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Correlating physico‑chemical 
properties of analytes with Hansen 
solubility parameters of solvents 
using machine learning algorithm 
for predicting suitable extraction 
solvent
Eman A. Mostafa 1*, Mohammad Abdul Azim 1, Asmaa A. ElZaher 1, Ehab F. ElKady 1, 
Marwa A. Fouad 1,2, Fatma H. Ghazy 1, Esraa A. Radi 3, Mahmoud Abo El Makarim Saleh 4 & 
Ahmed M. El Kerdawy 1,5

Artificial neural networks (ANNs) are biologically inspired algorithms designed to simulate the way 
in which the human brain processes information. In sample preparation for bioanalysis, liquid–liquid 
extraction (LLE) represents an important step with the extraction solvent selection is the key laborious 
step. In the current work, a robust and reliable ANNs model for LLE solvent prediction was generated 
which could predict the suitable solvent for analyte extraction. The developed ANNs model takes 
a set of chosen descriptors for the cited analyte as an input and predicts the corresponding Hansen 
solubility parameters of the suitable extraction solvent as a model output. Then, from the solvent 
combination’s appendix, the analyst can identify the proposed extraction solvents’ combination 
for the cited analyte easily and efficiently. For the experimental validation of the model prediction 
capabilities, twenty structurally diverse drugs belonging to different pharmacological classes were 
extracted from human plasma. The extraction process was performed using the predicted extraction 
solvent combination for each drug and quantitively estimated by HPLC/UV methods to assess their 
extraction recovery. The developed LLE solvent prediction model is in‑ line with the global trend 
towards green chemistry since it limits the consumption of organic solvents.

Keywords Liquid–liquid extraction, Artificial Neural Network model, Hansen solubility parameters, 
Extraction solvent prediction, Model validation

Identification and quantitation of analytes in biological fluids, such as whole blood, blood plasma, serum, urine, 
and saliva represent the most common definition of bioanalysis of pharmaceuticals. Bioanalysis has multidisci-
plinary applications, for example, in hospitals, it is essential to ensure that patients are properly medicated and 
compliant. In addition, bioanalysis plays an important role during the drug development and clinical trial stages 
for pharmacokinetics, bioequivalence, bioavailability and toxicokinetic investigation as well as for ADME studies 
performed for the newly developed  drugs1,2. Many factors influence the development of a robust bioanalytical 
method including the matrices of interest, the range over which analytes need to be measured, the physico-
chemical properties of the analyte as well as the analyte(s) extraction process which is a very crucial step in 
most analytical procedures, especially bioanalytical  ones3–5. To ensure the robustness of the developed analytical 
method, simplification of the complex biological sample should be carried out while keeping the analytes that 
are present in extremely low  levels6. Thus, sample preparation is one of the key steps in bioanalytical procedures 
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which is considered the most challenging one as it consumes time and effort for selecting the best extraction 
solvent system that efficiently extract the target analyte with high recovery and  purity7.

A key technique in sample preparation is liquid–liquid extraction (LLE) which can provide extracts with 
low levels of the co-extracted matrix material. LLE involves the distribution of sample components between 
two immiscible liquid phases where analytes must be soluble in the extraction solvent and have high partition 
coefficients in it, for that, several solvent combinations are to be tested to achieve the best analyte extraction 
 recovery8,9. LLE process offers several advantages such as simplicity of the technique, high throughput, elimi-
nation of environmental hazards, and high selectivity of  separation10. Despite the obvious advantages of LLE, 
some challenges are associated with the traditional LLE such as multistage time-consuming procedures and the 
consumption of large amounts of organic  solvents11,12.

Hansen Solubility Parameters (HSPs) were developed by Charles M.  Hansen13,14 to predict if one substance 
will dissolve in a solvent forming a solution. Each solvent is given three HSPs which measure the interaction 
energies between its molecules and the solute, viz, dD (the dispersion interaction energy), dP (the dipolar inter-
molecular forces energy) and dH (the hydrogen bond energy). HSPs are powerful descriptors for evaluating 
interactions of molecules and their solubility in different liquids, thus, they have been used for several purposes 
such as understanding the solubility and dispersion properties of carbon nanotubes and buckyballs. Furthermore, 
they are used for the fast selection of safer and cheaper solvent combinations where an undesirable solvent can 
be rationally replaced by a combination of more desirable solvents whose combined HSPs equal those of the 
original  solvent15–19.

