost of requiring 
labeled data.

Incorporating knowledge into machine learning models 
through knowledge graphs, spatial constraints, equivarian-
ces, and symmetries. In numerous biological and medical 
applications, standard graph representation learning often 
falls short of requirements. In these cases, the model’s predic-
tive accuracy can be enhanced by imposing constraints drawn 
from pre-existing knowledge. Typical strategies encompass 
incorporating multimodal data into BKGs, augmenting 
GNNs with bespoke architectures, and applying domain- 
specific invariances.

BKGs help model heterogeneous relationships between bio-
medical entities, as already discussed in Section 3. The result-
ing latent space, which reflects the topology of the underlying 
knowledge graph, can be operated on to make inferences 
about existing and novel relationships. Jointly modeling di-
verse types of relationships in a BKG, such as integrative 
modeling of transcription regulation and metabolism 
(Chandrasekaran and Price 2010, Niu et al. 2021), can pre-
sent unique challenges due to the BKG’s incompleteness and 
potential high-order relationships involving heterogeneous 
entities. Incorporating pathway knowledge, either implicitly 
as constraints that regularize network embeddings (Niu et al. 
2021) or directly as a prior placed on the BKG structure and 
parameters in a Bayesian fashion (Boluki et al. 2017), has 
been shown to improve predictive performance. Supervised 
machine learning methods often require many samples to 
identify biologically meaningful patterns, which can limit 
their applicability in areas such as rare diseases that are inher-
ently limited in clinical cases, leading to few samples to ana-
lyze (Banerjee et al. 2023). Advances in self-supervised graph 
learning applied to BKGs have shown promise for rare dis-
ease research (Alsentzer et al. 2022) and will likely be infor-
mative for applications beyond rare diseases for which few 
samples exist with high-dimensional data.

Temporal and spatial data can be represented as networks, 
but specialized neural architectures are necessary to learn op-
timally on temporal/dynamic networks. Temporal graph rep-
resentation learning methods typically involve two main 

components: a GNN architecture to generate embeddings for 
each time point and a recurrent neural network, such as a 
long short-term memory network or a transformer network, 
to perform sequence learning by leveraging temporal rela-
tionships between elements in the sequence. Existing 
approaches use GNNs as feature extractors of nodes and the 
underlying topology, and recurrent neural networks for tem-
poral learning and to include additional metadata informa-
tion (Li et al. 2018a, Manessi et al. 2020, Pareja et al. 2020, 
Peng et al. 2020, Zhao et al. 2020a). Recently, static GNNs 
have been extended to handle dynamic graphs by treating 
time points as hierarchical states (You et al. 2022) or applied 
to irregular time series data by propagating neural messages 
between time intervals of each sensor as well as between sen-
sors (Zhang et al. 2022b). Protein molecular configurations 
can be depicted as protein structure networks where amino 
acid nodes are linked by the 3D physical proximity of their 
residues, and the amino acid spatial coordinate information 
is encoded as node attributes. Deep learning models, particu-
larly through the use of equivariant GNNs, can both attain 
high performance and preserve transformations of protein 
networks under translation, reflection, and rotation of net-
works in the 3D space (Jumper et al. 2021, Batzner et al. 
2022, Gong et al. 2023). For instance, to establish a model 
that remains invariant to molecular spatial orientation, con-
straints enforcing rotation invariance ought to be integrated 
(Jumper et al. 2021). Methodologies derived from equivar-
iant neural networks, such as AlphaFold (Jumper et al. 
2021), can complement sequence-based language models (Lin 
et al. 2023) by harnessing evolutionary data to infer protein 
structures from primary amino acid sequences, and poten-
tially generate realistic molecular formations.

Generative graph models. Generative graph models are a 
class of machine learning models specifically designed to gen-
erate new graphs, or parts of graphs, that resemble a given 
set of training graphs in some way. These models learn to 
capture the underlying patterns and structures in the training 
graphs and can then be used to produce new graphs with sim-
ilar properties as the training graphs. For example, in molecu-
lar biology, the inherently graph-like nature of molecular 
structures has made GNNs an ideal tool for generating drug- 
like molecules, guiding the generation process by learning the 
underlying patterns and properties from real molecular data 
(Bilodeau et al. 2022). One such method is a variational 
graph autoencoder that learns embeddings of molecular 
structures and uses them to generate novel molecular graphs 
(Kipf and Welling 2016, Jin et al. 2018, Li et al. 2018b). 
Other generative models, such as GraphVAE, GraphRNN, 
and MolGAN, have also been developed to generate realistic 
graphs (De Cao and Kipf 2018, Simonovsky and Komodakis 
2018, You et al. 2018). Inspired by generative adversarial 
networks for image generation, MolGAN pits a generator 
model (which produces graphs) against a discriminator 
model (which tries to distinguish between real and generated 
graphs). Additionally, graph transformer networks have re-
cently been proposed for molecular graph generation, dem-
onstrating the ability to generate molecules with desired 
properties by training on extensive chemical databases (Bagal 
et al. 2021).

When applied to protein design, GNNs have demonstrated 
impressive results in designing protein sequences that fold 
into specific structures (Ingraham et al. 2019). Graph-based 
methods like PotentialNet have shown promise for protein– 
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ligand binding prediction (Feinberg et al. 2018). Similarly, 
DeepSite uses 3D convolutional neural networks to predict 
protein–ligand binding sites (Jim�enez et al. 2017). Moreover, 
recent generative models, such as ProteinMPNN (Dauparas 
et al. 2022) utilize message-passing neural network architec-
ture to generate protein sequences and structures, further 
expanding the range of possibilities for protein design.

Diffusion models have recently emerged as powerful tools 
in protein and drug design (Corso et al. 2023, Watson et al. 
2023, Abramson et al. 2024, Yim et al. 2024), leveraging 
their capability to model complex distributions for generating 

novel molecular and protein structures. In protein design, dif-
fusion models operate by gradually denoising a random con-
figuration towards a target protein structure, learning the 
distribution of protein conformations. A notable example is 
RFDiffusion (Watson et al. 2023), a diffusion model that gen-
erates protein structures by conditioning on both sequence and 
structural information, achieving enhanced accuracy in struc-
ture prediction. In drug design, these models are adapted to 
generate molecular graphs by iteratively refining a random mo-
lecular graph into a drug-like molecule with desired properties 
through a learned diffusion process (Pinheiro et al. 2024).

A

B

C

Figure 5. Overview of the components of machine learning on networks. (A) The core of this approach is a machine learning model, typically a neural 
network, that takes one or more biological networks as input and learns representations (i.e. embeddings) of various graph elements in an unsupervised, 
self-supervised, or supervised manner. There are four types of prediction tasks (denoted by the red dashed lines): node-, edge-, subgraph-, and graph- 
level predictions. Colors of nodes for the node-, subgraph-, and graph-level tasks signify the label; white nodes indicate missing labels to be predicted by 
the model. Examples include functional prediction (node-level), disease–gene prediction or context-specific edge prediction (edge-level), molecular 
functional group prediction (subgraph-level), and novel molecular structure generation (graph-level). Critical to continued development, wide adoption, 
and practical utility of network-based machine learning is a parallel improvement in frameworks for (B) rigorous benchmarking via established data splits 
and baselines, and (C) explainability of model predictions (e.g. identifying a subgraph s, denoted by red lines, that best explains the prediction y for the 
query node, denoted in green) and uncertainty quantification (e.g. using the prediction set for a classification task or prediction interval for a regression 
task; Huang et al. 2023b).
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Transfer learning. The quality of representations generated 
by graph representation learning methods is contingent upon 
the availability of labels. Nevertheless, labels are often in 
short supply due to the substantial resources required for 
their curation and validation. A potent solution to addressing 
this challenge is transfer learning. This approach involves ini-
tially training a graph representation learning model on a 
large reference network via self-supervised pretraining (Hu 
et al. 2020a, You et al. 2020, Li et al. 2022b, Xie et al. 
2022b), followed by adapting the resulting model or its out-
puts to a different task of interest typically through super-
vised learning on a small set of labeled examples (fine- 
tuning). Pretraining a model on a large network followed by 
fine-tuning of the model using a small labeled dataset allows 
the model to harness extant information about a network en-
tity (i.e. from the large network utilized for pretraining) in 
service of diverse tasks with limited task-specific labels.

Transfer learning has shown considerable potential for de-
veloping predictive models on condition-specific networks 
that vary with biological conditions. Networks are typically 
constructed from context-unaware data (e.g. the human ref-
erence PPI network; Luck et al. 2020) or data generated un-
der specific conditions (e.g. a gene co-expression network for 
a particular disease). Biomedical entities and their interac-
tions can vary across biological conditions, such as tissues, 
cell types, and disease states. Nevertheless, generalizing 
knowledge from context-unaware networks to context- 
specific problems presents considerable challenges. For in-
stance, modeling tissue- or cell type-specific interactions from 
the human reference PPI network requires the construction of 
tissue- and cell type-specific networks and the development 
of multi-scale network models (Greene et al. 2015, Zitnik 
and Leskovec 2017, Ietswaart et al. 2021, Li and Zitnik 
2021). One approach to this challenge involves constructing 
context-specific networks (as discussed in Sections 2 and 3) 
and applying independent shallow network embedding layers 
to learn node representations based on network topology and 
tissue hierarchical structure (Greene et al. 2015, Zitnik and 
Leskovec 2017). An alternative strategy is to learn shallow 
network embeddings on a context-unaware network, such 
that the embeddings of nodes operating in the same context 
are more similar to each other than nodes operating in 
different contexts (Ietswaart et al. 2021). Recent methods in-
corporate context in a data-driven manner, constructing cell 
type-specific PPI networks using single-cell transcriptomic 
data (Li and Zitnik 2021, Li et al. 2024). Unified by a net-
work of cell type and tissue hierarchy, these networks can be 
harnessed to learn unique protein representations tailored to 
each cell type context (Li and Zitnik 2021, Li et al. 2024).

Understanding predictive models, benchmarking, and rig-
orous evaluation across diverse tasks. With the rapid evolu-
tion of graph learning methodologies, the need to construct 
rigorous benchmarks for effectively assessing the perfor-
mance of these novel techniques is becoming increasingly ur-
gent (Fig. 5B) (Shchur et al. 2018, Hu et al. 2020b). Open- 
science evaluation platforms such as the Benchmarking GNN 
(Dwivedi et al. 2022a), Open Graph Benchmark (Hu et al. 
2020b, 2021), and others (Table 1) serve as significant assets 
for general graph benchmarking, while other resources are 
being curated explicitly for the domain of network biology 
(Liu and Krishnan 2024).

