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Theglobaldistributionandclimate resilience
of marine heterotrophic prokaryotes

Ryan F. Heneghan 1,2,3 , Jacinta Holloway-Brown 4, Josep M. Gasol 5,
Gerhard J. Herndl 6,7, Xosé Anxelu G. Morán 8 & Eric D. Galbraith 9,10

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of
marine food webs and global biogeochemical cycles. Yet, there is limited
understanding about how prokaryotes vary across global environmental gra-
dients, and how their global abundance andmetabolic activity (production and
respiration) may be affected by climate change. Using global datasets of pro-
karyotic abundance, cell carbon and metabolic activity we reveal that mean
prokaryotic biomass varies by just under 3-fold across the global surface ocean,
while total prokaryotic metabolic activity increases by more than one order of
magnitude from polar to tropical coastal and upwelling regions. Under climate
change, global prokaryotic biomass in surface waters is projected to decline
~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5%
( ~ 0.85 Pg C yr−1). The rate of prokaryotic biomass decline is one-third that of
zooplankton and fish, while the rate of increase in prokaryotic respiration is
double. This suggests that future, warmer oceans could be increasingly domi-
nated by prokaryotes, diverting a growing proportion of primary production
into microbial food webs and away from higher trophic levels as well as redu-
cing the capacity of the deep ocean to sequester carbon, all else being equal.

Marine heterotrophic prokaryotes (heterotrophic Bacteria and
Archaea; hereafter prokaryotes) serve a key role in marine food webs
and biogeochemical cycles1,2. Across the global ocean, prokaryotes
have been estimated to comprise ~30% of the biomass in the water
column3 and respire over 50% of net primary production in surface
waters4,5. As a result, they represent an important pathway by which
dissolved organic matter can be passed to higher trophic levels or
sequestered in the deep ocean6. As oceans warm with climate change,
impacts on prokaryotes could alter the transfer of energy between
phytoplankton and larger heterotrophs (zooplankton and fish), as well
as the global ocean’s capacity to sequester carbon7,8.

From decades of observational studies, it is known that prokar-
yotes are abundant andmetabolically active across theworld’s oceans,
from the tropics to the poles and from surface waters to under the
seabed9,10. These observations have been used to estimate total global
marine prokaryotic abundance and biomass3,9,11–13 and for assessments
of prokaryotic community structure over smaller scales12,14–16. How-
ever, unlike other groups such as phytoplankton17–20 and
zooplankton21–23, there exists no synthesis of prokaryote observations
to determine how their abundance andmetabolic activity (production
and respiration) change across global environmental gradients. This
lack of large-scale, quantitative understanding limits our ability to
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develop and validate global models that explicitly incorporate pro-
karyotes, and to assess how they may be impacted by climate change.
This limitation is illustrated by the fact that, although there are no less
than 17 earth-system models from the Coupled Model Inter-
comparison Project Phase 624 that explicitly include phytoplankton
and zooplankton, only two resolve prokaryotic biomass. Even for lar-
ger organisms, there are at least nine globalmarine ecosystemmodels
that resolve climate impacts on fish biomass within the Fisheries and
Marine Ecosystem Model Intercomparison Project25 (FishMIP).

In this work, we use a global dataset to explore key environmental
drivers of prokaryotic abundance, cell-specific biomass, andmetabolic
activity across the global ocean now and into the future under climate
change. We use an ensemble approach with random forest regression
and generalized additive models to inform variable selection and
explore non-linear relationships before developing parametric statis-
tical models of prokaryotic abundance, cell-specific carbon biomass,
and metabolic activity. We use these parametric models to show that,
in contrast with larger heterotrophs such as zooplankton and fish,
variability in prokaryotic biomass is low across the world’s oceans,
while prokaryotic respiration varies by over one order of magnitude.
We show that prokaryotic biomass is likely to be remarkably resilient
to climate change, while climate-driven increases in their total
respiration in surfacewaters could outpace changes in carbon demand
from larger heterotrophs. These combined shifts suggest an increasing
microbialisation of marine ecosystems under climate change.

Results
Environmental drivers of prokaryotic abundance, size, and
metabolic activity
To predict prokaryotic abundance, cell-specific carbon, and biomass
across the global ocean, we compiled 41,881 measurements of het-
erotrophic bacterial and archaeal abundance from three published
studies9,26,27 (Fig. 1a). For cell-specific carbon, we used a global dataset
of 1087 cell biovolume observations from the Malaspina-2010
expedition28 (Fig. S1). Cell biovolume (μm3) was converted to cell-
specific carbon (fg C cell−1) using a published equation for open-ocean
prokaryotes29. We appended measurements of nine candidate envir-
onmental variables (chlorophyll a, nitrate, oxygen, phosphate, silicate,
N*, Si*, apparent oxygen utilization (AOU) and temperature) to each
observation of abundance, using each sample’s time and location data
(Fig. S2). N* and Si* measure excess dissolved inorganic nitrogen
relative to the Redfield ratio and the ratio of silicate to nitrate
respectively30. Surface chlorophyllameasurements from2002 to 2016
were obtained from the Moderate Resolution Imaging Spectro-
radiometer aboard the Aqua satellite. Nitrate, AOU, phosphate, sili-
cate, and temperature measurements at depth were provided by the
2018 World Ocean Atlas.