Artificial neural networks are a commonly used machine learning algorithm for data modeling which adapt 
to complex relations between input and output data on the basis of their supervised  learning20. In any modeling 
study, model validation is a crucial step as it evaluates the predictive ability of the generated model and ensures 
the model’s significance and that the model results are not merely due to a statistical  chance21. Model validation is 
carried out using internal validation (e.g., cross-validation) as well as external validation which uses unseen test 
set to validate that the obtained model is not merely the result of a descriptor-target property chance  correlation22.

The primary aim of the current study is to develop a robust and reliable LLE solvent prediction model based 
on the analyte’s descriptors to predict the suitable solvent, or solvent combination, for the extraction of this 
specific analyte from aqueous-based matrices e.g., plasma. The developed model should save time and effort 
facilitating the extraction process and reducing the number of trials and the volume of consumed organic sol-
vents making liquid–liquid extraction easier, straightforward and more eco-friendly in line with green chemistry 
aspects. For the experimental validation of the model prediction capabilities, twenty structurally diverse drugs 
from different pharmacological classes were extracted from human plasma using the model predicted solvent 
combination for each drug and quantitively estimated by HPLC/UV methods to study their extraction recovery.

Experimental
Materials and reagents
The used drugs were supplied by different pharmaceutical companies. HPLC-grade acetonitrile and methanol 
were purchased from Sigma-Aldrich (Germany). Ortho-phosphoric acid, acetic acid and potassium hydroxide 
were supplied by EL-Nasr Pharmaceutical Chemicals Co., Egypt. Potassium dihydrogen phosphate and ammo-
nium acetate were supplied by Sigma-Aldrich (Germany). Bi-distilled water was produced in-house (Aquatron 
Water Still, A4000D, UK). Membrane filters of size 0.22 μm were purchased from ChromTech (UK). Human 
blank plasma was obtained from the Holding Company for Biological Products and Vaccines (VACSERA, Egypt) 
and stored at – 70 °C.

Instrumentation
The HPLC instrument (Agilent1100 series) was composed of an Agilent isocratic pump G1310A, Agilent UV–vis-
ible detector G1314A, an Agilent manual injector G1328B with (20 mL) injector loop and Inertsil ODS-3 column 
(5 µm, 150 mm × 4.6 mm). An Agilent syringe, (50 mL, USA) and a Powersonic 405 ultrasonic processor (Human 
Lab INC- Hwaseong city, Korea) were employed. The pH was adjusted by the addition of ortho-phosphoric acid 
or potassium hydroxide by means of a pH meter equipped with a glass electrode (Jenway, 3505, Essex, UK).

LLE modeling
Dataset construction
The extraction data of sixty-three structurally diverse drug molecules belonging to different pharmacological 
classes covering a wide range of physicochemical properties were self-collected from literature. The selected 
extraction solvents were ethyl acetate, diethyl ether, tert-butyl methyl ether, and dichloromethane, whereas drugs 
extracted with toxic solvents (e.g., chloroform) were excluded. The values of HSPs of the solvents were obtained 
from Dr Manuel Díaz de los Ríos, Director of Derivatives Division,  ICIDCA23.

Drawing structures and molecular descriptors calculation
Molecular Operating Environment (MOE, 2020.0901) software was used for all the molecular modeling studies. 
Canonical SMILES of the sixty-three drugs were imported from  PubChem24 into the MOE which were then 
converted into 3D structures. Energy minimization was performed for the built compounds until a RMS gradient 
of 0.05 kcal  mol−1 Å−2 with MMFF94x force field and the partial charges were automatically calculated. MOE 
molecular mechanics descriptors were calculated for each compound and RapidMiner 7.1.000 Basic  Edition25 
was used to remove low variance descriptors using Remove Useless Attributes operator as they add no additional 
information to the model ’’redundant descriptors’’, this left a pool of 301 descriptors. Based on the relation of 
the different descriptors to the target parameters ’’Hansen solubility parameters’’, we found that dipole moment 
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(Dipole), Van der Waals volume Å3 (Vdw_vol), Van der Waals energy (E_vdw), and log octanol/water partition 
coefficient (logP(o/w)) are the most important descriptors.