To provide a comprehensive evaluation, these resources 
ought to be expanded to include tasks defined at various 

levels of graphs, including node classification, link prediction, 
subgraph classification and clustering, and whole-graph clas-
sification and regression. In addition to benchmarking mod-
els for predictive tasks, evaluation frameworks are needed for 
generative graph models. They should also encompass diverse 
types of biological graphs, such as heterogeneous, spatial, 
and temporal ones. A critical element in this regard is bench-
marking the performance of network-based machine learning 
techniques across multiple dimensions of evaluation beyond 
accuracy, including robustness, generalizability, and compu-
tational efficiency.

Moreover, the explainability of graph-based learning can 
offer significant insights in the biomedical domain (Fig. 5C) 
(Ying et al. 2019, Yuan et al. 2021, Xie et al. 2022a, Agarwal 
et al. 2023). Consequently, it is equally important to examine 
learned algorithms by examining pretrained graph represen-
tations (Forster et al. 2022) and mapping attention mecha-
nisms in attention-based deep learning models (Elmarakeby 
et al. 2021). As we move towards the broader application of 
machine learning models in network biology, proper quanti-
fication of the uncertainty, error, and utility associated with 
these models is indispensable. Given the potential for consid-
erable uncertainty in these models, effective techniques for 
uncertainty quantification are required to fully comprehend 
the predictive capabilities and limitations of a given model 
(Abdar et al. 2021).

When the model’s objective is specific, such as treatment 
recommendation, disease diagnosis and prognosis, and 
steady-state or transient network behavior prediction, an 
objective-driven approach to uncertainty quantification can 
be beneficial (Yoon et al. 2013). This approach allows us to 
quantify uncertainty based on its impact on the expected per-
formance of prediction and intervention tasks. Ultimately, this 
can pave the way for optimal experimental design techniques 
(Dehghannasiri et al. 2015a, 2015b) that prioritize experiments 
to generate the most informative data points selected by active 
learning strategies, effectively reducing model uncertainty.

6. Network-based personalized medicine
Overview. The overarching goal of precision medicine is to 
develop diagnostic and treatment strategies tailored to indi-
vidual patients (Aronson and Rehm 2015, Kaiser 2015, 
Malod-Dognin et al. 2018), while also taking into account 
the desired level of precision for each treatment. Personalized 
characterization of an individual or a group can encompass 
various data types, including molecular, healthcare, environ-
mental, lifestyle, and behavioral information, commonly 
modeled and analyzed as networks (Pr�zulj and Malod- 
Dognin 2016). By assimilating data from different modalities, 
precision therapeutics can amplify their potential and bolster 
resilience against diverse data noise (Gligorijevic et al. 2016a, 
Huang et al. 2021, 2022). Fusing data from multiple sources 
has proven effective in advancing precision medicine (Wang 
et al. 2014, Gligorijevic et al. 2016b, Malod-Dognin et al. 
2019, Gaudelet et al. 2021).

Patient stratification. Precision medicine aims to provide 
individualized diagnostic and treatment strategies. 
Developing treatments tailored to specific patient groups 
based on distinct disease subtypes (Fig. 6A) is poised to trans-
form a prevailing one-size-fits-all approach used in health-
care. Network methods can integrate multimodal data to 
identify patient groups with coherent genetic, genomic, 
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physiological, and clinical profiles (Gligorijevic et al. 2016b, 
Ektefaie et al. 2023, Petti and Farina 2023), even when the 
underlying data are incomplete and noisy (Pai and Bader 
2018). The methods assume that patients with similar clinical 
signatures and similar -omics profiles have similar clinical 
outcomes. Similarities between patients can be efficiently rep-
resented through patient similarity networks; in these net-
works, nodes symbolize patients, and weighted edges denote 
the degree of similarity derived from clinical and biomolecu-
lar patient attributes. Each patient data attribute, such as age, 
sex, mutation status, or gene expression profile, can be used 
to create a network of pairwise patient similarities. Then, the 
set of all such networks can be viewed as a multiplex net-
work, with a layer for each of the attributes. Various similar-
ity measures can be employed to assess patient similarity 
across different datasets corresponding to different attributes. 
After the multiplex patient similarity network is constructed, 
patient subtypes can be identified by examining the commu-
nity (clustering) structure within the network. Communities 
are characterized as subsets of nodes that are densely con-
nected to each other and loosely connected to nodes in differ-
ent communities (Fortunato 2010). Communities in a patient 
similarity network are thus densely/strongly linked patient 
groups and can shed light on distinct disease subtypes.

Network methods offer distinct advantages over nonnet-
work approaches, which often grapple with the complexities 
of integrated datasets (Gligorijevi�c and Pr�zulj 2015). Patient 
stratification has increasingly benefited from network-based 
methodologies, which can elucidate intricate biological inter-
actions, especially within disease mutation landscapes, such 
as cancer (Gligorijevic et al. 2016b) or rare hereditary dis-
eases (Malod-Dognin et al. 2023). By studying different types 
of gene–gene interactions, encompassing aspects like mutual 
exclusivity, co-occurrence, and both physical and functional 
associations, and analyzing personalized gene regulatory 
networks (Rogers et al. 2022), one can better understand 
interindividual variation in disease driven by differences in 
interactions caused by each patient’s genetic background, 
environmental exposures, and the proportions of specific cell 
types involved in disease (Van Der Wijst et al. 2018). Such 
insights can elevate the accuracy of patient stratification, 
which is typically measured as the ability to classify patients 
as belonging to known disease subtypes (Pai et al. 2019) or 
the ability to identify disease biomarkers that generalize 
(maintain performance) when applied to new data that have 
not yet been seen by the model (Alsentzer et al. 2022, Kong 
et al. 2022). These insights can also guide the refinement of 
therapeutic strategies, ensuring they are optimally tailored to 
specific patient groups (Gligorijevic et al. 2016b, Dao et al. 
2017, Huang et al. 2023a).

Identification of pathways associated with disease subtypes 
and patient groups. Identifying group-specific mutations 
provides valuable insights into the underlying biochemical 
pathways associated with the disease (Fig. 6B). These path-
ways can be conceptualized as networks, laying the founda-
tion for an in-depth understanding of disease mechanisms. 
Incorporating individual mutation or expression data into 
pathway-based (i.e. network-based) methods aids in identify-
ing targetable mutations (Park et al. 2019). This approach is 
especially pertinent in determining functional pathways that 
play roles in expression responses to disease-propagating 
mutations, leveraging the concept of pathway centrality 
(Windels et al. 2022a, 2022b).

For instance, by integrating genomic, clinical, and thera-
peutic data through networks, physicians can categorize 
patients with treatment-resistant prostate cancer based on 
specific gene mutations like AR, PTEN, and BRCA2. 
Recognizing these mutations facilitates the adoption of per-
sonalized therapies, targeting the aberrant pathways distinc-
tive to each patient’s tumor profile. As a result, this tailored 
treatment strategy offers the potential for safer and more ef-
fective treatments (Mateo et al. 2020).

Furthermore, recent research has illuminated the impor-
tance of tissue-specific regulatory networks and the pathways 
they encompass, which frequently manifest genetic mutations 
in particular patient cohorts. This understanding emerged 
from the combined analysis of expression and chromatin ac-
cessibility data, unveiling a previously unidentified tissue- 
specific stem-cell-like subtype of treatment-resistant prostate 
cancer that may be a target for intervention (Tang et al. 
2022). Similarly, a comparative structural analysis of the 
chromatin structure network in chronic lymphocytic leuke-
mia and control tissue of origin revealed that genes driving 
this cancer type are characterized by specific local wiring pat-
terns not only in the chromatin structure network of chronic 
lymphocytic leukemia cells but also of healthy cells (Malod- 
Dognin et al. 2020). This allows for the successful prediction 
of new DNA elements related to this cancer type, and impor-
tantly, it shows that cancer-related DNA elements can be 
identified in other cancer types by investigating the chromatin 
structure network of the healthy cell of origin, a critical new 
insight paving the road to new therapeutic strategies (Malod- 
Dognin et al. 2020).

Identification of disease-dysregulated functional modules. 
Studying disease-dysregulated functional modules of genes can 
advance the understanding of disease beyond isolated muta-
tions or pathway dysregulations. Disease-associated behaviors 
can materialize in clusters of tightly interacting proteins form-
ing functional modules (Fig. 6B) (Menche et al. 2015, Agrawal 
et al. 2018) rather than exclusively via singular gene mutations 
or perturbed gene expression (Schadt 2009).

The quest to uncover disease-associated functional gene 
modules from molecular networks is a long-standing chal-
lenge with implications for precision medicine (Barab�asi et al. 
2011, Mitra et al. 2013, Choobdar et al. 2019, Gaudelet 
et al. 2020, Eyuboglu et al. 2023, Morselli Gysi and Barab�asi 
2023). Prevailing approaches for finding disease modules rely 
on the assumption that interacting genes tend to associate with 
similar phenotypes. For instance, gene co-expression network 
analysis has been employed to pinpoint modules of genes that 
exhibit analogous co-expression patterns in breast cancer. 
Notably, these clusters of genes correlate with distinct metasta-
sis progression patterns in patients (Chuang et al. 2007). Multi- 
omic module detection in cancer can consider mutation mutual 
exclusivity, transcriptional regulation, and gene co-expression 
alongside PPI connections (Silverbush et al. 2019).

Given the complexity of disease circuits in many complex 
diseases, concentrated efforts have been directed toward 
identifying disease-associated gene modules that correlate 
with patient phenotypes (Saelens et al. 2018, Choobdar et al. 
2019). Disease-associated gene modules, identified through 
computational approaches and various types of gene net-
works, have been used to refine disease diagnosis (Morselli 
Gysi et al. 2020). They can also forecast the response of indi-
vidual cell lines to specific anticancer agents and potentially 
suggest patient-tailored drug combinations (Kim et al. 2020, 
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Salazar et al. 2021). Supplementing these techniques, differ-
ential network analysis (Section 2) can reveal differential con-
nections or rewiring of a molecular network under varying 

conditions. This complements traditional differential gene ex-
pression analyses, giving a robust framework to investigate 
diverse conditions and, by extension, different patient groups 

Table 1. Prominent open-source benchmark datasets for machine learning on biological networks.