We fit our parametric model of prokaryotic abundance in three
steps (see the “Methods” section). First, we used random forest vari-
able selection to rank our 10 candidate variables (nine environmental
variables plus depth) in order of importance for predicting prokaryotic
abundance (Fig. S3). Second, we used generalized additive models31

(GAMs) to identify the shape of the relationship between prokaryotic
abundance and the environmental variables. Highly correlated pre-
dictor variables were then removed from the GAM, beginning with
those identified as least important by the initial random forest ranking,
until five variables remained (sample depth, temperature, AOU,
nitrate, and chlorophyll a). Finally, we used the shape of the relation-
ships between prokaryotic abundance and the five variables from the
GAM (Fig. S4) to fit a parametric model of prokaryotic abundance
(Fig. 1). The R2 of the parametric model was 76.6%, indicating little
predictive power was lost between the GAM (R2 = 77.9%) and the
parametric model.

Prokaryotic abundance varied most strongly with sample depth
(Fig. 1b), with mean abundance decreasing by over one order of

magnitude from epipelagic (0–200m) to bathypelagic (>1000m)
waters.Meanprokaryotic abundance increasedby about ~50% for each
order of magnitude increase in chlorophyll a, ~17% per order of mag-
nitude for nitrate, and ~2.6% for a degreeof temperature, °C−1 (Fig. 1c, e,
f). In contrast to these three environmental variables, mean prokar-
yotic abundance did not change linearly with AOU; declining as AOU
increased from −5 to 150μmol kg−1, before increasing again for
AOU> 150μmol kg−1 (Fig. 1d). AOU values > 150μmol kg−1 occurmostly
in deeper (>200m)waters thathave accumulated respiration products
while isolated from the atmosphere (Fig. S5f, i).

Cell-specific prokaryotic carbon biomass declined with tempera-
ture (Fig. S1b). This decrease was greatest from0 to 10 °C, wheremean
cell-specific carbon biomass shrank from ~10 to 7 fg C cell−1. From 10 to
25 °C, there was little change in cell biomass, but from 25 to 30 °C it
declined again from 7 to 5.5 fg C cell−1. However, although temperature
was a significant predictor of cell-specific carbon biomass, it only
explained about 10% of the variability in the cell-specific carbon data.
In contrast, the variance explained by the sample location, which was
incorporated into our cell biomass model as a random effect, was 68%
(see the “Methods” section). Although (to our knowledge) our dataset
of prokaryotic cell carbon is the largest and most spatially extensive
ever published, it does not include observations from polar waters
(Fig. S1a). Since temperature and depth are highly correlated
(R = −0.88), this means that all low-temperature observations in our
dataset are from deep waters. Therefore, when calculating total pro-
karyotic biomass, we are assuming that the relationship between cell-
specific carbon and temperature is similar across both depth and
latitude in colder waters. Cell biovolumes in polar waters might not
differ substantially from our Malaspina dataset32, and latitudinal
increases in cell-specific carbon biomass have previously been
reported33, which would support our assumption here.

Finally, to predict prokaryotic metabolic activity, we compiled a
global dataset of 2092 observations of cell-specific production rates
(SPR) from five different studies covering the global ocean (see the
“Methods” section; Fig. S6a). Total cell-specificmetabolic activity is the
sum of P and the specific respiration rate (SRR). To calculate SRR we
used a global dataset of 305 observations of prokaryotic growth
efficiency34 (PGE, the fraction of total carbon demand that supports
SPR; Fig. S6b). Therefore, SRR can be estimated using PGE and SPR:
SRR = SPR/PGE−SPR. Prokaryotic growth efficiencydatawere collected
exclusively from epipelagic waters (<200m), so we excluded deeper
waters from our assessment of present and future global prokaryotic
metabolic activity. Similar to cell-specific carbon biomass, our final
model of prokaryotic metabolic activity was a linear mixed effects
model with a random effect for each of the five different studies from
which we gathered cell-specific production rates. Temperature and
chlorophyll a were linear fixed effects that explained about 25% of the
variability in cell-specific production rates (see the “Methods” section).
Fromourmodel, cell-specific prokaryoticmetabolic rates increased by
~7.4% °C−1 and ~36% per order of magnitude increase in chlorophyll
a (Fig. S7).

Contemporary global distribution of prokaryotes
Changes in prokaryotic abundance and biomass in epipelagic waters
were relatively small compared to the magnitude of variability in
environmental conditions. Across the world’s oceans, chlorophyll a
concentration varies bymore than 2 orders of magnitude (Fig. S8), yet
mean (across depth) prokaryotic abundance in the top 200m only
varies by just under3-fold in epipelagic waters, from ≤2.0 × 1011m−3 in
oligotrophic waters, to ≥5.5 × 1011 m−3 in eutrophic coastal and upwel-
ling regions (Fig. 2a). The spatial distribution of prokaryotic biomass
was similar to abundance outside polar regions in epipelagic waters
(Fig. 2a, c), and across the global mesopelagic (Fig. 2g, i), since indi-
vidual cell-specific carbon varied little in these areas (Fig. 2e, h). Pro-
karyotic biomass in epipelagic polar waters did not decline with
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abundance, because decreases in abundance in those areas were
balanced out by greater cell-specific carbon (Fig. 2b).

