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ABSTRACT

Background: New mass spectrometry (MS) techniques analysing exhaled breath have the potential to better
define airway diseases. Here, we present our work to profile the volatile organic compounds (VOCs) in exhaled
breath from patients with chronic obstructive pulmonary disease (COPD), using real-time MS, and relate this
disease-specific breath profile to functional disease markers.

Methods: In a matched cohort study, patients with COPD, according to GOLD criteria, were recruited. Exhaled
breath analysis by untargeted MS was performed using secondary electrospray ionization — high-resolution MS
(SESI-HRMS).

Results: Exhaled breath from 22 patients with COPD (mean age 58.6 = 6.9 years, FEV; 58.5 = 19.9% predicted,
32.4 + 19.2 pack years smoking) and 14 controls (mean age 58.1 + 8.1 years, FEV; 102.5 = 11.3% predicted,
23.6 = 12.5 pack years smoking) was analysed using SESI-HRMS. From 1441 different features, 43 markers were
identified that allowed discrimination between the two groups with an accuracy of 89% (CI 74-97%), a sen-
sitivity of 93%, and a specificity of 86%. The markers were determined to be metabolites of oxidative stress
processes, such as fatty acids, aldehydes and amino acids, resulting from lung muscle degradation.

Conclusion: Real-time breath analysis by SESI-MS allows molecular profiling of exhaled breath, can distinguish
patients with COPD from matched healthy controls and provides insights into the disease pathogenesis.

1. Introduction

locally, within the respiratory tract, or systemically and then released
through the blood-gas barrier during gas exchange. Studies analysing

Chronic obstructive pulmonary disease (COPD) is a leading cause of
morbidity and mortality worldwide [1]. Diagnosis is currently based on
fixed airflow limitation as measured by a combination of spirometry,
respiratory symptoms and an appropriate history of exposure to risk
factors [2]. However, COPD is a complex illness and establishing a di-
agnosis is sometimes difficult especially considering the numerous
different presentations of the disease. Spirometry is effort-dependent
and continuous training is required to ensure accurate disease assess-
ment. Given these limitations, a diagnostic instrument other than
spirometry would be desirable.

Apart from inorganic and non-volatile compounds, exhaled breath
contains organic volatile compounds (VOCs). VOCs are produced either

exhaled breath from COPD patients using gas chromatography-mass
spectrometry [3,4] or electronic noses [5,6] have demonstrated that
VOCs may be useful indicators for internal biochemical processes and
serve as fast, non-invasive and easily accessible biomarkers in the di-
agnosis and monitoring of pulmonary diseases, in particular. The tra-
ditional analysis of gaseous-based metabolites, besides being time-
consuming and labour-intensive, requires sample storage and pre-con-
centration. An alternative are chemical sensors, although, their poor
chemical specificity does not allow for structural elucidation of the
molecules imparting COPD-specific breath prints, thereby limiting their
usefulness. In a recent exploratory study, we found a panel of dis-
criminating mass-spectral features in a heterogeneous, non-matched
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COPD population using novel real-time mass spectrometry (MS) tech-
nology [7]. This technique, called secondary electrospray ionization MS
(SESI-MS) [8-11], has shown potential in the detection of an un-
precedented number of metabolites in breath [12-14] and is expected
to be a promising clinical diagnostic tool [7,15-18]. The aims of our
current study were to validate our previous, exploratory findings re-
garding the detection and analysis of altered COPD metabolites exhaled
in breath [19], to test the hypothesis that metabolites correlate with
functional disease parameters, and to gain insight into biochemical
processes in a well-characterized COPD population.