Training set and test set generation
The selected 63 drugs were split manually in a random manner into a training set of 48 molecules and an external 
test set of 15 molecules such that the test set maintains the same distribution of Hansen solubility parameters 
(HSPs) in the original dataset by keeping the ratio of the different solvents in the training and test sets equals 
to the original dataset (Supplementary Table S126–73 and Supplementary Table S274–88 in Supplementary File).

LLE model generation
MATLAB (version: 7.12.0.635) (R2011a) was used for generating the ANN models. Mean Absolute Error (MAE) 
is the model evaluation metric used to describe the average model performance. Linear Layer (design) was used 
in the ANN model generation.

Model validation
To assess the prediction ability and the robustness of the generated models, the developed model was validated 
using:

(a) Internal validation: this was carried out using leave-20%-out cross-validation  (CVL20%O) in which the train-
ing set was split into five subsets and training and test subsets were chosen such that each point appears in 
the test subset once. Five ANN models were generated using linear layer design network.

(b) External validation: This was carried out by using the generated model to predict Hansen solubility param-
eters for the independent test set. This should be a direct simulation of the real case scenario which requires 
the prediction of new compounds (unseen by the model).

Experimental validation
To test the generated model in a real case scenario, experimental validation of the model prediction was carried 
out. The developed ANN model was applied on twenty structurally diverse drugs from different pharmacological 
classes (Fig. 1) to predict their suitable extraction solvent combinations.

Prediction of the HSPs of the extraction solvent combination
First, the model’s four descriptors of the 20 drugs were calculated using MOE (Supplementary Table S3 in Sup-
plementary File) and then ANN linear layer design model was applied on them to predict the HSPs of the solvent 
combinations to be used to extract each drug and using the solvent combination appendix (Supplementary 

Figure 1.  Chemical structures of the investigated drugs.
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Table S4 in Supplementary File) the corresponding solvent mixture for each drug was determined based on its 
predicted HSPs.

Determination of the solute recovery from spiked plasma using the predicted solvent combinations
The twenty drugs were extracted from spiked human plasma using the predicted solvent combinations. Various 
mobile phases and chromatographic conditions were used for the separation and quantitation of those drugs 
using HPLC/UV methods (Supplementary Table S5 and Supplementary Fig. S1 in Supplementary File). Selec-
tivity of the developed chromatographic methods was confirmed by the absence of any interfering peaks from 
plasma samples at the retention times of the investigated drugs (Supplementary Fig. S2 in Supplementary File).

Preparation of standard solutions
Stock solutions (1 mg/ml) were prepared by dissolving each drug in the appropriate HPLC-grade solvent (water, 
methanol or acetonitrile) and stored at 4 °C nominal. These stock solutions were diluted with a mixture of metha-
nol and water (50: 50, v/v) to attain the required working solutions (100, 200 and 300 μg/ml).

Preparation of human plasma samples and analyte extraction
Plasma samples (0.5 ml) containing the analyte were vortexed for 30 s. The extraction solvent mixture was added 
to the spiked plasma and blank samples. Samples were vortexed for 1.5 min, centrifuged at 4500 rpm for 10 min. 
The clear supernatant was transferred into a clean Wassermann tube then evaporated to dryness at 45 °C under 
the stream of Nitrogen then dried extract was reconstituted with 100 μl of the mobile phase.

