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End-to-end reproducible AI pipelines in
radiology using the cloud
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Deepa Krishnaswamy 4, Vamsi Thiriveedhi4, Ahmed Hosny1,3,
Raymond H. Mak 1,3, Keyvan Farahani5, Ron Kikinis 4, Andrey Fedorov4 &
Hugo J. W. L. Aerts 1,2,3

Artificial intelligence (AI) algorithms hold the potential to revolutionize radi-
ology. However, a significant portion of the published literature lacks trans-
parency and reproducibility, which hampers sustained progress toward
clinical translation. Although several reporting guidelines have been pro-
posed, identifying practical means to address these issues remains challen-
ging. Here, we show the potential of cloud-based infrastructure for
implementing and sharing transparent and reproducible AI-based radiology
pipelines. We demonstrate end-to-end reproducibility from retrieving cloud-
hosted data, through data pre-processing, deep learning inference, and post-
processing, to the analysis and reporting of the final results. We successfully
implement two distinct use cases, starting from recent literature on AI-based
biomarkers for cancer imaging. Using cloud-hosted data and computing, we
confirm the findings of these studies and extend the validation to previously
unseen data for one of the use cases. Furthermore, we provide the community
with transparent and easy-to-extend examples of pipelines impactful for the
broader oncology field. Our approach demonstrates the potential of cloud
resources for implementing, sharing, and using reproducible and transparent
AI pipelines, which can accelerate the translation into clinical solutions.

Recent advances in artificial intelligence (AI) are helping to address
many challenges in different medical areas, such as radiology, radia-
tion oncology, and pathology1–4. Several factors contributed to these
notable AI breakthroughs, including the progressive increase in com-
putational processing power driven by the development of specialized
hardware, the recent advances in deep-learning (DL) algorithms, the
availability of widely used open-source DL platforms, and the ever-
growing amount of publicly available data to train and validate AI
models on. Nonetheless, the lack of transparency and reproducibility
of published research, as well as processing pipelines, remains one of
thebiggest challenges facedby thefield5. Recent studies6,7 suggest that

as little as one-quarter of the AI publications are accompanied by all
the resources required to replicate the findings as reported. Although
this so-called reproducibility crisis is not exclusive to AI8, the sheer
complexity andblack-boxnatureofDL algorithms, the large amountof
data required to develop and validate models with millions of para-
meters, and the poor documentation and sharing of AI research5

substantially worsen the problem.
Transparency and reproducibility are of utmost importance,

particularly in the medical field, where errors may result in unpre-
dictable and potentially untoward consequences. While AI can
improve the efficiency and effectiveness of patient care9, poor
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implementations can introduce significant biases, exacerbate health
disparities10, and even lead to misdiagnoses and suboptimal
treatments11,12. Inadequate efforts in making AI research reproducible
makeperformance claims verydifficult to verify13, ultimately leading to
inflated accuracy rates14 and generalizability problems15,16, hindering
the translationof these systems to the clinic17. Furthermore, such a lack
of reproducibility often impedes comparing performance across dif-
ferent AI tools.

Several reporting guidelines, checklists, and standards have been
proposed in recent years to tackle these issues in the medical imaging
field18–24. These protocols aim to instruct scientists on the best prac-
tices in documenting their research and help them identify aspects of
theAI-based analyses that shouldbe reported in publications to ensure
reproducibility. Moreover, community-driven efforts led to the crea-
tion of other resources, such as a registry of AI models developed for
biomedical applications25 that researchers can use to report minimal
attributes of these systems. While these efforts present authors with
the rules to follow during the experimental design process and
manuscript preparation, they do not provide a practical way to share
AI-based pipelines with the community. Even if part of the code is
shared, building the pipeline to reproduce the results reported in a
study is often left as an exercise for the reader26 and, as thoroughly
investigated, this can substantially change the result of computational
pipelines when ill-executed5,27–29. Furthermore, these pipelines often
need domain-specific tools, specific software versions, or hardware
capability to be reproduced—or even run—as intended without
encountering errors, with this information being regularly not pro-
vided to the reader. Without the accurate implementation of all the
steps, any community attempt to expand on a study or to identify
critical issues with (and failing conditions for) a pipeline remains
practically impossible. Overall, in contrast to other research fields
being transformed by technologies—e.g., genomics, where the MIAME
guidelines30 and efforts like the NCI Genomics Data Commons have
been instrumental in improving reproducibility by establishing stan-
dardized reporting and facilitating data sharing31,32—the lack of repro-
ducibility in AI research for medical imaging is significantly more
widespread33.