2. Methods
2.1. Design and subjects

This was a prospective, cross-sectional, matched cohort study. Study
measurements encompassed a lung function test, a questionnaire survey
and MS breath analysis. Patients aged 40-80 years with COPD were
enrolled. A diagnosis of COPD was based on a fixed airway obstruction
with a post-bronchodilator FEV;/FVC ratio <0.7 and appropriate
symptoms, such as chronic cough, chronic sputum production or dys-
pnoea. Only non-frequent COPD patients (i.e., with <2 exacerbations
during the last 12 months) were eligible. COPD patients with an ex-
acerbation within the last 6 weeks were excluded. Subjects without
chest symptoms, a pre-bronchodilator FEV; > 80% predicted, a FEV,/
FVC ratio >0.70 in spirometry and a negative history of any lung
disease (i.e., asthma, sarcoidosis, history of lung cancer or any other
active cancer) were eligible as controls. Ex-smokers were classified as
having stopped smoking for at least 6 months before study participa-
tion. Participants filled out the COPD assessment test (CAT) and rated
their dyspnoea on the modified Medical Research Council dyspnoea
scale (mMRC). Participants were randomly assigned to measurement
slots in order to prevent any bias due to instrument drift or circadian
alterations in exhaled breath patterns. Exclusion criteria encompassed
any renal replacement therapy or severe liver dysfunction. In case of a
respiratory infection in control subjects, a 4-week recovery period was
required. The study protocol was approved by the cantonal ethic
committee of Zurich (KEK-ZH-Nr.2014-0088). The trial was conducted
according to the Declaration of Helsinki and registered at
ClinicalTrials.gov (NCT02186639). Written informed consent was ob-
tained from all individuals.

2.2. Breath analysis

Before measurement, subjects were required to abstain from food,
beverages (except water), tobacco, chewing-gum, and dental cleaning for
at least one hour, and from inhalation therapy for at least 12h if taken
twice per day or 24h if taken once per day. After a deep inspiration,
subjects exhaled slowly with a pressure of 10 mbar into a heated sampling
tube. This was repeated 6 times for 20 to 30 s each. The breath sample was
analysed using a setup consisting of a heated sampling tube (stainless steel,
length 50 cm, id 3mm and 90 °C core temperature) that delivered the
exhaled breath towards the analyzer, which was a purpose-built secondary
electrospray ionization source coupled to a commercial, high-resolution
quadrupole time-of-flight mass spectrometer (TripleTOF 5600 ", AB Sciex,
Concord, ON, Canada). The ion source and its method of connection to the
analyzer have been previously described in detail [20], but, briefly, it
consisted primarily of a nano electrospray system, a stainless steel reaction
chamber and a backpressure vent. Study participants delivered 3 to 4
breath exhalations with a 10 to 15 s duration by maintaining a sample line
pressure of approximately 10 to 12mbar through a mouthpiece. The
measurements were performed once in positive- and once in negative-io-
nization mode at + 3.6 kV and — 3.4 kV, respectively. The MS acquired the
TOF mass spectra from m/z 40 to 450 with an accumulation time of 1s.
This setup allowed the measurement of breath in real-time without sample
pre-treatment.
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2.3. Molecule identification by mass spectrometry

Exhaled breath condensate (EBC) was sampled at random from se-
lected subjects and used to perform compound identification according
to the ERS/ATS statement [21]. In summary, subjects were required to
exhale for 10 min during tidal breathing into a cooled glass trap
(—78.5°C) to sample 1 to 2mL of EBC. The samples were analysed by
UHPLC-HRMS and retention times were compared with those obtained
from standards, where available. For analysis, EBC samples were
thawed and kept at 5°C. Ten microliters were transferred to chroma-
tographic vials without dilution, or any other sample preparation pro-
cedure, and were injected into the ACQUITY UPLC system (Waters,
Boston, MA, USA) where separation took place on a C18 ACQUITY
column 2.1 mm X 100 mm, 1.7 ym, Waters, MA, USA). Chromato-
graphic conditions were as follows: a 10 min gradient was set from 95/
5% to 10/90% of a water/acetonitrile mixture modified with 0.1%
formic acid. The chromatographic flow was set to 0.4 mL min ™~ ' and the
column was thermostatized at 25 °C.