Data type Database Task type Prediction tasks

General Long Range Graph Benchmark 
(Dwivedi et al. 2022b)

Edge-level Molecular bond

Graph-level Peptide function, peptide structure

General Open Biomedical Network Node-level Protein function
Benchmark (Liu and 

Krishnan 2024) Edge-level Disease–gene association

General Open Graph Benchmark (Hu 
et al. 2020b)

Node-level Protein function

Edge-level Protein–protein association, drug–drug interaction, het-
erogeneous interaction, vessels in mouse brain

Graph-level Molecular property, species-specific protein association

General SubGNN Benchmarks (Alsentzer 
et al. 2020)

Subgraph-level Proteins associated with biological process, rare neurolog-
ical disorders phenotype-based diagnosis, and rare met-
abolic disorders phenotype-based diagnosis

General Temporal Graph Benchmark 
(Huang et al. 2024)

Node-level Dynamic node affinity prediction

Edge-level Dynamic link prediction

Knowledge graph PrimeKG (Chandak et al. 2023) Node-level Identity of protein/gene, disease, drug, biological process, 
pathway, phenotype, molecular function, cellular com-
ponent, exposure, and anatomical region

Edge-level Protein–protein interaction, disease–drug indication, dis-
ease–drug contraindication, disease-drug off-label use, 
disease–phenotype association, disease–disease associa-
tion, disease–protein association, disease–exposure as-
sociation, phenotype–protein association, pathway– 
gene association, etc.

Knowledge graph Phenotype Knowledge Translator 
(Callahan et al. 2024)

Node-level Identity of tissue, cell, DNA, RNA, gene, miRNA, vari-
ant, protein, disease, biological process, pathway, phe-
notype, molecular function, cellular component, 
and chemical

Edge-level Tissue-/cell-specific gene expression, gene-variant associa-
tion, variant-disease association, chemical-disease asso-
ciation, chemical-pathway association, etc.

Molecular design Protein sEquence undERstanding 
(Xu et al. 2022)

Edge-level Protein–protein interaction, contact prediction

Graph-level Molecular property (e.g. fold classification, secondary 
structure prediction)

Molecular design Tasks Assessing Protein 
Embeddings (Rao et al. 2019)

Edge-level Protein–protein interaction, contact prediction

Graph-level Molecular property (e.g. fold classification, secondary 
structure prediction)

Molecular design Graph Explainability Library 
(Agarwal et al. 2023)

Graph-level Molecular mutagenic property, molecular functional 
group (e.g. benzine rings, fluoride carbonyl)

Neurology NeuroGraph (Said et al. 2023) Graph-level Donor demographics (age and gender), task states (emo-
tion processing, gambling, language, motor, relational 
processing, social cognition, and working memory), 
cognitive traits (working memory, fluid intelligence)

Therapeutic discovery AVIDa-hIL6 (Tsuruta et al. 2024) Edge-level Antigen–antibody interaction

Therapeutic discovery Therapeutic Data Commons 
(Huang et al. 2021)

Edge-level Drug–target interaction, drug–drug interaction, protein– 
protein interaction, disease–gene association, drug–re-
sponse prediction, drug–synergy prediction, peptide- 
MHC binding, antibody–antigen affinity, miRNA–tar-
get prediction, catalyst prediction, TCR–epitope bind-
ing, and clinical trial outcomes

Graph-level Molecular property (e.g. synthesizability, drug-likeness)

Databases are categorized by data type. The table is organized alphabetically by data type and database names.
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(Gysi and Nowick 2020, Morselli Gysi et al. 2020, Tu 
et al. 2021).

Precision medicine’s applications in identifying candidate 
anticancer therapeutics have broadened its scope to probe 
molecular shifts linked with other diseases and aging. Recent 
research endeavors have used multi-omics strategies to pin-
point innovative therapeutic targets for ulcerative colitis 
(Voitalov et al. 2022) and rheumatoid arthritis (Li et al. 
2024). As another example, complementing the above discus-
sion of detecting disease-associated modules of genes from a 
molecular network, modules of diseases have been detected 
from a heterogeneous disease–disease similarity network 

(Halu et al. 2019). Other studies have delved into molecular 
biomarkers, their regulatory pathways, and age-related modi-
fications (Tseng et al. 2018). These studies aim to formulate 
therapies adeptly tailored to diverse age demographics. 
Complementing the focus on aging, there is a burgeoning in-
terest in discerning patient sex-specific disparities. These lines 
of inquiry draw motivation from epidemiological data, which 
delineate differential patterns in the incidence, progression, 
and prognosis of complex diseases across gender and age 
brackets (Cannistraci et al. 2021).

Drug repurposing and pharmacogenomics. Compared to 
traditional drug development, drug repurposing (Fig. 6C) 

A

B C
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Figure 6. Prominent topics in network-based precision medicine. (A) Groups of patients that correspond to their communities (clusters) in a patient 
similarity network may shed light on distinct disease subtypes and thus lead to tailored, group-specific therapeutic strategies. (B) Identification of 
pathways (sparse, tree-like subnetworks) or functional modules (dense, clique-like subnetworks) associated with disease (subtypes) is related to 
inference of a condition-specific network (Section 2) and pathway reconstruction (Section 3). (C) Drug repurposing evaluates the fit of existing drugs to 
new diseases based on network “relatedness” between protein targets of the existing drugs and proteins associated with the new diseases, e.g. 
existing drug D2 may be a good treatment for the new pathogen because D2 targets two proteins (d and e), both of which directly interact with two of 
the proteins associated with the pathogen (a and c); the four proteins (a, c, d, e) form a clique, which further adds to their “relatedness.” (D) An important 
application of medical imaging lies in brain disorders. In connectome genetics, network structure of the brain meets -omics data. (E) An individual’s 
position in their social/contact network, along with demographic, personality, physical/mental health, etc. information about the other individuals, can give 
insights into the given individual’s health.

26                                                                                                                                                                                                                                    Zitnik et al. 



offers significant advantages such as low cost, reduced risk, 
and faster drug development timelines (Cheng et al. 2018, 
Langhauser et al. 2018, Pushpakom et al. 2019, €Unsal et al. 
2023). While early examples of successfully repurposed drugs 
have been identified through serendipitous discoveries, the 
availability of massive amounts of -omics and knowledge data 
and advances in computational techniques have provided op-
portunities for systematic in silico inference of novel indica-
tions for existing drugs (Guney et al. 2016, Zambrana et al. 
2021, Huang et al. 2023a, Wen et al. 2023, Xenos et al. 
2023). Network science and machine learning models have 
demonstrated impressive capabilities, but the bar for clinical 
applications is high. For example, an ensemble network ap-
proach has been used to identify drug candidates for repurpos-
ing against COVID-19 viral replication (Gysi et al. 2021, 
Patten et al. 2022). As another example, a heterogeneous net-
work approach revealed diseases that are most similar to 
COVID-19, thus reflecting conditions that are risk factors in 
patients and suggesting the suitability of this approach for use 
in drug repurposing (Verstraete et al. 2020). Validation of the 
most promising computational predictions in the 
laboratory yielded an order of magnitude more potent 
candidates than nonguided experimental screening. In pharma-
cogenomics, graph convolutional neural networks trained on 
heterogeneous networks of drug–drug interactions identified 
adverse events due to polypharmacy and concomitant use of 
medications (Zitnik et al. 2018). Furthermore, deciphering 
drug–cell connectivity data, indispensable for patient-specific 
drug repositioning, gains momentum by embedding PPI net-
works using tensor completion algorithms (Bumin et al. 2022).

The role of medical imaging in precision medicine. In addi-
tion to -omics data, medical images have emerged as an im-
portant new data modality that can facilitate precision 
medicine, including disease detection, diagnosis, and thera-
peutic interventions (Comaniciu et al. 2016, Lambin et al. 
2017). Often, medical images encompass distinct topological 
patterns of target entities that can serve as diagnostic signa-
tures or biomarkers, such as the dendritic structure of the tra-
chea or clustering behaviors of immune cells. Combining 
these topological signatures with deep learning algorithms 
offers a substantial advantage in various medical image 
analysis endeavors, including segmentation, classification, 
registration, and tracking, and can help with the interpret-
ability of deep learning models. Building tools to compute to-
pological and deep learning representations of imaging data 
inaugurates new avenues for nuanced analysis, unveiling hid-
den patterns and intricate correlations within multifaceted 
datasets (Edelsbrunner et al. 2002). These developments have 
catalyzed the birth of topology-infused deep learning techni-
ques for myriad applications, spanning from segmenting reti-
nal vessels (Hu et al. 2019, Shit et al. 2021) to discerning 
retinal arteries/veins (Mishra et al. 2021) and forecasting pro-
tein semantic similarities (Wang et al. 2023b).

An important application of network-based precision 
medicine lies in brain disorders, where medical image 
analysis intertwines with network and -omics data (Fig. 6D). 
Specifically, procuring multimodal neuroimaging, neural net-
work configurations, genetic markers, and other biomolecu-
lar signatures could allow for gaining insights into the neural 
architectures of the human brain, the modulation of its func-
tionalities by network topographies, and the genetic inter-
plays that correspond to disease-specific cerebral patterns. 
An emergent discipline, dubbed connectome genetics, heralds 

the meticulous delineation of human neural connectivity, 
unraveling its ties to cognition, behavior, and the genetic 
underpinnings of individual neural circuit variances 
(Arnatkeviciute et al. 2021a). Graph mining techniques com-
bined with data science methods have been devised, geared 
towards personalizing diagnosis and therapy by leveraging 
the multifaceted data from connectome genetics (Jahanshad 
et al. 2013, Arnatkeviciute et al. 2021b, Sha et al. 2023). The 
recent advent of GNN-driven deep learning models further 
deepens our grasp on the intricate shifts within this data, ad-
vancing our understanding of neurological diseases and their 
heterogeneity across patient populations (Zhang and Huang 
2019, Zhang et al. 2021, Zhao et al. 2022).

The role of social and contact networks in healthcare. 
Biological networks hold significant promise for advancing per-
sonalized medicine. In tandem, social, support, and contact net-
works correlate with individual health outcomes (Fig. 6E), 
providing valuable insights into patient behaviors and senti-
ments (Smith and Christakis 2008). Such networks offer real- 
time perspectives on patient inclinations, such as therapy ad-
herence preferences. Moreover, they can model patient behav-
iors associated with medication consumption, enabling the 
formulation of individualized intervention strategies (Gui~naz�u 
et al. 2020). The confluence of health and social networks has 
been harnessed to forecast individual health outcomes, includ-
ing mental health parameters like anxiety and depression. 
These predictions emerge from a rich tapestry of data sources, 
including combinations of heterogeneous social network data 
and wearable health measures (Liu et al. 2021a), and dynamic 
social network interactions (Liu et al. 2020).