Cloud-based resources can facilitate a solution to these issues and
improve the reproducibility and scalability of AI studies by revolutio-
nizing the way researchers access and use data in their studies34. The
use of cloud platforms can facilitate access to large-scale cancer ima-
ging data while delivering a more streamlined and consistent com-
puting environment to conduct experiments. Furthermore, by
providing public access to data, software, and hardware, cloud-based
resources can enable researchers to inspect all the components nee-
ded to replicate AI studies, ultimately contributing to the growth and
advancement of the field.

In this study, we used a cloud-based infrastructure for the
implementation of end-to-end reproducible and transparent AI pipe-
lines (see Fig. 1). By leveraging the NCI Imaging Data Commons (IDC)35

for data and the Google Cloud Platform (GCP) for computing, each
step within the AI pipeline—from data retrieval and preprocessing,
deep-learning inference, data post-processing, and the analysis of the
final results—could be examined and reproduced.We show end-to-end
replication of two published AI studies. The first use case is the
implementation of a deep-learning model that enables outcome pre-
diction in patients with non-small cell lung cancer (NSCLC)36, wherewe
were able to extend the study on a previously unseen portion of the
validation dataset. The second use case describes the implementation
of a novel foundation model for the discovery of quantitative imaging
biomarkers with potential for the broader field37. We replicated these
studies and documented all the steps to do so, providing the com-
munity with working examples of how to extend these studies to new
datasets. We share notebooks for the visualization, exploration, and
interpretation of the results so users can replicate the findings. As a

result, the developed end-to-end analysis pipelines complement the
published manuscripts and the accompanying source code reposi-
tories, enabling the user to easily experience the benefits of the pro-
posed approach. Our workflow demonstrates the potential of cloud-
based resources for implementing, sharing, and using reproducible
and transparent AI pipelines, which can accelerate the translation of AI
algorithms into the clinic.

Results
Use Case I: deep learning for lung cancer prognostication
For the first use case, we implemented a convolutional neural network
(CNN) for lung cancer patient stratification36. In the original publica-
tion, the authors used both clinical and imaging data (standard-of-care
computed tomography (CT) scans) of NSCLC patients to assess the
performance of the deep-learning pipeline. Although the authors
shared an open-source implementation of the algorithm, the model
weights, the code to run inference, and a written description of how to
prepare data for inference, the data preprocessing componentwas not
included. One of the independent testing cohorts used in this study is
now hosted by the IDC (i.e., the NSCLC-Radiomics dataset38), allowing
us to use the cloud platform to reproduce the AI pipeline end-to-end.
We provide an overview of the re-implementation in Fig. 1b.

In order to replicate the tumor lesion analysis, we used expert
segmentations of the 3D tumor volumes included in the NSCLC-
Radiomics collection, also hosted by the IDC. Thesemasks are a newer
iteration of the set of labels used for the original publication. As
reported in Fig. 2, the AUC of the original pipeline, computed on the
cohort ofN = 206patients, wasAUC=0.7, while the replicatedpipeline
scored AUC=0.68 when run on the same subset. After testing with the
two-sided Mann–Whitney U test and the DeLong test for paired AUC
curves, we observed that the difference between the results produced
by the pipeline originally published by Hosny et al.36 and those gen-
erated by our pipeline are not statistically significant (two-sided
Mann–Whitney U test P > 0.05, N = 206; DeLong test for correlated
(paired) AUC curves P >0.05, N = 206).

Furthermore, we conducted a Kaplan–Meier analysis to assess the
stratification power of the AI pipeline. We found that both the original
pipeline and the replicated pipeline can successfully stratify higher-
risk patients from lower-risk patients (P < 0.001 and P =0.023, for the
original and the replicated pipeline, respectively; see Fig. 2) when the
risk-score threshold shared with the original publication is used to
compute the split. When a Cox proportional hazards (PH) model was
fitted, we found that the high-risk group had a hazard ratio (HR) of 1.45
(95%CI 1.05–2.00, P <0.05), compared to the low-risk (baseline) group
on the subset of the NSCLC-Radiomics dataset the authors used. This
was similar to the results reported in the original publication (HR of
1.75, 95% CI 1.26–2.44, P <0.005).