In contrast with cell-carbon (Fig. 2b, e, h), relative spatial varia-
bility in prokaryotic abundance and, ultimately, biomass increased
with depth. In the bathypelagic, prokaryotic biomass varied by just
under a factor of five (Fig. 2i), from ≤0.2mgCm−3 under the

oligotrophic ocean gyres and polar waters, to ≥0.9mgCm−3 in waters
where AOU and nitrate concentrations were highest (Fig. S5). The
relative invariance of prokaryotic biomass in epipelagic waters con-
trasts with that of larger heterotrophs; zooplankton and fish biomass
vary by more than one order of magnitude from low to high chlor-
ophyll regions3. As a result, prokaryotes are a larger fraction of total
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Fig. 1 | Prokaryotic abundance statistical model. a Distribution of 41,718 in situ
unique samples of heterotrophic bacterial and archaeal abundance that were used
in this study. The main effects of different environmental variables in our final
parametric model of prokaryotic abundance (holding all other covariates con-
stant), are shown as log10 prokaryotic abundance (mL−1) versus b log10 depth (m),

c log10 nitrate (μmol kg−1), d apparent oxygen utilization (AOU; μmol kg−1),
e temperature (°C) and f log10 chlorophyll (mgm−3). The red line is the fitted
response for each environmental variable, with partial residuals shown as dots
colored by the number of samples. Source data are provided as a Source Data file.
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epipelagic heterotrophic biomass in the oligotrophic ocean gyres but
become less dominant in productive coastal and upwelling regions,
where larger heterotrophs are relatively more prevalent (Fig. S9).

Prokaryotic metabolic activity in the top 200m varies far more
than abundance or biomass across the global ocean (Fig. 3)35. Total
prokaryoticmetabolic activity (the sumof production and respiration)
in the epipelagic increases by >1 order of magnitude from polar
(≤10 g C m−2 yr−1) to tropical coastal and upwelling regions (≥200gC
m−2 yr−1). Thus, despite relatively small changes in prokaryotic

abundance and biomass, prokaryotic carbon demand varies sub-
stantially across global environmental gradients35.

The relative invariance of global prokaryotic biomass—in contrast
with total metabolic activity—likely reflects their wide variety of
metabolic maintenance and survival strategies. Prokaryotes are cap-
able of lowering or even arresting their metabolic activity, allowing
long-term survival under nutrient-poor conditions by maintaining
relatively high yet inactive biomass36. The average percentage of active
prokaryotic cells varies from 10% to 45% (depending on the measure-
ment method), with the proportion of cells that are active generally
increases with overall prokaryotic abundance36. Chemolithoauto-
trophic prokaryotes—which can fix dissolved inorganic carbon—pro-
vide a significant source of organic carbon to heterotrophic
prokaryotes in deep waters, independent of surface primary produc-
tion in the short-term37. Finally, protistan grazing is one of the main
sources of prokaryotic mortality across the water column38. However,
prokaryotes have phenotypic features to escape protistan grazing,
including high-speed motility, reduced body size (to avoid size-
selective predation), and toxin production38. These metabolic main-
tenance and survival characteristics, largely unique to prokaryotes,
may explain the relative decoupling between the distribution of pro-
karyotic biomass and global environmental gradients found here.

Projected climate change impacts on marine biomass and het-
erotrophic respiration
Prokaryotes will likely increase as a proportion of totalmarine biomass
in the future. Our results suggest that, from 1980 to 2100 under a ~2 °C
ocean warming scenario (Shared Socioeconomic Pathway 3-7.0; SSP3-
7.0), global prokaryotic biomass in epipelagic waters (<200m) will
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depth) prokaryotic metabolic activity (production and respiration) in epipelagic
(<200m) waters (g C m−2 yr−1). Source data are provided as a Source Data file.
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decline by ~3% (±2%) with climate change, while phytoplankton bio-
mass will decrease by ~4% (±2%). Both zooplankton (covering micro-,
meso- and macro-zooplankton) and fish biomass will decline by 10%
(±5% for zooplankton and ±2% for fish, Fig. 4a). Thus, global prokar-
yotic biomass in the epipelagic is projected to decrease by ~1.5% and
phytoplankton by ~2% for per 1 °C of warming, while zooplankton and
fish decrease by ~5%. These disparate rates of decline with warming
across different groups mean that prokaryotes, despite contributing
~8% to the 20.5 Pg of contemporary marine biomass in epipelagic
waters3, would only be ~3% (0.05 Pg) of the total 1.6 Pg of marine ani-
mal biomass lost from climate change this century under SSP3-
7.0 (Fig. 4b).