In global health emergencies, networks detailing interper-
sonal contacts have been pivotal in predicting disease transmis-
sion. The COVID-19 pandemic spurred the creation of 
composite models that integrate contact information with indi-
vidual patient attributes (Guzzi et al. 2022). Within 
such models, nodes signify individuals, while links—static or 
temporal/dynamic—depict interindividual interactions. Distinct 
individual features, such as health status (e.g. healthy or recov-
ered), are encapsulated as node-associated feature vectors. 
Grounded in theoretical foundations of susceptible-infectious- 
recovered models (Guzzi et al. 2022), these approaches are nu-
anced and can account for real-world contact patterns. They al-
low for simulation and evaluation of public health response 
strategies, from containment measures to vaccination cam-
paigns (Stegehuis et al. 2016, Bryant and Elofsson 2020, 
Alguliyev et al. 2021). For example, designing a vaccination 
strategy targeting individuals based on contact behaviors could 
preempt outbreaks. Since the design of a tailored vaccination 
strategy may save lives and control the epidemic spreading, we 
believe that more work should be done to improve these mod-
els by designing novel simulation algorithms which require less 
computational power. Actually, many simulation models re-
quire the inspection of all the nodes and edges for each simula-
tion run, making them difficult to run on very large graphs 
(Fortunato 2010, Guzzi et al. 2022).

Open questions for network-based precision medicine. 
Despite notable advancements in network methods for preci-
sion medicine, several challenges remain. These include 
model benchmarking and comparison, integration of multi-
modal data from individual patients, and strategies to achieve 
the intricate equilibrium between preserving patient confiden-
tiality and maximizing the utility of these approaches. 
Evaluating new methods is complex because establishing 
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ground-truth, i.e. gold-standard or “correct,” benchmarks 
against which various network strategies can be compared 
(Guo et al. 2022) remains challenging. Evaluating precision 
therapeutics in vivo presents even greater challenges, given 
the impossibility of retroactively altering treatment modali-
ties for the same individual at a specific temporal junction. 
Garnering multimodal data about a single patient presents its 
own difficulties, as diverse data types vary in quality and 
completeness (Wang et al. 2014, Zitnik et al. 2019a). In light 
of these complexities, there is a need for graph learning algo-
rithms tailored for data-intensive multimodal networks. 
Importantly, new network embedding methodologies may 
provide simplification of these complexities into new model-
ing paradigms that are easier to comprehend and compute on 
(Xenos et al. 2021, Doria-Belenguer et al. 2023, 2024). 
Furthermore, it is imperative to foster computational para-
digms adept at handling patient data in a manner that safe-
guards privacy while not compromising on scientific 
robustness and safety (Hunter et al. 2012).

Precision medicine stands poised to enable transformative 
shifts in disease diagnosis, therapeutic interventions, and over-
all patient care. Network methods and multimodal data inte-
gration are instrumental to these ambitions. Addressing 
intrinsic challenges related to small-sample datasets that lack 
statistical power and magnifying methods’ susceptibility to mis-
interpretation and unstable performance is paramount for fur-
thering its nascent triumphs. Surmounting these obstacles 
requires interdisciplinary research involving network biology 
scientists, clinicians, and healthcare policymakers to ensure 
that precision medicine evolves as a paradigm for disease diag-
nosis, prevention, and treatment that works equally well for all 
patients by taking into account individual differences in life-
style, socioeconomic factors, environment, and biological char-
acteristics (All of Us Research Program Investigators 2019).

7. Research discussion and future outlook
Even the well-established network biology research topics/ 
problems, such as network inference (Section 2), have many 
known limitations and thus open questions associated with 
them. The emerging research problems, such as network-of- 
networks analysis (Section 3) or determining how the explo-
sion of large language models (LLMs) can benefit network 
biology, will have even more challenges associated with 
them, as expected, given that these problems have started to 
receive attention only recently; such challenges are discussed 
below. The emerging problems also bring exciting new op-
portunities. In the following sections, we build upon the dis-
cussion about limitations and open questions from the 
previous sections, link together common themes from the ear-
lier sections, and complement the previous sections by intro-
ducing additional open problems and opportunities.

On methodological paradigms and 
empirical evaluation
The need to compare different categories of approaches 
designed for the same purpose. For several topics discussed 
thus far, a common theme has been that it remains unclear 
how specific categories of approaches for a given purpose 
compare to each other in terms of methodological (dis)advan-
tages, as well as in which network analysis tasks or biologi-
cal/biomedical applications they might be (in)appropriate to 
use. For example, with network alignment, methods from 

biological and other (e.g. social) network domains are rarely 
evaluated against each other (as discussed more below); with 
network-of-networks analysis, the existing approaches were 
proposed for different network analysis tasks or biological/bio-
medical applications and have not yet been compared to each 
other (Section 3); with hypergraph versus pairwise graph analy-
ses, it remains unclear to what extent different tasks actually 
benefit from hypergraph-based methods (Section 4).

Focusing more on network alignment, methods for this 
purpose introduced for biological networks have typically 
been thoroughly compared to each other (Section 3), includ-
ing fair comparison of different approach categories, such as 
global versus local network alignment (Meng et al. 2016, 
Guzzi and Milenkovi�c 2017), pairwise versus multiple net-
work alignment (Vijayan et al. 2020), or alignment of static 
versus dynamic networks (Vijayan et al. 2017). On the other 
hand, network alignment methods introduced in network bi-
ology have rarely been compared to those introduced in other 
domains such as social networks, and vice versa, despite hav-
ing similar if not the same goals—mapping related nodes or 
network regions across compared networks. This could be 
because biological networks have significantly fewer nodes 
and are likely noisier than other (e.g. social) networks 
(Eyuboglu et al. 2023). This could also be because networks 
in different domains contain different types of data, which 
makes the methods customized to their specific data types, 
rendering their comparison challenging or requiring method-
ological extensions and new developments. Or, it could be 
because developers of methods in different domains are from 
different scientific communities and may thus be unaware of 
each other’s scientific discoveries (Section 8). In either case, it 
is critical to understand the methodological (dis)advantages 
of approaches from different domains. Their comprehensive 
and fair comparison could be a step in this direction, guiding 
the development of more powerful and possibly more gener-
alizable network alignment approaches.

Network biology has traditionally relied on approaches 
that work directly on graph topology. In contrast, in recent 
years, the field has seen an increasing interest in network em-
bedding—be it via earlier spectral-based or diffusion/ 
propagation/random-walk-based methods or more recent 
deep learning methods—which first transform graph topology 
into compact numerical representation vectors, i.e. embed-
dings, and then work on these graph representations (Section 
5). A comparative study of nonembedding approaches that 
work directly on graph topology against network embedding 
methods was performed in a broad set of contexts: network 
alignment, graph clustering (i.e. community detection), protein 
function prediction, network denoising, and pharmacogenom-
ics (Nelson et al. 2019). The finding was that in terms of accu-
racy, depending on the context and evaluation measures used, 
sometimes direct, graph-based methods outperformed network 
embedding ones and other times, results were reversed; regard-
ing computational complexity/running time, embedding meth-
ods outperformed direct, graph-based methods most of the 
time (Nelson et al. 2019). These indicate the need for a deeper 
combination of these approaches.

Also, network biology has traditionally relied on combina-
torial or graph-theoretic techniques, i.e. on manually engi-
neered or user-predefined topological features of nodes or 
graphs (the field has also relied on additional method types, 
e.g. those from the physics community within the field of net-
work science, but these are not the focus of discussion here). 
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For example, a prominent research problem of the graph- 
theoretic type that has revolutionized the field of network bi-
ology is counting graphlets/subgraphs in a graph; various 
node-, edge-, or network-level features based on these counts 
are then applicable to many downstream computational tasks 
and biological/biomedical applications, as discussed in 
Section 4. More recently, network biology has benefited from 
the boom in deep learning (e.g. GNNs), which can automati-
cally generate relevant network topological features promi-
nently via graph representation learning (Section 5). It 
remains unclear which of graph-theoretic versus deep learn-
ing approaches (i.e. manually engineered versus automati-
cally generated network topological features) are better and 
in which contexts. In other words, both approach categories 
seem to have merits depending on the context. Again, the 
question is how to combine them for improved performance.

As an example, graphlet-based and GNN-based analyses of 
protein structure networks were shown to outperform tradi-
tional nonnetwork-based analyses of protein sequences and 3D 
structures in the tasks of protein structure comparison/classifi-
cation and protein function prediction, respectively (Faisal 
et al. 2017, Newaz et al. 2020, Gligorijevi�c et al. 2021). Only 
recently, the graphlet and GNN approaches were evaluated 
against each other when comparing protein structures, by the 
authors who proposed using GNNs for studying 3D structures 
(Gligorijevi�c et al. 2021). They found that graphlet-based anal-
yses greatly outperformed GNN-based analyses in accuracy, al-
though they found the latter to scale better to denser protein 
structure networks (Berenberg et al. 2021).

The relatively inferior performance of GNNs compared to 
graphlet-based approaches in that particular network-based 
protein structure comparison (Berenberg et al. 2021) can po-
tentially be elucidated as follows. Given that network com-
parison represents an NP-hard undertaking, a viable 
computational strategy that balances feasibility and efficacy 
involves the comparison of network substructures. Graphlets, 
by design, embody such an approach. Early GNNs were ini-
tially not designed for modeling subgraphs. So, it might not 
be surprising that popular GNN architectures cannot count 
graphlets and subgraphs and thus might not be the right 
methodological choice for specific scientific problems (Chen 
et al. 2020). Nevertheless, recent advancements in the field 
have yielded a spectrum of novel GNN methodologies tai-
lored to subgraph modeling and enumeration. Theoretical 
underpinnings have emerged that show the expressive capac-
ity of GNNs, delineating which classes of GNN architectures 
are proficient or deficient in quantifying specific subgraph 
structures (Chen et al. 2020, Tahmasebi et al. 2020, 2023, 
Bouritsas et al. 2022, Yu et al. 2023). For example, while 
message-passing GNNs have been popular architectures for 
learning on graphs, recent research has revealed important 
shortcomings in their expressive power. In response, higher- 
order GNNs have been developed that substantially increase 
the expressive power, although at a high computational cost 
(Tahmasebi et al. 2020). These techniques demonstrate the 
potential to enumerate subgraphs, thus circumventing the 
established limitations of low-order (message-passing) GNNs 
while exploiting sparsity to reduce the computational com-
plexity relative to higher-order GNNs (Tahmasebi et al. 
2020). Further, recent recursive pooling methods centered on 
local neighborhoods and dynamically rewired message- 
passing techniques (Gutteridge et al. 2023) improve perfor-
mance for tasks relying on long-range interactions. Finally, 

innovative methods based on graph transformers (Ying et al. 
2021, Zhang et al. 2022c) afford a spectrum of trade-offs be-
tween expressive capability and efficiency of machine learn-
ing models.