Finally, we extended the analysis to the subset of patients that was
excluded from the original publication due to missing clinical and or
imaging data in a previous iteration of the dataset, testing the pipeline
on N = 421 patients (after excluding one patient without a tumor seg-
mentationmask). On thewholeNSCLC-Radiomicsdataset, thepipeline
performance dropped, even though the model retained prognostic
power (AUC=0.61,N = 421). The high-risk group showed a hazard ratio
(HR) of 1.31 (95% CI 1.04–1.65, P <0.05) compared to the low-risk
(baseline) group on the whole dataset. These results indicate that the
cloud-based model implementation was successful, that the model
performance remained significant on a previously unseen portion of
the validationdataset, and that themodelwas robust to variation in the
input segmentation mask, as the original work claims.

Use Case II: foundation models for quantitative biomarker
discovery
For the second use case, we selected a recent study highlighting the
potential of foundation models for quantitative biomarker discovery
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in cancer imaging37. This study presents a foundation model that can
be used for several applications in quantitative cancer imaging. The
authors used self-supervised learning to train a foundationmodel with
strong generalization performance across diverse use cases (lesion’s
anatomical site prediction, nodule malignancy, and tumor prognosis)
and cancer datasets.We provide anoverview of the re-implementation
in Fig. 1b. We used the IDC platform to define a data cohort matching
the subset of the NSCLC-Radiomics and NSCLC-Radiogenomics data-
sets used in the original publication. Using the datamanifest extracted
from the IDC platform (which we make publicly available within the
notebooks), we retrieved the necessary imaging data for the cohort in
a transparent and reproducible manner.

Using the tools provided by the authors, the expert segmenta-
tions included in the NSCLC-Radiomics and NSCLC-Radiogenomics

collection on IDC, and the clinical data available for both collections,
we successfully replicated the ROC and the KM analyses in the original
publication, with the linear model built from the foundation features
achieving an AUC of 0.64 on the NSCLC-Radiomics (LUNG1) collection
(N = 420, after excluding patients withmissing clinical or survival data)
and of 0.65 on the NSCLC-Radiogenomics collection (N = 133, after
excluding patients with missing clinical or survival data), and showing
good stratification performance in the KM analysis (P < 0.001 and
P =0.006 on the two cohorts, respectively; see Fig. 3). Using Cox
proportional hazards analysis, we found that the high-risk group had a
hazard ratio (HR) of 1.43 (95% CI 1.16–1.76, P <0.005) compared to the
low-risk (baseline) group on the NSCLC-Radiomics dataset. On the
NSCLC-Radiogenomics dataset, the HR for the high-risk group was 2.4
(95% CI 1.29–4.46, P < 0.01), consistent with the results reported in the

Fig. 1 | Study Overview. a The proposed approach combines open-source com-
ponents, commercially available tools, and infrastructure being established by the
US National Cancer Institute to implement reproducible image analysis workflows.
b We implemented two cloud-based pipelines from the AI in radiology literature
(Hosny et al. for Use Case I and Pai et al. for Use Case II), showcasing how the
proposed workflow can be used to validate and extend previous studies. For both
use cases, we used cloud-hosted data cohorts from the Imaging Data Commons

(IDC), and components from the Google Cloud Platform to provision pre-
configured GPU-enabled resources for the execution of AI pipelines and their
evaluation, including performance, statistical, and survival analysis. The combina-
tion of these different tools ensures easily accessible end-to-end pipelines that can
be run, inspected, and easily referenced in all of their components. Credit (icons):
FlatIcon.
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paper. These results demonstrate the successful implementation of
the foundation model in cloud-based platforms, as the model
demonstrated similar performance on the cloud-based data in IDC.

Discussion
In this paper, we showcased the potential of cloud-based infra-
structures for implementing and sharing transparent and reproducible
AI-based radiology pipelines. We demonstrated how cloud-based
resources offer potential solutions to issues surrounding the repro-
ducibility of AI studies. By providing a consistent computing envir-
onment, simplifying data exploration and access, and enabling the
storage and sharing of code and results, these resources facilitate the
implementation and sharing of fully reproducible AI pipelines that
complement the original publications. We demonstrated the

effectiveness of our proposed workflow in replicating and dis-
seminating published AI literature. In addition, this workflow offers
researchers and practitioners a practical approach to operating AI
pipelines while simultaneously promoting best practices and open
software for AI in radiology, thus contributing to a more harmonized
environment for computational techniques.