Temperature-driven changes in prokaryotic biomass could be
driven directly by warming effects on metabolic processes39, or indir-
ectly by changes in community composition40,41. Given thatour data do
not explicitly resolve community composition, we are unable to
identify these potential drivers here. However, temperature-driven

increases in prokaryotic biomass, arising from declining cell size being
outpaced by increasing abundance, are consistent with observations
over local42 and global temperature gradients39. All else being equal,
prokaryotic biomass from our models increases with warming in
~8–27 °C waters but declines in areas outside this range (Figs. 1e, 2b;
S10). Temperature-driven declines in total biomass in <8 and >27 °C
waters are caused here by decreases in cell carbon (Fig. S1b) outpacing
temperature-driven increases in prokaryotic abundance (Fig. 1e).
Morán et al.39 found a similar pattern (increases in prokaryotic bio-
mass, but only in waters <26 °C) and argued this non-linear relation-
ship between temperature and prokaryotic biomass was driven by a
shift between bottom-up (resource availability) and top-down control
(predation and viral lysis) across the global temperature gradient.

Climate impacts on biomass combine with impacts on specific-
respiration rates to determine increases in global heterotrophic
respiration. From 1980 to 2100, prokaryotic respiration in epipelagic
waters is projected to increase by ~7.5% (±6%) under SSP3-7.0, double
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that of zooplankton and fish (~3.5%, ±4.5% for zooplankton and ±0.5%
for fish; Fig. 4c). This translates to an additional 2.1 Pg C yr−1 (Fig. 4d) of
total heterotrophic respiration in epipelagic waters, or just over 1 bil-
lion tonnes of additional carbon respired per year per 1 °C of surface
warming. All else being equal, this additional respiration in surface
waters would cause a shallowing of the remineralization depth—the
depth atwhich sinkingorganic carbon is converted to carbondioxide—
consistentwith apostulatedweakening of the biological pump, driving
a climate-amplifying feedback loop between declining oceanic carbon
sequestration with increasing global temperatures43,44.

In contrast with climate-driven marine biomass loss, which is
projected to come primarily from zooplankton and fish (Fig. 4b), ~80%
(~1.7 Pg C yr−1) of additional heterotrophic respiration under 2 °C
warming is caused by prokaryotes (Fig. 4d), even though they produce
~63% (22.6 Pg C yr−1) of total contemporary heterotrophic respiration
(36 Pg C yr−1)5,45. Thus, prokaryotes in surface waters are projected to
divert a larger proportion of primary production into microbial food
webs with warming, which would decrease the energy available for
higher trophic levels. Therefore, current projections of warming-
driven zooplankton and fish biomass decline25,46–48 (including those
shown here) may be underestimating climate impacts, since they do
not consider warming impacts on microbial food webs.

Discussion
Ourmodels integrate decades of observations9,26–29,34,49–51 tomap the
present global distribution andmetabolic activity of prokaryotes, as
well as how their global biomass and respiration in epipelagic
waters may be affected by climate change. These integrated
observational datasets, as well as global 1° resolution, depth-
resolved predictions of prokaryotic abundance, cell carbon, bio-
mass, and epipelagic metabolic activity from our statistical models,
are freely available with this study (Data Availability State-
ment). Parametric statistical models of prokaryotic abundance, cell
carbon and metabolic activity developed in this study are also
freely available (Code Availability Statement).

To our knowledge, our model of cell-specific carbon is the first to
show that the temperature-size rule52—organisms are generally smaller
with increasing temperature—appears to hold also for unicellular het-
erotrophic prokaryotes across the global ocean temperature gradient;
we estimate that at the global scale, mean prokaryotic cell-specific
carbon will decrease by ~2% per °C of warming (Fig. S11). This is similar
to the 1.8% per °C decline estimated for larger unicellular plankton but
lower than the 3.8% per °C decline calculated for larger marine
metazoa53. However, more rapid declines in prokaryotic cell size with
warming have already been observed within smaller regions such as
the Bay of Biscay42.

The projected global loss of marine biomass from 2 °C warming
(1.6 Pg; Fig. 4b) is of a similar magnitude to the 2 Pg already lost to
fishing andhunting since the Industrial Revolution3.Historical losses to
fishing and hunting are concentrated within larger size classes (>10 g;
primarily fish andmarinemammals) and have thus already profoundly
altered the size-distribution of global marine life3. In contrast, losses
projected here from climate change aremore evenly spread across the
entire global ocean size-spectrum; ~65%of projected losses come from
prokaryotes, phytoplankton, and zooplankton (Fig. 4b). The marked
impact of fishing and hunting on the size distribution of ocean life
means humans have already profoundly altered energy flow through
marine ecosystems3,45, removing ~1.4 Pg C yr−1 of fish and marine
mammal respiration from epipelagic waters3. At the global scale, the
fate of this lost respiration is largely unknown, although evidence
exists linking overfishing in coastal and reef systems with micro-
bialisation of food webs54,55. This suggests that the combined impacts
of fishing and climate change will cause significantly greater micro-
bialisation of ocean ecosystems than estimated here from
warming alone.

Besides depth, prokaryotic abundance is primarily driven by
temperature, apparent oxygen utilization (AOU), and chlorophyll a
and nitrate concentrations (Fig. 1). Prokaryotic abundance is positively
related to each of these environmental variables except for AOU.
However, we note that the global, multi-decadal scale of our synthesis
means these relationships would have less explanatory power at
smaller scales, where environmental and ecological factors not iden-
tified here would likely affect the structure of prokaryotic commu-
nities. The presence of seemingly anomalous observations in our
dataset of prokaryotic cell-specific carbon (see the “Methods” section)
highlights this reality, demonstrating there may be many other unob-
served phenomena affecting regional prokaryotic communities at
smaller time scales that are not represented in our global-scalemodels.