Related to the above discussion, recent developments have 
highlighted the emergence of state-of-the-art geometric deep 
learning models trained on protein 3D structures (Baek et al. 
2021, Abramson et al. 2024). Many models focus on pro-
teins’ structural surfaces and some explicitly incorporate the 
underlying protein sequence or structural fold information 
(Dauparas et al. 2022, Zhang et al. 2023b). Notably, these 
models have enhanced performance in various tasks associ-
ated with predicting interactions between proteins and other 
biomolecules (Gainza et al. 2020, 2023, Baek et al. 2024). 
These tasks encompass critical areas such as protein pocket– 
ligand prediction, prediction of PPI residues, ultrafast scan-
ning of protein surfaces to forecast protein complexes, and 
the design of novel protein binders (Gainza et al. 2020, 
2023). Geometric deep learning methods that model protein 
3D structures as networks are promising. Such approaches 
were shown to outperform existing scientific methods tradi-
tionally used in a variety of tasks related to structure-based 
modeling and prediction of protein properties; the existing 
methods included network approaches that are not based on 
geometric deep learning (St€ark et al. 2022, Wang et al. 
2022c, Zhang et al. 2023c). The tasks in question included 
drug binding, PPI prediction, and protein fold, function, or 
reaction prediction/classification (St€ark et al. 2022, Wang 
et al. 2022c, Zhang et al. 2023c).

A potential avenue to handling different approach catego-
ries/paradigms, such as those discussed above, each with its 
own merits depending on the context, is to propose algorith-
mic improvements toward reconciling them. Another is to 
carry out empirical evaluation of different approaches in a 
variety of different contexts: at various levels of graph struc-
ture (e.g. node, edge, subgraph, or entire network), for di-
verse types of graphs (e.g. heterogeneous, dynamic, spatial), 
in different computational tasks (e.g. node classification, 
graph classification, link prediction), and different biological/ 
biomedical applications (e.g. protein function prediction, 
cancer, aging, drug repurposing). The following sections dis-
cuss these two avenues in more detail.

Algorithmic improvements towards reconciling diverse 
methodological paradigms. An algorithmic solution to han-
dling different approach categories for the same purpose is to 
design hybrid methods that employ techniques from all asso-
ciated disciplines. For example, deep learning methods can be 
combined with a network propagation approach to improve 
the embedding of multiple networks (Nasser and Sharan 
2023). Alternatively, a theory that would unify different ap-
proach categories could be proposed. For instance, the field 
of neural algorithmic reasoning focuses on developing deep 
learning models that emulate combinatorial algorithms 
(Veli�ckovi�c and Blundell 2021). As a case in point, a trans-
former neural architecture, which was initially devised for 
natural language processing, has been repurposed to tackle 
the combinatorial traveling salesperson network problems 
(Bresson and Laurent 2021) and graph-structured datasets 
(Yun et al. 2019). A primary objective of this discipline is to 
investigate the capacity of (graph) neural networks to learn 
novel combinatorial algorithms, particularly for NP-hard 
challenges that necessitate heuristic approaches. Put differ-
ently, the aim is to ascertain if deep learning can extract 
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heuristics from data more effectively, potentially superseding 
human-crafted heuristic methods that could demand years of 
dedicated research to formulate for NP-hard problems 
(Bresson and Laurent 2021).

Another potential solution on the methodological level 
relies on the fact that current GNN approaches mainly adopt 
deep learning from other domains outside of network biol-
ogy. As such, it is necessary to understand the correct induc-
tive biases within a deep learning model that are 
representative of a biological mechanism under consider-
ation. For example, can and should the hierarchical struc-
tures of ontologies, such as the GO or Disease Ontology, be 
incorporated into the GNN structure used for predicting pro-
teins’ functions or disease associations, respectively? Existing 
work on visible neural networks shows that such an attempt 
to incorporate a cell’s hierarchical structure and function into 
the architecture of the deep learning model is effective and 
facilitates interpretability as the model’s components natu-
rally correspond to biological entities (Ma et al. 2018, 
Gaudelet et al. 2020). Even the hierarchical network-of- 
networks idea is not only useful as a potent new way to repre-
sent and analyze multiscale biological data as discussed in 
Section 3, but also as a novel graph representation learning 
methodology for popular network analysis tasks that are not 
necessarily of the multiscale nature. For example, there exist 
studies that take multiple networks as input, all at the same 
scale, and then perform the well-established tasks of graph 
embedding (Du and Tong 2019) or classification (Wang et al. 
2022g) via novel hierarchical approaches, e.g. a graph-of- 
graphs neural network (Wang et al. 2022g), or matrix- 
factorization based data fusion (Malod-Dognin et al. 2019).

Another relevant question is how generalizable versus spe-
cific an approach should be. One frequent issue is selecting a 
suitable similarity measure. For instance, this issue arises 
when deciding which property of a graph should indicate the 
proximity of its nodes in an embedding produced by a GNN, 
or when discerning relationships between biomolecules for 
inferring correlation or regulatory networks by linking nodes 
with edges. Selecting an optimal similarity measure for a spe-
cific task or application often requires extensive empirical as-
sessment, evaluating multiple measures against one another. 
It remains a challenge to discern whether a universal, princi-
pled similarity measure exists. The answer could potentially 
be specific to individual tasks or applications or broad cate-
gories of analogous tasks. The emphasis on generalizability 
also begs the question of its desirability; sometimes, the focus 
should be finely tuned to the specific task, application, or au-
dience (Ektefaie et al. 2024). Furthermore, in some contexts, 
dissimilarity (or distance) might be more pertinent than simi-
larity. For example, proteins can have opposing effects on 
each other despite working on the same functional goal 
(Weber et al. 2020, Badia-i Mompel et al. 2023, Szklarczyk 
et al. 2023). As another example, neighboring edges might 
mean different things, such as up- versus down-regulation of 
genes. An essential consideration is the selection of distances 
with theoretical underpinnings that facilitate efficient optimi-
zation (Cao et al. 2013), including distances that provably 
uphold the triangle inequality (Ding et al. 2006) and distan-
ces specified on smooth manifolds that yield symmetric posi-
tive semidefinite distance matrices (Wang et al. 2018). 
Moreover, in typically high-dimensional spaces, the compro-
mises entailed when our chosen distances forsake theoretical 
properties can be significant, potentially distorting 

interpretations and downstream analyses (Beyer et al. 1999, 
Radovanovi�c et al. 2010).

Uncertainty quantitation and confidence estimation. 
Uncertainty quantification presents a unique set of chal-
lenges. The inherent structure and complexity of network 
datasets introduce nuances not observed in other data modali-
ties. The primary challenge lies in distinguishing between alea-
toric (data-related) and epistemic (model-related) uncertainties 
while effectively mitigating potential biases that can distort pre-
dictive performance (Zhao et al. 2020b, H€ullermeier and 
Waegeman 2021). Aleatoric uncertainty, stemming from inher-
ent biological variation and limitations of experimental tech-
nology, encompasses variability arising from naturally random 
effects and natural variation intrinsic to the data (H€ullermeier 
and Waegeman 2021). For instance, in PPI networks, inherent 
biological variability can lead to uncertainties in node or edge 
properties. On the other hand, epistemic uncertainty is engen-
dered by a lack of knowledge or limited modeling assumptions. 
This type of uncertainty is particularly pronounced in graph- 
based tasks due to the myriad ways graphs can be represented, 
processed, and interpreted. For instance, different choices in 
GNN model architectures or graph pooling strategies can intro-
duce varying degrees of epistemic uncertainty (H€ullermeier and 
Waegeman 2021). Effectively quantifying and addressing these 
uncertainties is paramount for ensuring reliable and robust 
findings, especially when making critical decisions based on 
such models.

Additional considerations for proper empirical method 
evaluation: benchmark data, performance measures, code 
and data sharing, best practices. Establishing appropriate 
benchmark data (including ground-truth data for training and 
testing/evaluating a predictive model), evaluation measures, 
and benchmark frameworks is critical to allow for systematic, 
fair, and unbiased method comparison. Valuable efforts al-
ready exist (Table 1). Nonetheless, notably, such frameworks 
must allow for continuous evaluation as new methods and 
algorithms will continue to appear. Best practices and guide-
lines on assessment in network biology are needed.

Lessons learned from challenges in biomedicine such as 
Critical Assessment of protein Structure Prediction (CASP) 
(Moult et al. 1995, Kryshtafovych et al. 2021, 2023), 
Dialogue on Reverse Engineering Assessment and Methods 
(DREAM) (Stolovitzky et al. 2007, Saez-Rodriguez et al. 
2016, Meyer and Saez-Rodriguez 2021), and Critical 
Assessment of protein Function Annotation (CAFA) 
(Radivojac et al. 2013, Jiang et al. 2016, Zhou et al. 2019) 
can perhaps help guide the development of best evaluation 
practices specific to network biology. Such challenges are a 
paradigm for unbiased and robust evaluation of algorithms 
for analysis of biological and biomedical data, which crowd-
sources data analysis to large communities of expert volun-
teers (Costello and Stolovitzky 2013, Saez-Rodriguez et al. 
2016). Challenges are done in the form of collaborative scien-
tific competitions. Through these, rigorous validation and re-
producibility of methods are promoted, open innovation is 
encouraged, collaborative communities are fostered to solve 
diverse and critical biomedical problems and accelerate scien-
tific discovery, the creation and dissemination of well-curated 
data repositories are enabled, and the integration of predic-
tions from different methods submitted by challenge partici-
pants provides a robust solution that often outperforms the 
best individual solution (Saez-Rodriguez et al. 2016).
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CASP is the earliest formal method assessment initiative in 
computational biology (Moult et al. 1995). While network 
biology approaches can be used for CASP’s protein structure 
prediction and CAFA’s protein function prediction problems, 
DREAM was explicitly initiated in response to a network bi-
ology need—to reverse-engineer biological networks from 
high-throughput data (Stolovitzky et al. 2007). Since then, 
numerous DREAM Challenges have been conducted span-
ning a variety of additional computational (not necessarily 
network) biology topics, including TF binding, gene regula-
tion, signaling networks, dynamical network models, disease 
module identification, scRNA-seq and scATAC-seq data 
analysis, single-cell transcriptomics, and drug combinations 
(https://dreamchallenges.org/) (Meyer and Saez-Rodriguez 
2021). Note that in addition to these initiatives focused solely 
on computational biology tasks, there exist community 
benchmark frameworks for general graph-based machine 
learning that also handle some computational biology tasks, 
which could thus also serve as significant assets. An example 
is Open Graph Benchmark (Hu et al. 2020b, 2021) (Section 
5), which includes the task of predicting protein function 
from PPI network data with fully reproducible results and di-
rectly comparable approaches using the same datasets 
(https://ogb.stanford.edu/docs/leader\_nodeprop/\#ogbn-pro 
teins). Other examples are shown in Table 1.