The Imaging Data Commons (IDC)35 provides several capabilities
that are key to enabling this study. First, the IDC provides persistent
and highly efficient access to cancer research data by hosting it in
cloud buckets that are accessible via an open, high-performance
interface. Further, the data are harmonized and standardized using the
DICOM standard, enabling interoperability and reuse of various tools
implementing the standard. Second, besides centralizing and provid-
ing easy access to a wide range of standardized medical imaging data,

NSCLC-Radiomics
Hosny et al. subset

(N=206)

NSCLC-Radiomics
Whole dataset

(N=421)

Fig. 2 | Results for Use Case I—Hosny et al. We validated Hosny et al. on the non-
small cell lung cancer (NSCLC) Radiomics dataset. We compared the cloud
implementation to the original publication on the subset of data from the NSCLC-
Radiomics dataset the authors originally used. Despite the imaging cohort being
updated over time, we found no statistically significant with the original results
(AUC =0.7 and AUC=0.68 for the original pipeline and the cloud-based re-imple-
mentation, respectively; DeLong test for paired AUC curves P =0.62, N = 206). The
differencebetween the risk-scoredistributionswasnot statistically significant (two-

sided Mann–Whitney U test P >0.05, N = 206). Both models showed a good stra-
tification power (Hosny et al. HR= 1.75, 95% CI 1.26–2.44, P <0.005; cloud-re-
implementation HR= 1.45, 95% CI 1.05–2.00, P =0.02). Furthermore, we extended
the analysis to a subset of patients thatwere excluded from the original publication
due tomissing clinical andor imaging data in a previous iteration of the dataset.We
found that, even if the pipeline performance dropped significantly, the model
retained some of its prognostic power (AUC =0.61, N = 421; HR= 1.31, 95% CI
1.04–1.65, P =0.02). Credit (icons): FlatIcon.
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the IDC allows users to create cohorts of imaging study and image-
derived data based on DICOMmetadata, thus effectively enabling the
validation of medical imaging use cases using public datasets. Finally,
since the platform supports data versioning, the specific cohorts uti-
lized in our study will remain accessible in IDC without requiring any
maintenance from the data submitters. This ensures long-term pre-
servation and accessibility of imaging data for reproducibility and
future research while helping to associate a set of processing results
with a specific cohort version. As a data commons, IDC provides a
range of tools that aim to support the end-to-end process of algorithm
development and continuous data enrichment, including hosted
viewers to enable visualization of both the images and image-derived
data, tools for conversion of the AI analysis results to standard DICOM
representation and procedures for sharing the generated analysis
results as a complement to the analyzed images.

We decided to use Google Colaboratory as a cloud-based com-
putational resource as the platform provides users with a Jupyter
Notebook environment forwriting and running Python code alongside
markdown annotation from a web browser—eliminating the need to
set up a local runtime environment—and enables us to easily share
minimal working examples and full-fledged analyses. To bolster
transparency and reproducibility, the user can integrate text, visuali-
zations, and code in the notebooks part of this resource, facilitating a
comprehensive communication of the tools we used, the inner work-
ings of the data preparation and processing pipeline, and the research
findings.

As for the use cases, there are several reasons we chose Hosny et
al. and Pai et al. for this study. First, since both models were originally
developed and validated by our research group, we had a deep
understanding of the models and all of the steps necessary for

replication—a necessary condition in order to limit imprecisions and
flaws in the implementation of cloud-based resources for an AI pipe-
line. Second, we believe both studies are relevant in the field of deep
learning in radiology. Hosny et al. is one of the field’s first and most
cited studies developing deep radiomics techniques for patient prog-
nosis, while we believe the foundationmodel from ref. 37 has potential
for broad applications in cancer research and could benefit from the
dissemination of a cloud-based resource that the community can use
to verify, in a transparent and reproducible manner, the performance
the model. Finally, both Hosny et al. and Pai et al. validated the per-
formance of their models on two non-small cell lung cancer datasets
hosted by the IDC, i.e., the NSCLC-Radiomics dataset and the NSCLC-
Radiogenomics—allowing us to use the platform for the development
of our cloud-based workflow.