By using statistical models built on historical observation, our
projections of future prokaryotic biomass and respiration implicitly
assume that the relationships between environmental drivers and
prokaryotes will not be altered by climate change. However, their
enormous global population size, typical generation times of hours to
days56 and high genetic diversity57,58 mean rapid evolutionary adapta-
tion to climate change is likely for prokaryotes as environmental
conditions move beyond historical conditions7. At the same time, cli-
mate change will drive shifts in the structure and function of marine
foodwebs and biogeochemical fluxes7,59, whichmay affect prokaryotic
communities in ways that are currently unobserved and thus not
captured by our analysis.

We estimate that contemporary global prokaryotic respiration in
epipelagic waters is ~22.6 Pg C yr−1. This estimate was obtained using
global datasets of prokaryotic specific-production rates (SPRs) and
prokaryotic growth efficiency (PGE), which together give prokar-
yotic specific-respiration rates (SRRs): SRR = SPR/PGE−SPR. There are
large uncertainties associated with both SPR and PGE, which are
compounded in our estimate of SRR (Fig. S12). For example, we
used the median PGE from our dataset of 14% to calculate SRRs (see
the “Methods” section), but if we recalculate SRR across the inter-
quartile range of PGE from our dataset (6–27%), the resulting inter-
quartile range of global prokaryotic respiration is ~14–30 Pg C yr−1

(with a full rangeof ~10–60PgC yr−1; Fig S12a). Similarly, across the95%
confidence interval for our statistical model of SPRs (Fig. S7), the
interquartile range of global prokaryotic respiration is ~20–28 Pg C yr−1

(with a full range of ~14–40Pg C yr−1; Fig. S12b). When these two
sources of uncertainty are combined, the interquartile range of global
prokaryotic respiration is ~14–31 Pg C yr−1 (with a full range of ~6-101 Pg
C yr−1; Fig. S12c). As shown by these comparisons, PGE uncertainty—
likely resulting from the sparseness of available data—was the largest
driver of total uncertainty in our estimate. Nevertheless, despite the
large uncertainty suggested by the variability of measured PGE, our
estimate of ~22.6 Pg C yr−1 contemporary global prokaryotic respira-
tion is remarkably similar to two independent assessments: 20.5 Pg
C yr−1 from a recently published global biogeochemical model5; and
20.4 Pg C yr−1 using empirical relationships from Lopez-Urrutia et al.60

and assuming 10% of prokaryotes are metabolically active36.
Prokaryotic specific-production and -respiration rates in surface

waters have aQ10 of 2.05 (see the “Methods” section). This is within the
range of previous studies that estimate a Q10 value close to two for
metabolic rates of microorganisms in surface waters44,61,62. However,
Smith et al.63 found that the Q10 of prokaryotic respiration could be as
high as four (equivalent to an Arrhenius activation energy of ~0.97 eV).
All else being equal, a Q10 of four would cause global prokaryotic
respiration in surface waters to increase by 4.3 Pg C yr−1 under 2 °C of
warming, over 10 times the projected increase of 0.4 Pg C yr−1 for
zooplankton and fish (Fig. 4d). At the same time, prokaryotic meta-
bolism in thedeepoceanmayhave aQ10 valueof around28 (equivalent
to an Arrhenius activation energy of 2.36 eV64). Yet, the paucity of
available data precluded applying our methods to assess the present
and future carbon demand of prokaryotes in the deep ocean65. The
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wide uncertainties in the temperature sensitivity of prokaryotic
respiration—as well as uncertainties in PGE as highlighted above—pre-
sent significant risks for a growing global population, whose demand
on marine ecosystems for food (from fisheries) and carbon storage in
the deep ocean will almost certainly increase this century66–68.

Using a synthesis of global data, we have developed interpretable,
parametric statistical models that uncover key environmental drivers
of prokaryotes across the global ocean. Our results address a critical
gap for skill assessment and calibration for models that explicitly
resolve prokaryotes; despite their importance, heterotrophic prokar-
yotes have been neglected in earth-system model development69 and
remain a major source of uncertainty in projections of future climate
impacts on the ocean biological carbon pump70. More broadly, our
results give motivation for further exploration of energy and carbon
fluxes through the world’s ocean food webs, from microbes to large
heterotrophs, and how they may be affected not only by climate
change but by other sources of human disturbance, such as fishing.

Methods
Global prokaryotic abundance
Dataset. Our prokaryotic abundance dataset covered all major ocean
basins to a maximum depth of 5931m, with over 90% of the samples
from the Northern Hemisphere (Fig. 1a). The distributions of prokar-
yotic abundance, sample depth, nitrate, phosphate, silicate, and
chlorophyll a concentrations were right-skewed, so we log10-trans-
formed these variables before conducting any analysis. N* and Si*—
tracer variables, respectively measuring excess dissolved inorganic
nitrogen relative to the Redfield ratio and the ratio of silicate to nitrate
—were also included in our candidate variable set (Fig. S2). All analyses
were conducted with R version 4.4.071.