The eluent from the column was introduced into an ION MAX
electrospray ionization source (+4kV). Nitrogen was used as sheath,
auxiliary, and sweep gas at flow rates of 30, 10, and 2 (arbitrary units),
respectively. The capillary temperature was set to 275 °C. Ions were
introduced into a LTQ Orbitrap mass spectrometer (Thermo Fisher
Scientific, Boston, MA, USA) working at a resolution of 30,000 at m/z
400. Spectra from m/z 50 to 2 000 were recorded. For MS" analyses, an
isolation window of 1 1 was selected. The peak at 149.0233 (protonated
phtalic anhydride) was used as internal lock mass, resulting in a
working mass accuracy below 1 ppm.

In a second experimental series, the eluent from the column was
introduced into the electrospray ionization probe of a DuoSpray ioni-
zation source (+5.5kV/—4.5kV). Nitrogen was used as Gasl, Gas2,
and curtain gas at flow rates of 60, 40, and 30 (arbitrary units), re-
spectively. The ion source temperature was set to 450 °C. Ions were
introduced into a TripleTOF 5600* (AB Sciex, Concord, Canada) mass
spectrometer working at a resolution of 30000 at m/z 400. TOF MS
spectra were recorded in positive and negative ion mode from m/z 40 to
600. Plasticizers present in room air were used for mass calibration,
resulting in a working mass accuracy below 5 ppm. In addition, TOF-
MS/MS spectra were recorded with an isolation window of 1p and
collision energy of 30V and a collision energy spread of =15V
(starting condition). High sensitivity TOF-MS/MS mode was used for
the fragmentation experiments.

2.4. Data analysis

The acquired data was pre-processed, including mass calibration
and normalization (see online supplementary file for more details). A
non-parametric Whitney-Mann U test was used to identify between-
group differences in the subject’s breath pattern. P values were cor-
rected by estimating false discovery rates and calculating q-values with
Storey’s procedure [22]. The statistical significance level was set to
q < 0.05. Breath signal correlations to the FEV; (% predicted) and
FEV,/FVC ratio were analysed using a linear fit model with robust
bisquare weighting, and calculating Pearson’s correlation coefficients
and their related 95% confidence intervals (5000 bootstrap samples).
The correlation significance level was set to q < 0.05. The most dis-
criminant features were selected with relaxed elastic net classification
within a leave-one-out cross-validation. Furthermore, the common re-
sulting features from the four tests were subjected to a principal com-
ponent analysis for visual inspection. Data was analysed with PeakView
2.2 (AB Sciex, Concord, Canada), Matlab 2015a (MathWorks, Natick,
MA, USA) and RStudio 0.99.486 (RStudio Inc., Boston, MA, USA) (see
online supplementary file for more details).
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Table 1
Characteristics of participants.

COPD, n = 22 Controls, n = 14 p-value
Age, years 58.6 = 6.9 58.1 = 8.1 0.82
Male/female 17/5 5/9
Smoking state: 1/11/10 1/8/5

non/ex/current

Pack years 32.4 £19.2 23.6 =125 0.14
FEV,* (L) 1.84 = 0.62 3.1+0.7 <0.001
FEV;% predicted 58.5 +19.9 102.5 + 11.3 <0.001
FVC (L) 3.5%0.38 3.96 = 0.76 0.03
FVC% predicted 88.8 +19.7 107.7 = 16.8 0.001
FEV,/FVC ratio 51.8 +10.9 77.8 + 3.8 <0.001
GOLD grade 1/2/3/4 4/10/7/1 NA
BMI (kg/m?) 27.7 £ 6 258 + 4.5 0.32
mMRC 1.1+1 0 0.001
CAT 12.7 + 6.1 31+3 <0.001

Mean * SD. mMRC = modified Medical Research Council scale. Ex-smokers were re-
quired to have quit smoking at least 6 months before study entry. * post-bronchodilation
in patients with COPD.