While cloud-based infrastructure facilitates potential solutions to
issues surrounding the reproducibility of AI studies, we recognize its
adoption also comes with several challenges, the biggest of which is
the learning curve for the user unaccustomed to the different inter-
acting blocks and tools. Such a learning curve can vary depending on a
researcher’s background and familiarity with cloud computing, and it
typically involves gaining an understanding of cloud infrastructure and
services and learning how to use cloud-based tools for data storage,
processing, and analysis. However, many cloud providers and cloud
resources (such as Google Colaboratory, GCP, the CRDC, and IDC)
offer comprehensive documentation, trainingmaterial, and access to a
growing community of practitioners to provide guidance and support.
Furthermore, this process could be substantially facilitated by the
rapid expansion of the cloud-computing landscape, with many alter-
natives being used andpromoted inmedical imaging and in the AIfield
nowadays. A few notable examples besides the Google Cloud Platform

NSCLC-Radiomics
(N=420)

NSCLC-Radiogenomics
(N=133)

Fig. 3 | Results for Use Case II—Pai et al.We replicated the findings of Pai et al. on
the non-small cell lung cancer (NSCLC) Radiomics dataset and the NSCLC-
Radiogenomics dataset. The linear model built on top of Pai et al.’s foundation
model achieved an AUC of 0.64 on the NSCLC-Radiomics collection (N = 420) and
of 0.65 on the NSCLC-Radiogenomics collection (N = 133) and significantly strati-
fying patients in the Kaplan–Meier analysis (P <0.001 and P =0.006 on the two

cohorts, respectively). The high-risk group had a hazard ratio (HR) of 1.43 (95% CI
1.16–1.76, P <0.005) compared to the low-risk (baseline) group on the NSCLC-
Radiomics dataset, while on the NSCLC-Radiogenomics dataset, the HR for the
high-risk group was 2.4 (95% CI 1.29–4.46, P =0.01), consistent with the results
reported in the original publication. Credit (icons): FlatIcon.
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areAmazonSagemaker Studio Lab39 (usedbyplatforms suchasGrand-
Challenge40 and Hugging Face41) and Microsoft Azure ML (also sup-
ported by Hugging Face41). Several other cloud-based platforms, such
as Binder42 and Notable43, are blooming—but might not be ideal for
medical imaging or GPU-intensive pipelines (as the ones presented in
this work).

The cloud offers a significant advantage for researchers, espe-
cially those lacking access to in-house data, who cannot generate data
at the same scale aswhat is available fromenvironments such as IDCor
who lack the infrastructure for storing and processing large datasets.
However, it must be recognized that using the cloud for data sharing,
particularly for reproducibility purposes, involves additional steps. For
instance, anonymization and institutional approval are often necessary
to address security and privacy concerns about sharing protected
health information, such as medical images and associated clinical
data. In the cases when, for the aforementioned reasons, sharing data
is impractical, the users might prefer to opt for techniques such as
federated learning, as it enables collaborators to build and refine AI
models without sharing raw data (only model updates are exchanged,
ensuring that sensitive patient information remains localized and
secure). Furthermore, the proposed solution assumes that the data
needed for the notebook and the cloud-computing platform itself are
available in the region in which the user is trying to reproduce the
experiments. Governance of the data access and the cloud-computing
access is outside of the scope of this manuscript, but it is important to
recognize this can pose a limitation to our workflow. Nevertheless, we
believe the cloud can be of great help in overcoming system limita-
tions often encountered in large-scale research studies.