Variable Selection. We used the random forest algorithm72,73 to per-
form variable selection and identify which variables were significant
predictors of prokaryotic abundance across the global ocean. Using
some formof statistical variable selection is preferable to relying solely
on expert knowledge because a model does not have preconceived
ideas about relationships between variables. This is useful for many
domains, such as ecology74,75, as it can either provide evidence in
support of existing ideas about relationships between variables in
nature or alternatively suggest unexpected relationships that can be
further explored.

Random forest is a non-parametric ensemble of treesmethod that
uses a bagging algorithm to take bootstrap samples of training data,
randomly selecting variables and constructing many individual deci-
sion trees in order to ultimately reachpredictions73. Random forest has
been used for variable selection in ecological settings74,75. A key benefit
of using random forest for variable selection relative to univariate
selection methods is that the random forest model estimates the
influence of an individual predictor variable on the dependent vari-
able, as well as its influence on multivariate interactions with other
predictor variables76,77.

We fit five random forest models with different initial seed values
and found this was a sufficient number because the variable impor-
tance results were consistent, and the models had low errors. To train
and test each random forest, we split observations into two sets: 80%
for training and 20% for testing (with model error on the testing set
measured by root mean square error, RMSE, and mean absolute error,
MAE). The training process involves ‘learning’ which variables are
important for predicting values of thedependent variablebasedon the
training set. After the training process, each random forest model was
used to make predictions of prokaryotic abundance on the test set,
which is unknown to the trained models. On average, the five fitted
random forests were able to account for 85.1% of the variance in
sampled log10 prokaryotic abundance, and there was an average low

model error using all candidate environmental variables, as measured
by RMSE (0.003) and MAE (0.132).

From the random forest, log10 sample depth was identified as the
most important variable for predicting log10 prokaryotic abundance,
followed by log10 nitrate, log10 phosphate, AOU, log10 silicate, tem-
perature, log10 chlorophyll, N*, oxygen, and Si* (Fig. S3).Weproceeded
to fit our parametric model using the random forest variable impor-
tance assessment and co-author knowledge, as a guide for variable
selection.

Fitting GAMs and parametric models. Random forest models are a
powerful way to identify the most important predictor variables for
fitting a statistical model. However, since these models are non-para-
metric, they are not suitable for identifying parametric relationships
between variables. To identify the shape of the relationship between
prokaryotic abundance and environmental variables, we built gen-
eralized additive models31 (GAMs) that used penalized regression
splines. Similar to the random forest step, we split observations into
two sets to fit and test the GAM: 80% for training and 20% for testing
(with GAM error measured by RMSE and MAE).

Individual variables accounted for between 4.7% (log10 chlor-
ophyll) and 72.2% (log10 depth) of the deviance in prokaryotic abun-
dance, while the GAM fitted with all possible variables was able to
account for 78.9% of the deviance and had an RMSE of 0.001 andMAE
of 0.160 (Table S1). Fromour full model, we assessed the concurvity of
the independent variables and removed predictors with concurvity
indices >0.90, beginningwith variables identified as least important by
the random forest. Concurvity is the degree to which predictor vari-
ables can be explained by one or more of the other independent
variables in the GAM53,78. After removing variables with concurvity
indices >0.90 one at a time in order of least importance, log10 depth,
log10 nitrate, AOU, temperature and log10 chlorophyll remained, with
77.9% of the deviance explained by these variables and an RMSE and
MAE of 0.001 and 0.165, respectively.

We then used the shape of the relationships between log10 pro-
karyotic abundance and predictor variables in the GAMs (Fig. S4) to fit
our final parametric model for log10 prokaryotic abundance. In the
parametric model, log10 prokaryotic abundance is predicted with a
fifth-order polynomial for log10 depth, a second-order polynomial for
AOU, and linear relationships for log10 nitrate, temperature, and log10
chlorophyll (Fig. S13). The R2 of the final parametric model was 76.6%
and the RMSE and MAE were 0.001 and 0.171, respectively, indicating
that little predictive power was lost between the GAM and the final
parametric model. We also assessed the effect of including all inter-
actions between predictor variables in the GLM. When all ~130 inter-
actions were included, the R2 increased by 2.5% and RMSE and MAE
remained almost unchanged at 0.032 and 0.159. Thus, for parsimony
and ease of interpretation, our final parametric model excluded
interactions between predictor variables.

Sensitivity analysis. Before using our final parametric model, we
assessed its sensitivity to observational data in two ways. First, we
explored the sensitivity of the parametric model’s parameters and R2

to the number of observations used to fit the model using a bootstrap
resampling method with 1000 iterations for 1000, 5000, 10,000,
20,000, and 30,000 samples. We found that variance in the model’s
parameter values and R2 decreased with the number of samples, but
their mean values were stable (Fig. S14). Second, we assessed the
model’s ability to predict observed prokaryotic abundance across
polar (>60°), temperate (30°–60°), and tropical (<30°)marine regions,
over the entire water column. The variance explained by the model
varied across the regions, from 63.3% in tropical to 78.1% in temperate
regions (Fig. S15). Variability in R2 across regions primarily reflects the
fact thatover 75%of theobservations used tofit themodels come from
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temperate regions, but <5% come from tropical and the remaining
~20% from polar regions.