3. Results
3.1. Trial profile and patient characteristics

In total, 22 patients with COPD and 22 controls were included in the
study, although 8 of the controls were eliminated due to ion suppres-
sion caused by the presence of cosmetics (i.e., lip stick). Following the
interference from cosmetics the protocol was adapted to restrict their
use during measurement. Baseline characteristics of the two groups are
shown in Table 1. The two groups were balanced according to age,
smoking state, pack-years and body mass index (BMI). Unexpectedly,
there were more women in the control group compared to the COPD
group. In the COPD group, FEV; and FVC were lower and patients had a
higher CAT and higher mMRC score (p < 0.005). Concerning COPD
severity, 4 patients suffered from COPD GOLD stage 1, 10 from stage 2,
7 from stage 3 and 1 from stage 4. More patients with COPD suffered
from arterial hypertension (n = 8) compared to controls (n = 3); all
were on antihypertensive medication (Table 2).

3.2. Breath analysis

3.2.1. COPD-specific breath pattern and association with disease severity
Exhaled breath patterns from healthy controls and COPD patients
showed distinct differences. From 1441 analysed features, 301 statis-
tically significant features were discovered in a between-group com-
parison, among which 159 features showed an increase and 142 a de-
crease in patients’ breath (see online supplementary Table E1 for
statistical detail). Fig. 1 shows breath exhalations and a between-group
comparison for one selected molecule (i.e., 2-hydroxyisobutyric acid)

Table 2
Regular medication intake.

COPD controls

N=22 N=14
Short-acting B-agonist (SABA) - -
Long-acting P,-agonist (LABA) 9 -
Long-acting anti-muscarinic-agent (LAMA) 14 -
Inhaled corticosteroid (ICS) 10 -
Antihypertensive medication 8 3
B-blocker 3 1
calcium channel blocker 2 -
ACE-inhibitor 4 1
AT-2-antagonist 4 1
Antidiabetic medication 1 -
Lipid-lowering therapy (statin) 5 1
Long-term oxygen 1 -
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that is enhanced in COPD patients (see online supplementary Fig. E1 for
more examples). Furthermore, selected breath features were found to
be associated with disease severity based on a correlation analysis with
two standard lung function parameters. 128 and 266 features sig-
nificantly correlated with the subject’s FEV; (% predicted) and FEV;/
FVC ratio values, respectively, with correlation coefficients ranging
from —0.65 to 0.61 and —0.70 to 0.67, respectively (see online sup-
plementary Tables E2 and E3 for more statistical details). The corre-
lation plots for one molecule (i.e., 11-hydroxyundecanoic acid) are
presented in Fig. 2. Additional examples are shown in online supple-
mentary Figs. E2 and E3. The presence of COPD was predicted by
performing a leave-one-out cross-validation, based on the 43 most
discriminating features selected by a relaxed-elastic net classification,
and demonstrated an accuracy of 89% (CIL: 74% to 97%), a sensitivity of
93% and a specificity of 87% (Table 3 and online supplementary Table
E4). The receiver operating characteristics are shown in Fig. 3 and re-
sulted in an area under the ROC curve of 0.92.

3.2.2. Chemical identification of COPD-specific breath compounds

The features considered to be most important in assembling a pre-
dictive model were selected by correlating differential breath pattern
features with two lung function parameters. From this analysis, 14
features were found in common among the four sub-groups and were
subjected to further compound identification (Fig. 4 and supplementary
Table E5). 10 of the 14 features were chemically identified and are
shown in Table 4; most of the compounds are associated with chemical
families (i.e., aldehydes and fatty acids). All 14 features were subjected
to a principal component analysis to better visualize their predictive
value. Fig. 5 shows the first two principal components with a clear
separation between healthy controls and COPD patients, except for one
negative control outlier that localized to the COPD space.

4. Discussion and conclusions

Here, we utilize SESI-HRMS and SESI-HRMS/MS to explore COPD-
related VOCs in exhaled breath by comparing metabolite patterns from
the breath of healthy controls and COPD patients. Our technique ad-
ditionally provided information about breath metabolite concentra-
tions, which were found to correlate with the FEV; (% predicted) and
FEV,/FVC ratio.