Cloud computing offers a range of advantages over on-premises
computation, but it does not eliminate the utility of the latter. Rather,
they offer an alternative that should be recognized by the research
community. One of the benefits of cloud computing is the easy and
ubiquitous access to a computational environment that requires no
experience to be set up and maintained, which researchers can lever-
age without upfront investments in hardware or infrastructure. The
cloud offers extreme scalability and elasticity of the available resour-
ces and allows one to easily access the latest computational cap-
abilities without investing in costly upgrades. While this can be
particularly advantageous for small research teams or individuals who
may not have access to powerful computing resources, using cloud
computing can lead to dependence on third-party providers, which
can be a concern for researchers who may need to access resources
and data in the long term. Cloud-computing providers may change
their pricingmodels or even discontinue services, which could disrupt
the research workflow. In addition, cloud computing may limit the
control and flexibility of the user in some regards. For example,
researchers may be limited in using obsolete code that requires spe-
cific hardware or software—although this problem is not limited to
cloud resources but can easily extend to local computational clusters.
Furthermore, cloud providers might update these components with-
out appropriately informing the users, resulting in the disruption, or
even failure, of the previously developed pipelines. Even if this does
not entirely hinder the benefits of the added transparency, it is
essential to note the implementation and sharing of resources fol-
lowing the proposedworkflow and through the aforementioned cloud
services do not eliminate the need to maintain the code repository
over time. Finally, cloud computing may not always be the most cost-
efficient solution for all use cases, particularly for long-term or high-
usage applications.

Although we strongly believe using the cloud can bolster trans-
parency and reproducibility in the field of AI for radiology, we recog-
nize that, in some cases, there might be other factors at play that limit
such good practices in our field. For instance, we acknowledge that
Intellectual Property Rights (IPR) can pose challenges, especially when
such AI models are being validated (or planning to be validated)

further in a clinical setting (e.g., in perspective clinical trials) or when
they can be of commercial value for companies funding the research—
as a significant part of AI research in radiology, and, more generally,
medical imaging, is nowadays driven by industry. Moreover, in such a
highly competitive field, researchers are often caught in a race against
time, striving for rapid development and deployment to maintain a
competitive edge. This urgency can lead to a reluctance to fully
embrace transparency, as research groups may fear that sharing too
much information could have a negative impact on their advantage.
However, the proposed workflow is not aimed at researchers who are
boundby the aforementioned constraints. Rather, we see theworkflow
as a step toward the solution for researchers who are willing to
accompany published literature with resources that enable indepen-
dent validation andwhodon’t see the current guidelines and checklists
as a pragmatic way to do so. To this day, reproducing AI studies in the
field of radiology (and, more generally, in healthcare), as widely
documented in the literature, remains a challenge even for the more
technically proficient users. Importantly, in such a competitive field,
researchers, and also—perhaps, more importantly—providers and
patients are also caught in a race against time to gain access to the
latest advances in AI in order to evaluate the robustness of the latest
tools and ultimately expedite translation of the robust algorithms into
the clinic. Although we recognize there is space for improvements, we
believe the proposed approach may help enable such expedited
translation by simplifying the process for developers and users.

In summary, cloud computing offers several advantages for
reproducibility in AI research, including democratizing access to large
standardized datasets and free-to-use, easily accessible, consistent
computational environments. There still are essential factors to con-
sider when using cloud computing in AI research, often cost-related—
but we believe embracing cloud technology could reduce its costs and
ultimately yield the providers of cloud-computing resources to
develop more customized and cost-effective solutions for the medical
image analysis research community. Finally, the long-term cost savings
of cloud adoption span beyond direct infrastructure and computing
expenses. By enabling greater collaboration and data sharing, cloud
technology can acceleratemedical AI research and the development of
more accurate, effective, and personalized clinical tools. This under-
scores the compelling case for embracing cloud technology inmedical
AI research.

Methods
Data from Imaging Data Commons
We retrieved two collections with imaging data from the Imaging Data
Commons (IDC)35,44, a cloud-based environment for publicly available
cancer imaging data integrated with analysis and exploration tools.
The first is the NSCLC-Radiomics collection38,45 (also known as LUNG1
dataset), consisting of 422 patients with stage I–IIIb non-small cell lung
cancer, treated with radiotherapy or chemo-radiation therapy at the
MAASTROClinic in TheNetherlands, all of whichwere imagedwith CT,
with or without intravenous contrast. For all of the patients, a manual
segmentation of the tumor was drawn by a radiation oncologist for
treatment purposes. We used the IDC platform to define a data cohort
matching the subset of the NSCLC-Radiomics dataset used in the ori-
ginal publication. By querying the accompanying metadata curated in
IDC tables using SQL, we retrieved the necessary imaging data for the
cohort in a transparent and reproducible manner. The query to gen-
erate the imaging data cohort (and its results) are publicly available
within the notebooks (and in Supplementary Item 1), together with a
description of the procedure used to select the validation cohorts for
our study.The resourceswe share alsodescribe thedetails andprovide
an exampleof how to run thequeries togenerate the validation cohort.