Interestingly, some of the common themes that emerged 
from the original 2006 DREAM initiative (Stolovitzky et al. 
2007) still hold to this date. The current biological network 
data may not be mechanistically accurate, yet they can still 
help understand cellular functioning. Exploring condition- 
specific biological networks is important because network 
properties can differ in different conditions. While there exist 
some highly trusted biological data (e.g. the reference HURI 
PPI network for humans; Luck et al. 2020) that may serve as 
ground truth for understanding (dis)advantages of network 
algorithms, synthetic network data that are much easier to 
generate will continue to be necessary for evaluating algo-
rithm performance. However, experimentalists are unlikely 
to trust any scientific findings from synthetic data or compu-
tational approaches evaluated only on such data. Further, re-
garding ground-truth data for training and testing/evaluating 
a predictive model, it is critical to have available knowledge 
on both positive and negative instances in ground-truth data. 
Examples of the latter are PPIs or protein-functional associa-
tions that do not exist in cells. However, such negative in-
stance data are hard to obtain in biology.

To add to the discussion about ground-truth data, using 
the aging process as an example, ground-truth data about hu-
man aging have been obtained in one of two ways: via 
sequence-based homology from model species (de Magalh~aes 
et al. 2009) or via differential gene expression analyses in 
humans (Berchtold et al. 2008, Jia et al. 2018). In a recent 
study (Li et al. 2021), only 17 genes were shared between the 
185 sequence-based and 347 expression-based human aging- 
related genes. This poses several questions. How do we re-
solve such discrepancies with datasets on the same biological 
process resulting from different modalities/technologies, 
which likely exist in other applications as well? Given their 
high complementarity, perhaps integrating the different data 
types could yield more comprehensive insights into the bio-
logical process under consideration. However, if any of the 
other datasets are noisy, or if the different data types have 
different “signatures” (i.e. features) in a biological network, 

their integration could decrease the chances of detecting 
meaningful biological signals from the network compared to 
analyzing the different data types individually. Moreover, be-
cause different types of biological data collected via biotech-
nologies (e.g. genomic sequence data versus transcriptomic 
gene expression data versus interactomic PPI data) are likely 
to capture complementary functional slices of the given bio-
logical process, is it appropriate to use some of these datasets 
as the ground-truth data to validate predictions obtained via 
computational analyses of the other datasets? In our example 
of the aging process, is it appropriate to use sequence-based 
or expression-based aging-related knowledge to validate 
network-based aging-related gene predictions? Is this appropri-
ate, especially because sequence-based and expression-based 
“knowledge” are also computational predictions, i.e. the result 
of sequence alignment and differential gene expression analysis, 
respectively? Also, is this appropriate because sequence-based 
knowledge about human aging are sequence orthologs of 
aging-related genes in model species? So, would any aspects of 
the aging process that are unique to humans be missed by the 
knowledge originally collected in the model species?

Another challenge with empirical evaluation is accurately 
estimating the absolute and relative performance of machine 
learning models and quantifying the uncertainty of perfor-
mance estimates. Network data is inherently relational, thus 
inevitably violating the assumptions of independent and iden-
tically distributed data (Neville et al. 2009, 2012). Even fur-
ther, the problems with long-tailed degree distribution in 
biological networks and homology between nodes require 
careful selection of training and test data when evaluating 
performance accuracy (Park and Marcotte 2012, Hamp and 
Rost 2015, Lugo-Martinez et al. 2021).

Also, to allow for proper method evaluation, the authors 
of original methods must publicly release complete and easy- 
to-use code and data from their papers to allow for reproduc-
ing the initial studies and applying and evaluating a given 
method on new data (Heil et al. 2021). Journals and other 
publication venues should and typically do establish require-
ments for data and code sharing. Consequently, scientific 
communities have shown remarkable improvements regard-
ing releasing open-source software and data. Yet, ensuring 
compliance remains an issue. For example, while code or 
data might be released, they are sometimes incomplete or not 
easy to use. Or, there are instances when there might be a 
link (e.g. to GitHub) provided in the corresponding publica-
tion to meet the publication venue requirements, but the link 
might point to a page that says “under construction,” to an 
empty directory, or to a directory containing some files but 
without a transparent readme file on how to use the informa-
tion provided. Who should ensure compliance with publica-
tion venue requirements, i.e. that complete and easy-to-use 
code and data are provided to ensure easy reproducibility? 
The editors of a venue publishing a given paper? The 
reviewers already volunteering their virtually nonexistent 
“free” time to evaluate the paper’s scientific merits for publi-
cation should thus probably not be expected to invest even 
more effort to verify that the code and data can be run cor-
rectly. The authors? The future readers of the article who 
might be interested in using the method? If the latter two, 
what should be the repercussions if it is found that the code 
or data do not exist or are not possible or easy to use? On a 
related note, how long after publication should the authors 
be required to maintain the project code and data and 
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respond to related email inquiries? Hosting of the code and 
data is not an issue for authors due to availability of archival 
data repositories such as Zenodo. However, actively main-
taining the code and data is an issue, and this is directly re-
lated to whether and how long after the project completion 
the funding by the federal agencies and others might be avail-
able for this purpose.

Complete transparency in all decisions (from graph construc-
tion to analysis) is crucial. Workflow management systems, 
such as Nextflow (Di Tommaso et al. 2017) and Snakemake 
(K€oster and Rahmann 2012), can enable rapid prototyping and 
deployment of computational workflows by combining soft-
ware packages and various tools. Clear documentation, open- 
source sharing of code and algorithms, and making raw and 
processed data available can ensure that results are not just a 
one-off finding but can be consistently reproduced and built 
upon by the broader scientific community.

On missing data
Network completeness and interaction causality. Much of 
network biology relies on aging technologies with notable 
limitations. Focusing on physical PPIs, biotechnologies such 
as yeast two-hybrid systems (Fields and Song 1989), cross- 
linking mass-spectrometry (Piersimoni et al. 2022), and struc-
tural determination of protein complexes (Jacobsen 2007, 
Rhodes 2010, Saibil 2022) have collectively generated 
systems-level data that have led to critical methodological 
advances in network biology. Of course, these efforts to ob-
tain the physical interactome have been complemented by 
valuable data collection and network inference efforts related 
to systems-level correlation networks. However, as computa-
tional methods are now maturing, the data are starting to lag. 
High-resolution, high-throughput data-generating technolo-
gies, capable of directly identifying pathways and order of 
molecular events in various experimental and clinical con-
texts, are the next frontier for deeper understanding of molec-
ular systems.

There is a need to expand from physical and correlation 
networks toward causal relationships (Belyaeva et al. 2021) 
or simulatable kinetic models (Karr et al. 2012). For this, bio-
technologies for data collection need to be improved to allow 
for higher-quality data to build better causal networks and 
more complete networks. This will also require the develop-
ment of new (categories of) approaches that can handle the 
captured causality. Even if/when we have high-quality causal 
networks and efficient and accurate methods for their analy-
sis, will this suffice to understand biochemical mechanisms? 
When one knows biochemical mechanisms, one can infer 
causality. However, causality might not necessarily allow for 
fully understanding biochemical mechanisms.

Algorithmic research to guide data generation efforts. It 
will likely be beneficial to integrate multi-omic network data 
with BKGs to offer precise and targeted treatments for rare 
diseases (Alsentzer et al. 2022). Such network data with 
richer semantics will more directly help suggest biological hy-
potheses (Sanghvi et al. 2013, Wang et al. 2023a) or support 
iterative data generation and analyses through active learning 
(Sverchkov and Craven 2017, Zhang et al. 2023a). Informing 
laboratory experiments using predictions from computa-
tional studies could be a path forward to build more com-
plete and accurate data, which could lead to developing new, 
more advanced network analysis methods to further inform 
and improve laboratory experiments.

How network biology (primarily algorithmic research) can 
best support the collection and analysis of multimodal data is 
quite an important question, especially when collecting multi-
modal data for the same individuals, including building per-
sonalized (i.e. individual-specific) networks. An answer here 
could be to first figure out what question will be asked in 
which task/application and then design a data collection strat-
egy. One might want to define optimal datasets. Or, one might 
want to find unifying factors within data modalities; this is 
precisely why there is a need for multimodal data for the same 
individuals, at least some of the data/individuals. This might 
require systematic, comprehensive, and well-funded consortia 
efforts. Perhaps algorithmic approaches such as active learning 
can help prioritize what data should be collected, e.g. from 
specific populations or about particular biological functions. 
As success in experimentally collecting or computationally in-
ferring various types of biological networks continues to im-
prove, research efforts likely should shift towards obtaining a 
predictive understanding of personalized networks. Moreover, 
even within a single individual, molecular networks vary 
across tissues and cell types, posing additional challenges in de-
fining an individual-specific network.

Network dynamics. Another data component that is cur-
rently missing or is very scarce is network dynamics. Various 
types of time-dependent perturbation data could help infer 
dynamic biological networks. Examples of tasks/applications 
that have benefited from dynamic network analysis in biol-
ogy are as follows.

One example is the task of network alignment: unlike tra-
ditional network alignment that has compared static net-
works (Section 3), recently, the problem of aligning dynamic 
networks has been defined, and several algorithms have been 
proposed for solving the newly defined problem (Vijayan 
et al. 2017, Vijayan and Milenkovi�c 2018b, Aparicio et al. 
2019). The challenge here is the lack of experimentally 
obtained dynamic biological network data, which is why 
such methods have been evaluated on synthetic networks, 
computationally inferred dynamic biological networks, or dy-
namic networks from other domains (Vijayan et al. 2017, 
Vijayan and Milenkovi�c 2018b, Aparicio et al. 2019).