Lung function testing is the current gold standard for COPD diag-
nosis. This testing modality provides information on the lung's physical
properties (e.g., flow restrictions), but it does not deliver information to
help gain insight into the biochemical processes that are responsible
for, or associated with, COPD. In addition, the technique requires a
demanding exhalation procedure that can be challenging for children
and the elderly. In contrast, SESI-HRMS provides biochemical in-
formation in combination with an easy-to-maintain exhaled breath
sampling procedure that is suitable even for people with a severe lung
impairment.

We found here that metabolites associated with the breath of COPD
patients, which we identified, are grouped in chemical classes (i.e., fatty
acids, aldehydes and amino acid-related compounds). In addition, 30
features were identified to have the same mass overlap as those found
to be significant in our previous COPD study [7]. This fact support the
method’s robustness and quality provided by the analysis of this study
cohort.

Fatty acids are metabolites that have been suggested to be altered in
lung disease [23], and which are efficiently captured by SESI-MS [24].
We found here that the levels of a number of fatty acids decreased in the
breath of patient’s with COPD. These compounds (i.e., 11-hydro-
xyundecanoic acid, oxoheptadecanoic acid and dodecanedioic acid) are
associated with oxidative, nitrosative and carbonyl stress processes
produced by inflammatory processes in COPD diseased lungs [25].
Additionally, aspartic acid semialdehyde and 2-oxoglutaric acid semi-
aldehyde, which are also related to oxidative stress processes, were
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Fig. 1. Real-time breath analysis (left boxes): breath signal time traces of 2-hydroxyisubutyric acid for a healthy control and a COPD Patient. Signal intensity from patient was enhanced
in comparison to the ones from the healthy control. Between-group comparison (right box): the plot shows 2-Hydroxyisubutyric acid breath intensities (mean) for all study participants,
highlighting a distinct difference between groups (q = 0.02). Per group, the breath signal mean (white, middle line) with 95% confidence interval (white, inner boxes) and one standard
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Fig. 2. 11-hydroxyundecanoic acid breath signal correlations with the two lung function parameters FEV1 (% predicted) respectively FEV;/FVC ratio from all study participants. The
breath signal intensities show a significant correlation (q = 0.04 respectively q = 0.02) with positive correlation coefficients r = 0.48 resp. 0.48. 11-hydroxyundecanoic acid is in COPD

patients less abundant than in healthy controls.

Table 3

Diagnostic accuracy of exhaled breath analysis in COPD. Summary of the leave-one-out
cross-validation performance: accuracy 89% (CI 74-97%), sensitivity 93%. specificity
87%, positive predictive value 81%, negative predictive value 95%.

Prediction
COPD No COPD total
Condition COPD 19 3 22
No COPD 1 13 14
total 20 16 36

significantly elevated. The decreased presence of the fatty acids and
increased presence of aldehydes could be explained by the process of
lipid peroxidation occurring secondary to oxidative stress and in-
flammation, which has been shown to be characteristic of COPD [26].

We also found amino acids and related compounds (i.e., 2-hydro-
xyisobutyric acid and (+)-y-hydroxy-L-homoarginine) to be important
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in predicting breath as being from a COPD patient. Studies examining
the biochemical processes in COPD have revealed a degradation of lung
pulmonic muscles and increased levels of muscle-building molecules,
like amino acids. This degradation has been correlated to advanced
disease severity [27-29].

To minimize the influence of exhaled biomarkers not related to
COPD, patients were asked to refrain from smoking, eating, drinking
(except water) and tooth brushing prior to breath analysis.
Furthermore, they were not allowed to take inhalation therapy before
the measurement. These efforts were intended to minimize signals,
unrelated to the disease state, from outside sources. Although we
cannot exclude the effect of concomitant medications (e.g., anti-
hypertensive or anti-diabetic therapy) or co-existing disorders on ex-
haled breath pattern [30], patients with other respiratory disorders
(e.g., acute respiratory infection, lung fibrosis or sarcoidosis) were ex-
cluded, as well as patients suffering from active cancer [31,32].
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Fig. 3. Plot of the receiver operating characteristics of the prediction power from a subset
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cross-validation. The area under the curve shows a coverage rate of 0.92.