The second dataset is the NSCLC-Radiogenomics collection46,47.
This dataset includes CT images for 211 NSCLC stage I–IV patients
acquired at the Stanford University School of Medicine and at the Palo
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Alto Veterans Affairs Healthcare System. The dataset also features
segmentation maps of the tumors, manually drawn from the CT scan
by several radiation oncologists, and semantic annotations of the
tumors as observedon themedical images using auniformvocabulary.
In addition, the imaging information is matched with clinical and sur-
vival data. The query to generate the imaging data cohort is available in
Supplementary Item 2, while in the notebooks, we provide a data
manifest to do so.

Cloud-based implementation of DL pipelines
We implemented our cloud-basedAI pipelines for both use cases using
the computing infrastructure provided by Google Colaboratory48 (or
Colab), sharing additional resources researchers can use to replicate
and build upon the study. The Colab Notebooks were built on top of
the standard Colab environment and were tested using several Colab
configurations (i.e., “standard” CPU-only, “high RAM” CPU-only, “free”
GPU, and “pro”GPU). Additional details are available in Supplementary
Table 1. While defining such a computational environment for medical
image processing, we selected tools that are open-source and actively
developed (ormaintained). Formost of themedical image preparation
and DICOM CT data preprocessing tasks, in both use cases, we used
Plastimatch49, Numpy50, and the Python APIs to SimpleITK51 (which is a
simplified, open-source interface to the Insight Segmentation and
Registration Toolkit52). To provide visual insights into the segmenta-
tion masks and 3D medical images in the notebooks, we used
ITKWidgets53, a utility that provides interactive widgets to visualize
images, point sets, and meshes in 3D or 2D. We also provided, when-
ever possible, a link to the Imaging Data Commons viewer for radi-
ological images, a browser-based zero-footprint DICOM viewer based
on the OHIF54 viewer. To cross-load cloud-hosted data to the Colab
instances, we used s5cmd55, a platform-agnostic open-source alter-
native to the tools developed by cloud providers. Since this data cross-
loaded from the ImagingData Commons is saved inDICOM format, we
used dicomsort56, a tool that provides custom sorting and renaming of
DICOM files to uniform their structure before processing. Other tools
we used in various operations involving the reading, conversion, or
preparation of DICOM files are pydicom57 and dcmrtstruct2nii58. For
the evaluationmetrics and for survival analysis, we used Scipy59, Scikit-
learn60, and Lifelines61. All of the packages’ and tools’ versions are
available as part of our GitHub project repository and can be retrieved
directly from the Colab notebooks. To make it easier for others to
extend both studies, we share notebooks incorporating comprehen-
sive descriptions of every step of the replication process to help users
navigate the complexity of the pipelines. Finally, we share several
notebookswith the codeused to generate the resultswepresent in this
publication and the artifacts resulting fromboth pipelines (i.e., the risk
scores for the prognostic model in ref. 36 and the linear models in
ref. 37 and the deep features extracted from the foundationmodel for
both the NSCLC-Radiomics and NSCLC-Radiogenomics collections by
the foundation model in ref. 37).

Use Case I: deep learning for lung cancer prognostication
In the original study, Hosny et al. trained a CNN for predicting out-
comes by analyzing tumor lesions on CT images and shared the
model with the original investigation, together with the AI-derived
prognostic scores for the patients analyzed in the study. The original
publication used a subset of the NSCLC-Radiomics dataset38,45

(N = 211 for the AUC analysis and N = 307 for the Kaplan–Meier ana-
lysis), as well as older and incomplete clinical and survival data. In our
study, for both use cases, we use an updated dataset (N = 422) of the
same cohort with clinical and follow-up data updated at the end of
2020 (NSCLC-Radiomics Version 4). Compared to the version used
by Hosny et al., the dataset was substantially updated to address
issues identified in earlier versions, such as corrections for the seg-
mentation mask misalignments and omissions. In addition, the

clinical data was updated to reflect follow-up durations and survival
information.

We provide an overview of the re-implementation in Fig. 3. Fol-
lowing the textual description provided by the authors, we imple-
mented a preprocessing pipeline for converting the imaging data
retrieved from IDC to a format suited for the deep-learning pipeline
using open-source tools. To promote forward compatibility, we also
converted the original model weights in the open neural network
exchange (ONNX)62. We make the code for the model conversion and
additional details available as part of our project repository, together
with a notebook that incorporates a comprehensive description of
every step of the replication process to help users navigate the com-
plexity of the pipeline. Finally, we share a notebookwith the code used
to generate the results we present in this publication63.