Cell-specific prokaryotic carbon content
Dataset. At present, there are no global models of prokaryotic cell
biovolume or cell-specific prokaryotic biomass. This is partly because
combining measurements from different studies is difficult since dif-
ferent methodologies deployed across studies can yield divergent size
estimations. For example, the two most commonly used allometric
models29,79 for transforming cell biovolume into carbon biomass yield
a 2-fold difference in cell carbon for a 0.035μm3 bacterium (corre-
sponding to a diameter of 0.41μm assuming spherical shape). To
address the challenge of combining data from different studies, we
obtained 1087 in situ unique samples of heterotrophic prokaryotic cell
biovolume estimates from the Malaspina-2010 Expedition28.
Malaspina-2010 was a global circumnavigation expedition that col-
lected data from 126 stations in the tropical and subtropical Atlantic,
Indian, and PacificOceans, fromsurfacewaters to 4000m.Prokaryotic
cell-specific biovolumes (μm3) were determined across the entire
expedition using flow cytometric measurements of the population
mean side light scatter, which was converted to cell size using an
empirically derived allometric equation78, assuming all cells to be
spheres. We then calculated cell-specific carbon biomass (fg C cell−1)
from cell biovolume using a published equation for open-ocean
prokaryotes29. Similar to all studies, the accuracy of our estimates of
prokaryotic biovolume and carbon is dependent on the methods we
chose. However, by using a uniform approach across all observations
our dataset makes it possible to develop a consistent, global-scale
model of prokaryotic cell size.

All 1087 cell-specific carbon samples recorded temperature,
sample depth, and station position (Fig. S16). Other ocean attributes
suchasnitrate, phosphate, and silicatewerealso recorded, but only for
a subset of samples, so they were not included in the statistical model
for cell-specific carbon. Sampledepthwas right-skewed, so itwas log10-
transformed before conducting any analysis. Since we only had two
variables (temperature and sample depth) to construct our model for
cell carbon, the random forest step was not necessary, and we pro-
ceeded to construct the GAM analysis.

Statistical model. To identify the shape of the relationship between
individual prokaryotic cell-specific carbon biomass and environmental
variables, we first built a GAM of cell carbon with penalized regression
splines for sample depth and temperature and a fixed effect for the
sample station. The GAM allowed us to explore the shape of the rela-
tionships between cell carbon and these predictor variables. However,
sample depth and temperature were highly correlated (R = −0.88), so
we removed sampledepth from themodel since it explained less of the
variance in prokaryotic cell carbon than temperature (Table S2). Based
on the GAM (Fig. S17), we then fit parametric statistical models for
prokaryotic cell carbon with a third-order polynomial for temperature
and a randomeffect on the intercept for the station (Fig. S18). We used
a random effect for the station to control for station-specific hetero-
geneity in the samples, which was not captured by temperature. To
obtain an estimate of R2 from the whole model and from fixed effects
alone, we used the r.squaredGLMM function in R80. Temperature alone
explained only 9.8% of the variance in prokaryotic cell carbon out of
the total 78% for the wholemodel (including the random effect for the
station).

The high proportion of total variance explained by the station
random effect is due to the large difference in sample cell carbon from
stations on Leg 5 of the circumnavigation (between New Zealand and
Hawaii; average prokaryotic cell carbon of 15 fg C), compared to all
other stations (average prokaryotic cell carbon of 7 fg C; Fig. S16c).
When Leg 5 stations were removed, the variance explained by tem-
perature alone increased to 27%, out of a totalof 47% for this secondary

model. However, from other data obtained at the same stations, it
appears that the particle export from surface waters in this region was
elevated compared to other regions, due to high active zooplankton
flux81. The input from migrating zooplankton may explain why pro-
karyotes in these regions—especially in the bathypelagic zone—were so
much larger than at other stations. Both viral and protist abundances
in the bathypelagic across Leg 5 were unusual, as were eukaryotic and
prokaryotic microbial communities, suggesting our prokaryotic bio-
volume data from Leg 5 are not in error but are likely describing real
phenomena unique to this region at the time of sampling. Therefore,
we retained these stations in our dataset and proceeded to predict the
global distribution of prokaryotic cell carbon using the parametric
model with a third-order polynomial for the temperature and a ran-
dom effect for the station (Fig. S18).

Leg 5’s apparently anomalous data (compared to all other Legs)
highlight the challenge of potential undersampling, even in a com-
prehensive dataset of prokaryotic cell carbon such as ours; it is pos-
sible that other important, regional phenomena may exist that affect
prokaryotic cell carbon that was not captured during the Malaspina-
2010 circumnavigation.

Specific-production and -respiration rates for prokaryotes
Datasets. To calculate specific-respiration rates (SRRs) for prokaryotes
we used global datasets of specific-production rates (SPRs) and pro-
karyotic growth efficiency (PGE), which are more abundant than SRR
data. Total metabolic activity is just the sum of SPR and SRR. There-
fore, SRR can be calculated from SPR and PGE: SRR = SPR/PGE−SPR.
Our SPR dataset contains 2092 samples of specific-production rates,
chlorophyll a concentration and temperature from across the global
ocean (Fig. S6a; Fig. S19), including data from the Malaspina-201028

(n = 1019), Hotmix (n = 344; previously unpublished) and Latitud51

(n = 432) expeditions, the Blanes Bay Microbial Observatory (n = 209;
http://bbmo.icm.csic.es/) and the Western Arctic and Ross Sea50

(n = 88). The PGE dataset contains 305 observations of PGE from sur-
facewaters (<140m),withmost also including in situmeasurements of
temperature, chlorophyll a, nitrate, phosphate, and dissolved organic
carbon (DOC). This dataset was compiled by Carol Robinson34, pri-
marily from the North Sea, but also covers the Southern, Atlantic, and
Pacific Oceans as well (Fig. S6b).