Procedure for extraction recovery calculations
The recovery following the sample preparation using the LLE model was evaluated by comparing the mean peak 
area of three extracted samples of low, medium, and high concentrations to the mean peak area of three plain 
standards of equivalent concentrations. Six replicates for each concentration were performed with the established 
extraction procedure.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Results and discussion
A correlation between some of the molecular mechanical descriptors of the drugs, dipole moment, Van der Waals 
volume, and log octanol/water partition coefficient and the target property (HSPs) of the extraction solvents using 
ANN was performed. The selection of the descriptors was based on showing high mutual solubility intercorrela-
tion. The target property (HSPs) are physicochemical parameters that are commonly used to estimate the form 
of interactive forces that cause material compatibility. The HSP assumes that cohesive energy (E) can be divided 
into three parts: atomic dispersion (Ed), molecular dipolar interactions (Ep), and hydrogen-bonding interac-
tions (Eh). ANNs are a type of computer programs that can be taught to mimic relationships in data sets. After 
the ANN has been ‘trained,’ it can be used to predict the outcome of a new set of input data, such as a different 
composite system. Linear Layer (design) was used in the ANN model generation (Fig. 2). The generation was 
done using a custom script written on MATLAB (version: 7.12.0.635) (R2011a).

The mean absolute error of a model represents the mean of the absolute values of the individual prediction 
errors on the overall instances in the dataset. Each prediction error is the difference between the predicted value 
and the true value for the instance.

where ŷi is the predicted value,  yi is the true value, and n is the sample size.

MAE =

∑n
i=1

∣∣ŷi−yi
∣∣

n

Figure 2.  The developed ANN model structure.
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MAE of internal validation
MAE of Hansen solubility parameters was found to be: 0.77 ± 0.48 for Hansen D, 1.19 ± 0.87 for Hansen P, and 
1.12 ± 0.46 for Hansen H. The MAE of CV was calculated by absolute subtracting the predicted values from 
reported ones then divided by the number of the training set (Supplementary Table S6 in Supplementary File).

MAE of external validation
MAE of Hansen solubility parameters was found to be: 0.79 ± 0.56 for Hansen D, 1.14 ± 0.97 for Hansen P, and 
1.23 ± 0.35 for Hansen H. the MAE of external validation was calculated by absolute subtracting the predicted 
values from reported ones then divided by the number of the test set (Supplementary Table S7 in Supplementary 
File).

Predicted HSPs of the investigated drugs and the predicted solvents’ combinations
The predicted Hansen solubility parameters of the twenty drugs were obtained from the application of the 
developed ANN model on those drugs. For better extraction recovery results, the use of extraction solvents’ 
combination is recommended than the use of a single extraction solvent. Supplementary Table S5 in Supple-
mentary File shows the Hansen solubility parameters of different combinations of the four extraction solvents 
used in the developed model with different ratios. The fraction of ratio of each solvent has been multiplied to 
its Hansen solubility parameters then HSP values for both solvents have been summed giving the HSPs for the 
solvents’ combination. By visual inspection of the solvents’ combinations’ table and the predicted HSP values 
obtained from the model, one or two solvent combinations could be selected that have HSP values close to the 
predicted values obtained from the prediction model (Table 1).

Recovery of the investigated drugs
Recovery of each drug was performed by comparing the results obtained from the analysis of plasma spiked with 
three different concentrations to non-extracted samples of equivalent concentrations (Table 1).

Conclusion
A robust and validated LLE solvent prediction model which helps in predicting the organic extraction solvents’ 
combinations for different drugs from aqueous-based matrices was built and validated. This was performed by 
making a correlation between some of the molecular mechanical descriptors of the drugs and the target property 
(HSPs) of the extraction solvents using ANN. Assessment of the prediction ability and the robustness of the 
generated model has been performed by internal and external validation. The generated ANN model has been 
applied on twenty drugs from different pharmacological classes. The extraction process of the investigated drugs 
was performed using the predicted extraction solvents’ combination for each drug and quantitively estimated 
by HPLC/UV methods to study their extraction recovery. Good extraction recoveries were achieved. Therefore, 

Table 1.  Predicted Hansen solubility parameters and extraction solvents’ mixtures of the investigated drugs 
using linear layer design model with their extraction recovery. *Extraction recovery is the average recovery of 
three concentrations for each drug where each concentration was repeated six times. *TBME tertiary-Butyl 
methyl ether.