The comparison between the original pipeline and the re-
implementation was carried out using several metrics, statistical, and
survival analysis tools—such as the area under the receiver operating
characteristic (ROC) curve (AUC), the two-sidedMann–WhitneyU test,
the DeLong test for paired AUC curves, and Kaplan–Meier (KM) and
Cox Proportional Hazard (PH) modeling—with the study concluding
that deep-learning techniques could provide valuable insights into
lung cancer prognosis and potentially assist in personalized treatment
decisions.

Use Case II: foundation models for quantitative biomarker
discovery
In this study, Pai et al. investigated whether foundation models, pre-
trained using self-supervised learning, can improve the development
of deep-learning-based imaging biomarkers. The foundation model
from the paper was validated on theNSCLC-Radiomics dataset and the
NSCLC-Radiogenomics dataset46,47. Details for the former are available
in the previous section, while the NSCLC-Radiogenomics includes CT
images for 211 NSCLC stage I–IV patients acquired at the Stanford
University School of Medicine and the Palo Alto Veterans Affairs
Healthcare System. The dataset also features segmentation maps of
the tumors, manually drawn from the CT scans, and semantic anno-
tations of the tumors as observed on the medical images using a
controlled vocabulary. In addition, the imaging information is mat-
ched with clinical and survival data. As in ref. 37, we included all the
patients with annotated gross tumor volumes and clinical data
(N = 133) in our study. Pai et al. concluded that modeling using deep
features from the foundation model, despite being substantially more
resource-efficient than supervised learning, was the most robust
across tasks, offering stable performance even when the size of the
fine-tuning datasets was considerably reduced.

The model validation was carried out using several metrics and
survival analysis tools, such as the area under the receiver operating
characteristic (ROC) curve (AUC), Kaplan–Meier (KM) analysis, and
Cox Proportional Hazard (PH) modeling.

Data availability
All of the imaging data used in the study is publicly available through
the Imaging Data Commons platform. The aforementioned notebooks
contain the queryormanifest used to generate the exact subset of data
used for analysis purposes. All of the clinical data is publicly available
through the Imaging Data Commons platform and the TCIA64. The
notebooks at the project repository contain the link to such clinical
data and the code to generate the exact subset of data used for analysis
purposes. All of the artifacts (e.g., the risk scores and the deep fea-
tures) generated from the two pipelines are available in the project
repository and as part of the Zenodo release.

Code availability
The codebase and the relative documentation can be accessed at the
project repository https://github.com/ImagingDataCommons/idc-
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radiomics-reproducibility/releases/tag/v2.1.0 and referred to through
Zenodo (https://zenodo.org/records/10123555). The cloud imple-
mentation of the pipeline can be accessed and run through the note-
books found at https://github.com/ImagingDataCommons/idc-
radiomics-reproducibility/tree/main/notebooks. For Hosny et al.’s
use case: The minimal working example of the cloud pipeline can be
run at https://colab.research.google.com/github/ImagingData
Commons/idc-radiomics-reproducibility/blob/main/notebooks/hosny
_processing_example.ipynb. The complete model validation cloud
pipeline can be run at https://colab.research.google.com/github/
ImagingDataCommons/idc-radiomics-reproducibility/blob/main/
notebooks/hosny_complete_inference.ipynb. The results analysis,
generating all of the plots used in themanuscript figures, can be run at
https://colab.research.google.com/github/ImagingDataCommons/
idc-radiomics-reproducibility/blob/main/notebooks/hosny_results_
comparison.ipynb. For Pai et al.’s use case: The minimal working
example of the cloud pipeline can be run at https://colab.research.
google.com/github/ImagingDataCommons/idc-radiomics-
reproducibility/blob/main/notebooks/pai_processing_example.ipynb.
The complete model validation cloud pipeline, including the results
analysis (generating all of the plots used in themanuscript figures), can
be run at https://colab.research.google.com/github/ImagingData
Commons/idc-radiomics-reproducibility/blob/main/notebooks/pai_
complete_inference.ipynb.
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