Statistical models. As for prokaryotic abundance and cell carbon, to
identify the shapeof the relationships between SPR and environmental
variables, we first built a GAM of SPR with penalized regression splines
for temperature and chlorophyll a, and a fixed effect for dataset ID
(Fig. S20). Based on the GAM, we then fit a mixed effects model, with
linear covariates for temperature and chlorophyll a, and a random
effect for dataset ID (Fig. S7). The mixed effects model explains about
25% of the variance in the data. We calculated the statistical relation-
ship between SPR and temperature across all observations, irrespec-
tive of sample depth. We did this because the relationship between
SPR and temperature was not significantly different for epipelagic
(<200m) data that included a chlorophyll ameasurement, and deeper
waters that did not have a chlorophyll measurement.

Finally, PGE did increase linearly with log10 chlorophyll, which
agrees with Lopez-Urrutia et al.60, but this relationship was not sig-
nificant (p-value = 0.17). Therefore, we used a single value of 14% for
BGE, which is the median of the dataset.

Calculating present and future marine biomass and hetero-
trophic respiration
To assess climate impacts on global marine biomass (prokaryotes,
phytoplankton, zooplankton and fish) and heterotrophic respiration
(prokaryotes, zooplankton and fish) in epipelagic (<200m) waters, we
sourced environmental drivers from four Coupled Model Inter-
comparison Project Phase 6 earth system models (GFDL-ESM4, IPSL-
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CM6A-LR, CMCC-ESM2, MPI-ESM1-2-LR) under a high emissions sce-
nario (Shared Socioeconomic Pathway 3-7.0; SSP3-7.0), from 1980 to
2100. Changes in prokaryotic biomass and respiration were calculated
using the statistical models for abundance, cell-specific carbon and
specific-production rates derived here. Changes in phytoplankton
biomass were sourced directly from the four earth-systemmodels. For
zooplankton, changes in total biomasswere calculated using statistical
models of global micro-, meso- and macrozooplankton biomass from
Hatton et al.3, which use chlorophyll a, sea-surface temperature and
depth to estimate zooplankton biomass. Finally, climate impacts on
global fish biomass were calculated assuming a 5% decrease in global
biomass for every 1 °C of warming, which was calculated from the
projections of six FishMIP models47. For both zooplankton and fish,
changes in specific-respiration rates with warming were calculated
using the widely published Q10 temperature-scaling of two82–85. This
temperature-scaling is close to our derived estimate of 2.05 for the Q10

of prokaryotic specific-production and respiration rates.
To address any systemic bias in the earth-system models86, we

re-scaled environmental drivers using globally constant scalars, so
that the mean surface values for each variable in tropical and tem-
perate (<60°) waters from 2002 to 2016 in each of the earth-system
models were equal to values obtained from the MODIS-Aqua (for
chlorophyll a) and World Ocean Atlas (for temperature, nitrate and
AOU) climatologies, which were used to fit the statistical model. For
example, if an earth-system model’s mean surface temperature in
<60° waters from 2002 to 2016 was 2 °C higher than the tempera-
ture from the World Ocean Atlas, that model’s temperature was
reduced by 2 °C.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw prokaryotic abundance, cell carbon, specific-production rates and
growth efficiency data used in this study are available here: https://doi.
org/10.5281/zenodo.12741063. Heterotrophic bacterial and archaeal
abundance were obtained from three published studies9,26,27, while cell-
specific carbon data (previously unpublished) were obtained from the
Malaspina-2010 expedition28. Specific-production rate data were com-
piled from the Malaspina-201028 (previously unpublished in the form
used here, but can be derived from data published in ref. 39), Hotmix87

(previously unpublished) and Latitud51 expeditions, the Blanes Bay
Microbial Observatory (previously unpublished; http://bbmo.icm.csic.
es/) and the Western Arctic and Ross Sea50. Finally, prokaryotic growth
efficiency data were compiled and published previously by Carol
Robinson34. Global, depth-resolved predictions of prokaryotic abun-
dance, cell carbon, biomass and metabolic activity generated in this
study are available here: https://doi.org/10.5281/zenodo.12541052.
Environmental data used to generate these predictions were obtained
fromWorldOceanAtlas 2018 andMODIS-Aqua (for chlorophyll aonly),
and is also available here: https://doi.org/10.5281/zenodo.12741063. For
the climate change projections, environmental inputs were sourced
from four climate models from CMIP6 (Methods). Climate model data
are available from the Earth System Grid Federation here: https://esgf-
data.dkrz.de/projects/esgf-dkrz/). Source data are provided with
this paper.

Code availability
The code used to conduct all analyses in this study is available at
https://doi.org/10.5281/zenodo.12741078 (ref. 88).
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