Drug Hansen D Hansen P Hansen H Predicted solvents’ mixture (1) Predicted solvents’ mixture (2) Extraction recovery*

Amlodipine 15.398 4.814 5.879 Ethyl acetate: TBME (60:40)* Diethyl ether: Dichloromethane (60:40) 92.73 ± 0.34%

Ambrisentan 15.904 5.533 6.250 Dichloromethane: TBME (50:50) Ethyl acetate: Dichloromethane (90:10)* 55.93 ± 0.45%

Risperidone 15.453 4.901 5.981 Ethyl acetate: TBME (60:40) Dichloromethane: TBME (30:70)* 85.29 ± 0.35%

Indapamide 15.557 5.024 6.208 Ethyl acetate: TBME (70:30) Ethyl acetate: Diethyl ether (80:20)* 93.29 ± 0.48%

Tenofovir alfenamide 15.045 4.336 5.807 Ethyl acetate: TBME (30:70) Ethyl acetate: Diethyl ether (50:50)* 71.95 ± 0.40%

Oxcarbazepine 16.129 5.812 6.553 Ethyl acetate: Dichloromethane (80:20)* Dichloromethane: TBME (60:40) 88.78 ± 0.67%

Desloratadine 15.776 5.330 6.118 Dichloromethane: TBME (40:60)* Diethyl ether: Dichloromethane (50:50) 98.63 ± 0.41%

Saxagliptin 15.554 5.021 6.322 Ethyl acetate: Diethyl ether (70:30)* Ethyl acetate: TBME (70:30) 69.45 ± 0.60%

Moxifloxacin 15.845 5.450 6.389 Ethyl acetate: Diethyl ether (90:10)* Dichloromethane: TBME (50:50) 86.22 ± 0.69%

Etodolac 15.262 4.595 5.764 Ethyl acetate: TBME (40:60)* Ethyl acetate: Diethyl ether (50:50) 83.02 ± 0.31%

Omeprazole 15.626 5.120 6.177 Ethyl acetate: Diethyl ether (90:10) Ethyl acetate: TBME (80:20)* 98% ± 0.45%

Escitalopram 15.324 4.696 5.723 Ethyl acetate: TBME (50:50) Diethyl ether: Dichloromethane (60:40)* 87% ± 0.41%

Sertraline 15.598 5.075 5.917 Diethylether:Dichloromethane (50:50) Dichloromethane: TBME (30:70)* 91% ± 0.48%

Nebivolol 15.708 5.257 6.141 Ethyl acetate: Diethyl ether (90:10)* Dichloromethane: TBME (40:60) 87% ± 0.30%

Telmisartan 14.902 4.158 5.035 Diethyl ether: TBME (10:90) Ethyl acetate: Diethyl ether (30:70)* 53% ± 0.48%

Donepezil 15.423 4.857 5.824 Ethyl acetate: TBME (50:50) Diethyl ether: Dichloromethane(60:40)* 66% ± 0.56%

Levofloxacin 16.215 5.962 6.752 Ethyl acetate: Diethyl ether (90:10) Diethyl ether: Dichloromethane (50:50)* 61% ± 0.24%

Valacyclovir 15.569 5.033 6.414 Ethyl acetate: TBME (70:30)* Ethyl acetate: Diethyl ether (80:20) 92% ± 0.49%

Linagliptin 15.611 5.140 6.098 Ethyl acetate: Diethyl ether (90:10)* Ethyl acetate: TBME (80:20) 90% ± 0.36%

Chlorpheniramine maleate 15.122 4.433 5.633 Ethyl acetate: TBME (30:70)* Ethyl acetate: Diethyl ether (40:60) 94% ± 0.32%
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bioanalysis could be much easier and more eco-friendly with the aid of the developed LLE solvent prediction 
model. The generated ANN model can be continuously improved by adding more input data to get more predic-
tion capabilities.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its Sup-
plementary Information files. Should any raw data files be needed in another format they are available from the 
corresponding author upon reasonable request. Source data are provided with this paper.
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