Another example is a recent network-based study of the 
dynamics of the protein folding process (Newaz et al. 2022). 
A key challenge is the lack of large-scale data on protein fold-
ing intermediates, i.e. 3D conformations of a protein as it 
undergoes folding to attain its native structure. Experimental 
data of this type are lacking even on the small scale (Newaz 
et al. 2022). Traditional computational, simulation-based 
studies, as well as the recent network-based effort (Newaz 
et al. 2022), all approximate the folding intermediates of a 
protein from the protein’s final (or native) 3D structure. 
Obtaining the actual protein folding intermediates experi-
mentally is unlikely to happen any time soon, especially at a 
large scale, so computational efforts will be needed. With re-
cent breakthroughs in protein structure prediction, e.g. 
AlphaFold (Jumper et al. 2021), this need represents an excel-
lent opportunity for computational research to help obtain, 
model, and analyze the resulting dynamic data.

A further example is a dynamic network analysis of the ag-
ing process, i.e. predicting new aging-related genes from a dy-
namic aging-specific PPI network (Section 2). Here, a key 
challenge is that shockingly, using newer aging-related gene 
expression and PPI network data obtained via newer and 
thus higher-quality biotechnologies to infer a dynamic aging- 
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specific network does not yield more accurate aging-related 
gene predictions than using older data of the same type from 
over a decade ago when dynamic network analyses of aging 
were pioneered (Li et al. 2022c). It was also observed in a dif-
ferent study on active module identification that using newer 
network data typically did not lead to more biologically mean-
ingful results (Lazareva et al. 2021). Going back to aging, it 
remains unclear whether the issue is with gene expression data, 
PPI network data, methods for integrating the two to computa-
tionally infer a dynamic aging-specific network, network meth-
ods used for feature extraction from the aging-specific 
network, ground-truth data on which genes are aging- versus 
nonaging-related, or something else entirely (Li et al. 2022c).

As our final example, we discuss quantitative and qualita-
tive mathematical modeling of network dynamics from the 
systems biology perspective (Kestler et al. 2008, Le Novere 
2015). Quantitative formalisms provide a precise description 
of the evolution of the system, including its temporal aspects; 
they are strongly dependent on the availability and precision 
of the required parameters. At the other end of the spectrum, 
qualitative (logic) frameworks have the advantage to be sim-
pler, with no requirement for quantitative parameters, allow-
ing analytical analyses. Logical models allow coarse-grained 
descriptions of the properties of the biological network and 
bring out key actors and mechanisms controlling the dynam-
ics of the system (Maheshwari and Albert 2017). Recent 
efforts use -omics data, including single-cell transcriptomes, 
to construct or contextualize Boolean models (Schwab et al. 
2021, Montagud et al. 2022, H�erault et al. 2023).

Towards inclusive and equitable precision medicine. 
Progress in computational (including network) biology and 
biomedicine has been hindered by a lack of -omics data 
encompassing vast human diversity (Cruz et al. 2023). 
Underrepresentation of human genetic diversity has drasti-
cally weakened the biological discoveries that would benefit 
all populations, leading to health disparities. The traditional 
one-size-fits-all healthcare model meant for a “typical” pa-
tient may not work well for everyone. In response, the 
National Institutes of Health has aimed to invite one million 
people across the USA to help build one of the most diverse 
health databases in history, welcoming participants from all 
backgrounds through the “All of Us” program (https://allo 
fus.nih.gov/). Inclusivity is at the core of the program: partici-
pants are diverse in terms of their races, ethnicities, age 
groups, regions of the country, gender identity, sexual orien-
tation, socioeconomic status, education, disability, and health 
status. The data collected through the program is expected to 
lead to discoveries on how our biology, environment, and 
lifestyle affect our health. Unlike traditional research that has 
focused on a particular disease or group of people, this pro-
gram aims to build a diverse database that can inform thou-
sands of studies on a variety of health conditions. Availability 
of inclusive and diverse -omics data, design of research studies 
that intentionally and carefully account for such data, and de-
velopment of computational methods and evaluation frame-
works that handle such data in a fair and unbiased manner will 
be critical for advancing computational biology and biomedi-
cine for all populations and reaching health equity.

Beyond the issue of underrepresentation, certain popula-
tions are intrinsically limited in size, such as rare diseases, 
which are inherently limited in clinical cases (Banerjee et al. 
2023). Studying a substantial fraction of a small population 
may still result in data that do not yield health outcomes 

comparable to those from larger populations. In such scenar-
ios, amassing more data may not be feasible, leading to 
small-sample datasets that can lack statistical power and 
magnify the susceptibility of computational models to misin-
terpretation and unstable performance. Network analysis 
techniques can play a pivotal role in addressing this chal-
lenge. Techniques such as few-shot machine learning 
(Alsentzer et al. 2022) and domain adaptation (He et al. 
2023) for network methods are instrumental in enabling 
computational models to learn patterns from small datasets 
and generalize to newly acquired data. Such models can 
adapt and generalize across diverse populations, thereby en-
hancing the robustness and applicability of health outcomes 
derived from datasets with small numbers of samples.

Other major future research advancements
The interface between network biology and LLMs. LLMs, 
such as ChatGPT and GPT-4, create opportunities to unify 
natural language processing and knowledge graph reasoning 
(Fatemi et al. 2023, Pan et al. 2024), owing to their wide- 
ranging applicability. Nevertheless, LLMs often serve as 
black-box models, presenting limitations in comprehensively 
capturing and accessing factual knowledge. In contrast, 
BKGs are structured knowledge models that systematically 
store extensive factual information. BKGs have the potential 
to enhance LLMs by providing external knowledge that aids 
in inference and bolstering interpretability. However, con-
structing BKGs is intricate and dynamic, posing challenges to 
existing methods in generating novel facts and representing 
previously unseen knowledge. Thus, an approach integrating 
LLMs and BKGs could emerge as a valuable strategy, har-
nessing their strengths in tandem (Pan et al. 2024).

The potential synergies between traditional text and struc-
tured knowledge graphs are becoming increasingly evident. 
Language model pretraining has proven invaluable in extract-
ing knowledge from text corpora to bolster various down-
stream tasks. Yet, these models predominantly focus on 
single documents, often overlooking interdocument depen-
dencies or broader knowledge scopes. Recent advances 
(Yasunaga et al. 2022b, McDermott et al. 2023) address this 
limitation by conceptualizing text corpora as interconnected 
document graphs. By placing linked documents in shared 
contexts and adopting self-supervised objectives combining 
masked language modeling and document relation predic-
tion, such methods can achieve considerable progress in tasks 
like multi-hop reasoning and few-shot question answering. 
On a parallel front, while text-based language models have 
garnered substantial attention, knowledge graphs can com-
plement text data, offering structured background knowledge 
that provides a useful scaffold for reasoning. In an emerging 
line of inquiry, studies (Yasunaga et al. 2022a) explore self- 
supervised paradigms to construct a unified foundation 
model, intertwining text and knowledge graphs. These 
approaches pretrain models by unifying two self-supervised 
reasoning tasks, masked language modeling, and link predic-
tion, marking an exciting direction for future advancements 
in network biology.

LLMs, traditionally associated with the processing of natu-
ral language, possess a flexibility that extends their utility be-
yond text data (Luo et al. 2022a). The underlying 
architectures, especially transformer-based designs like BERT 
and GPT variants, can be adapted to learn from any sequential 
data. In biology, this adaptability implies that LLMs can be 
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trained on biological sequences, such as DNA, RNA, and pro-
teins (Rao et al. 2019, Xu et al. 2022, Lin et al. 2023). Rather 
than processing words or sentences, these models can assimi-
late nucleotide or amino acid sequences, thereby capturing in-
tricate patterns and dependencies in genomic and proteomic 
data (Meier et al. 2021, Dauparas et al. 2022, Lin et al. 2023, 
McDermott et al. 2023). These cross-disciplinary advances in 
LLMs highlight their potential to advance the frontiers of com-
putational biology. In addition to large sequence-based pre-
trained models like LLMs, an emerging area of structure-based 
pretrained models is concerned with generating new network 
structures, such as protein and small molecule networks 
(Townshend et al. 2021, Rodrigues and Ascher 2022, Wang 
et al. 2022b, Bennett et al. 2023, Gainza et al. 2023).

Interpretabilty. Interpretability in network biology involves 
elucidating mechanisms of disease and health, such as tumor 
growth and immune responses. However, deep graph learn-
ing models are black-box systems with limited immediate in-
terpretability as they produce outputs through a series of 
complex, nonlinear transformations of input data points. 
This poses challenges in domains where clear insights are im-
perative. For instance, while dimensionality reduction techni-
ques and graph representation learning algorithms produce 
compact latent feature representations of high-dimensional 
data and graphs, they often sacrifice the interpretability of 
the features they produce. Conversely, graph-theoretic 
signatures, which capture network motifs, graphlets, or other 
substructures, can amplify understanding of networks by 
identifying relevant structural patterns.

Future research directions in interpretability must focus on 
integrating domain-specific knowledge into model training 
and evaluation. By directly incorporating biological constraints 
and prior knowledge into model architectures, we can enhance 
interpretability without compromising predictive performance. 
Additionally, developing explainable techniques tailored ex-
plicitly for network biology is crucial. Exploring hybrid models 
combining interpretable statistical models with deep learning 
approaches is another promising avenue. Such models can le-
verage the strengths of both types to produce interpretable and 
accurate predictions. Likewise, creating advanced visualization 
tools that effectively convey complex model outputs and bio-
logical insights to researchers and clinicians is essential. These 
tools should be intuitive and enable interactive exploration of 
model predictions and features.

Reproducibility. Reproducibility in network biology re-
search is a multifaceted challenge due to several reasons. 
(i) Graph construction: How a graph is constructed can dras-
tically impact the insights drawn from it. For example, con-
sider the problem of inferring an association PPI network. 
The decision to include only direct interactions versus both 
direct and indirect interactions can lead to vastly different 
network topologies. Choosing a threshold to determine an 
edge (e.g. a particular strength of interaction or confidence 
level) can also significantly alter the graph. (ii) Edge defini-
tions: What constitutes an edge can be subjective and is often 
based on the specific context. In a gene co-expression net-
work, for instance, the definition of an edge might be based 
on a particular correlation coefficient threshold. A slight vari-
ation in this threshold can lead to including or excluding nu-
merous interactions, thus changing the network’s structure 
and potentially its inferred properties. (iii) Latent embed-
dings: Graph-based machine learning methods used to com-
pute embeddings can have a significant effect on the results. 

Different embedding techniques capture different types of 
structural and feature-based information, leading to varia-
tions in tasks like node classification or link prediction. 
(iv) Dynamic nature of biological networks: Biological sys-
tems are inherently dynamic. A PPI network at one point in 
time or under one set of conditions might differ from the net-
work under another state. Thus, reproducing results requires 
the same methodology and the same or equivalent biological 
conditions. (v) Finally, graph sampling: In many cases, a sub-
graph or sample is taken due to the massive size of networks 
or computational constraints. The method and randomness 
inherent in this sampling can lead to nonreproducible results 
if not carefully controlled.

Towards wide adoption and translation of algorithmic inno-
vation into practical and societal impact. The recommended 
method evaluation and data generation improvements dis-
cussed above are needed not just for method developers—typi-
cally, computational scientists—to be able to properly evaluate 
their new approaches against existing ones, but even more im-
portantly, for adoption by end users—experimental scientists 
and in the long run, clinicians, healthcare workers, and patients 
(Section 8 comments more on this topic, including training 
needed for noncomputational folks to use network 
approaches). The disconnect between computational and exper-
imental scientists, even those dedicated to the common scientific 
goals (Ramola et al. 2022), suggests that efforts are necessary 
to overcome both technical and social challenges in interdisci-
plinary research fields. Computational scientists might need to 
consider not only traditionally algorithmic evaluation measures, 
such as precision, recall, and other performance criteria, but 
also measures that evaluate the utility and feasibility of integrat-
ing methods into scientific and clinical workflows (Huang et al. 
2022, 2023a). Additionally, computational scientists are pri-
marily incentivized to develop new algorithms and prototype 
software. In contrast, experimental and clinical scientists expect 
tools that are robust, trustworthy, and exhibit few glitches in 
practice. Authoritative evaluations, carried out by independent 
and interdisciplinary researchers on tasks directly relevant to 
downstream applications, are essential (Marbach et al. 2012a, 
Choobdar et al. 2019). Rapid and broad dissemination of these 
evaluations, recommendations, and guidelines for best practices 
should be prioritized in network biology.

Major milestones in network biology. The pinnacle of suc-
cess for network biology would likely be a comprehensive 
and dynamic understanding of the entire cellular or organis-
mal interactome across different conditions and life stages. 
This would include PPIs, gene regulation, metabolic path-
ways, cell signaling, and more. We can imagine a complete 
map of every biological interaction in an organism, from the 
level of genes and molecules up to tissues and organs, with 
the ability to zoom in on details and see dynamic changes 
over time or under different conditions. Another significant 
milestone would be the seamless integration of network biol-
ogy with other disciplines to provide a holistic understanding 
of life. This means connecting the molecular interactome 
with tissue-level networks, organ systems, and interorganis-
mal interactions, such as those seen in symbiosis or ecosys-
tems. From a practical standpoint, a significant success 
measure would be the application of network biology insights 
to develop novel and more effective therapeutic interventions. 
This could mean identifying critical network nodes or inter-
actions to target diseases, leading to innovative treatments.
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Drawing parallels from the reference human genome, the 
equivalent for network biology could be a reference interac-
tome—a standardized and comprehensive map of all known bi-
ological interactions within a human cell. This would serve as a 
baseline for studying disease, development, aging, and other bi-
ological processes. Any deviations from this reference in specific 
cell types, conditions, or diseases could be studied in detail.

Just as AlphaFold (Jumper et al. 2021) has made waves in 
predicting protein structures, a comparable success in net-
work biology might be the development of tools that can ac-
curately predict the emergent properties of a biological 
system from its underlying network. Given a set of interac-
tions, this would mean the tool could foresee the system’s re-
sponse to a drug, its behavior under certain conditions, or its 
evolution over time.

8. Additional discussion on scientific 
communities, education, and diversity
The question of who are network biologists or computational 
biologists is hard. Ideally, a computational biologist would 
have the interest and knowledge to both develop core compu-
tational methods and understand fundamental biological 
mechanisms. That raises the question of how to properly 
train more of such researchers to advance computational bi-
ology, including its subarea of network biology that models 
and analyzes biological systems as networks. For example, 
based on the personal experience of some of the authors of 
this article, in a network biology course, computationally fo-
cused students might enjoy computational but not biological 
aspects (e.g. in a general network science course, students typ-
ically choose a nonbiology domain to work on, such as techno-
logical or social networks). In contrast, biology students might 
enjoy biological but not computational aspects. So, efforts 
might be needed to convince students to be genuinely excited 
about both developing computational approaches and under-
standing biological mechanisms. Systematically identifying and 
addressing gaps in current computational biology training pro-
grams or starting new interdisciplinary training programs 
might be needed, along with appropriate support and resources 
from funding agencies.

Some of these gaps are as follows. An essential part of effi-
cient training would be to have robust, well-known, and 
trustworthy software tools that are readily available and easy 
to use, especially by those who are not proficient in comput-
ing; clearly, both developing and sustaining such software 
requires resources. Similar holds for building and making 
available datasets easily accessible by people who are not pro-
ficient in biology to help them get involved easily. Another 
important part would be exposing students to interdisciplin-
ary collaborative teams to train them to work together on the 
same research questions with scientists from different 
disciplines.

Another vital part of training relates to hiring and promot-
ing computational biology faculty who would offer the train-
ing. A challenge here, based on the personal experience of 
some of the authors of this article, seems to be as follows. 
When hiring a computational biologist in a traditional com-
putationally focused department (e.g. computer science, ap-
plied mathematics, statistics, or physics), someone who is 
more trained in biology may be viewed as not enough of a 
computational scientist, even when they are proficient in us-
ing existing computational methods to uncover new 

biological knowledge and possibly also at least occasionally 
develop new computational methods for studying biological 
systems. Similarly, in a traditional biology-focused depart-
ment, a more computationally trained person may be viewed 
as not enough of a biological scientist, even when they evalu-
ate their new computational methods on biological data and 
possibly at least occasionally yield new knowledge about bio-
logical systems. Yet, both kinds of candidates can be great for 
both department types. Hence, hiring and promotion groups 
might need to think differently about interdisciplinary com-
putational biology research. This is especially true in depart-
ments where these groups do not have computational 
biologists or where there are no specific, interdisciplinary 
departments like biomedical data science or computa-
tional biology.

There exists an additional challenge even when focusing on 
computationally oriented researchers within computational 
biology. Scientific communities that could benefit (from) the 
field of network biology include graph theory, network sci-
ence, data mining, machine learning, and artificial intelli-
gence. These communities often use different terminology for 
the same concepts (e.g. network alignment versus graph 
matching or graph clustering versus network community de-
tection). Distinct scientific communities may all analyze bio-
logical network data, or address identical computational 
challenges across various application domains, such as bio-
logical versus social networks. However, they often do not at-
tend the same research forums. For instance, attendees of the 
prominent computational biology conference, Intelligent 
Systems for Molecular Biology (ISMB), might not necessarily 
participate in data mining conferences like Knowledge 
Discovery and Data Mining (KDD) or artificial intelligence 
conferences such as Neural Information Processing Systems 
(NeurIPS), and vice versa. Consequently, advancements in 
one domain might remain obscure in another. Organizing sci-
entific symposia to convene computational scientists from 
traditionally distinct network biology communities, focusing 
on universally relevant topics, could help bridge this gap.

The above discussion items can be seen as diversity- 
focused, be it diversity in one’s training and skills or scientific 
communities they belong to (Nielsen et al. 2018). Many other 
aspects of diversity exist in science, and we focus on some of 
them here. The International Society for Computational 
Biology (ISCB) is a globally recognized entity advocating for 
and advancing scholarship, research, training, outreach, and 
inclusive community building in computational biology and 
its professions. This is why we rely on ISCB’s demographic 
statistics to represent the current state in the computational 
biology field. According to a demographic survey of the ISCB 
membership, whose results are publicly available in the 2022/ 
2023 ISCB Equity, Diversity, and Inclusion (EDI) report 
(https://www.iscb.org/edi-resources), among those who 
responded, 32.8% indicated “female,” 60% indicated 
“male,” 0.4% indicated “non-binary,” and 6.8% indicated 
“prefer not to declare.” Regarding ethnic origin, in the same 
report, 53% of those who responded with anything but 
“prefer not to declare” indicated a non-European descent. 
Some additional EDI statistics are as follows. At the time of 
the 2020/2021 ISCB EDI report (the latest report that offered 
this type of information), 41% of the ISCB Board of 
Directors were female, and 57% of the Executive Committee 
(elected officers) were female; 61% of selected keynote speak-
ers at the Intelligent Systems for Molecular Biology (ISMB), 

Current and future directions in network biology                                                                                                                                                              35 

https://www.iscb.org/edi-resources


ISCB’s flagship and most prestigious conference, were female 
since 2016. Regarding ISCB awards, fellows election, and 
other honors, the final selection shows a good gender balance 
that reflects the membership. However, during the nomina-
tion stage, in 2022/2023, for the innovator award, senior sci-
entist award, and fellows election, 22%, 28%, and 25% of 
the nominees were female, respectively, compared to 32.8% 
of the entire ISCB membership being female. ISCB does not 
have such data yet on ethnicity.

Enhancing awareness and mitigating biases when nominat-
ing candidates for honors or inviting candidates as conference 
speakers is a pathway to improving diversity in the computa-
tional biology field. Another more ambitious goal is to 
achieve diversity statistics in the field that mirror those of the 
general population. This should be accomplished for all un-
dergraduate students, graduate students, postdoctoral fel-
lows, and faculty (across various ranks), not only by 
addressing the “leaky pipeline” issue (Alper 1993, Sarraju 
et al. 2023), but also by identifying and eliminating institu-
tional barriers to establish an inclusive support infrastructure 
(Stevens et al. 2021). This might only be achievable over a 
longer period. Also, biology-focused subfields of computa-
tional biology are currently more gender-diverse than its 
computationally focused subfields. Thus, diversity in compu-
tational biology might be more readily achieved by recruiting 
trainees from biology-focused subfields and equipping them 
with the requisite computational skills rather than the re-
verse. However, sourcing from computational subfields 
remains essential. Yet, disciplines like computer science, 
mathematics, and physics can act as gatekeepers and entering 
these fields without the appropriate background can be chal-
lenging (Torbey et al. 2020, Mervis 2022). Because innova-
tive concepts can emerge from diverse sources and all 
individuals, it is imperative to eliminate gatekeeping barriers.

Additional diversity-related challenges include the need to 
recognize and mitigate potential implicit biases; limited access 
to registration and travel funds to conferences based on their 
locations, especially for those in middle and low-income 
countries; current lack of ethnicity data to evaluate diversity 
efforts of computational biology conferences and communi-
ties, including ISCB; empirical research into equity in science, 
etc. Systematic and properly funded initiatives by universities 
and professional societies are necessary to achieve this. And 
so are individual efforts by the members of the scientific com-
munity. Everyone should be responsible for contributing to 
joint diversity efforts for the field to make significant and suf-
ficient progress.
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