Correlation with FEV,/FVC
(% predicted / prpr slope < 0.05)
266 features

Correlation with FEV,
(% predicted / prpr slope < 0.05)
128 features

Classification
(Relaxed Elastic Net Selection/
Leave-One-Out Cross-Validation)
43 features

Between Group Comparison
(Mann-Whitney U-test / pgpg < 0.05)
301 features

Fig. 4. Venn diagram summarizing the statistical analysis of 1441 features received from
raw data. 301 features were significantly different between patients and controls. 128
respectively 266 features show a significant correlation with FEV1 (% predicted) resp.
FEV,/FVC ratio. 43 features were identified as classifiers for the prediction based on
relaxed elastic net selection. 14 compounds were found to represent significant char-
acteristics from all four tests.

A limitation of our study was the small sample size. We believe this
deficiency was ameliorated by using matched controls and applying a
leave-one-out cross-validation procedure for the determination of the
predictive power. Only infrequent exacerbators were included and 77%
of all COPD patients were assessed as GOLD class 2 or 3; hence, the
study covered primarily moderate to severe COPD cases. We re-
commend that future studies address the phenotypic complexity of the
disease and pursue stratification of disease severity. Additionally, bio-
markers we report here should be validated in a cohort of patients
suffering from symptoms of obstructive lung disease with the goal of
differentiating COPD from asthma or other obstructive lung disorders.

In summary, we have shown SESI-HRMS to be a powerful diagnostic
tool for exploration of COPD-specific compounds in exhaled breath. and
that the results from these studies can be used, to obtain insights into
some of the biochemical processes that are involved in COPD patho-
genesis.
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Table 4

Identified exhaled metabolites that change with the presence of COPD. Summary of the chemical identify of the most relevant biomarkers with key statistical information from between-group comparisons, correlation with two lung function

biomarkers and their selection rate during leave-one-out cross-validation (LOOCV).

Classifi-cation/LOOCV

Correlation with FEV;/FVC ratio

Correlation with FEV; (% predicted)

Between-groups changes (n = 36)

Breath signal features

Selection rate (eff./max.)

95% CI 95% CI

95% CI

Mean difference

Tentative ID

Molecular formula

21/36
20/36
20/36
34/36
22/36
35/36
24/36
36/36
33/36
20/36

0.014

0.24/0.70

0.54

0.049
0.043
0.049
0.038
0.043
0.048
0.049
0.037

0.11/0.67

0.46

0.020
0.021

—0.560/—-0.105

0.010/0.052
0.003/0.016
0.002/0.009

-0.333
0.031

Pyridine

CsHsN

0.025

—0.66/—0.2

—0.46
—0.48
—-0.52

0.48
0.45
0.40

—0.78/-0.22

—0.47
-0.43
-0.51
0.48
0.48
0.42

2-hydroxyisobutyric acid

C4HgO3

0.022
0.015

-0.71/-0.17

—0.67/—0.02
—0.76/0.12
0.22/0.72
0.17/0.71
0.13/0.68
0.15/0.74
0.28/0.63

0.029
0.023
0.023
0.033
0.037

0.010

Aspartic acid semialdehyde
Acetohydroxybutanoic acid

C,H,NO;
CeH1004

—0.76/—0.22

0.16/0.69
0.15/0.65

0.005

0.023
0.035
0.041

—0.008/—0.002

—0.005
—0.003
—0.003
—0.012
—0.012

0.014

11-hydroxyundecanoic acid

C11H2203

—0.004/-0.001

(+)-y-hydroxy-L-homoarginine

Oxo-tetradecenoic acid
Hexadecatrienoic acid

C7H16N403
C14H2403

—0.02/0.63

0.36/0.80
0.25/0.66

—0.006/—0.001

Clinical Mass Spectrometry 7 (2018) 29-35

< 0.001
0.023
0.027

—0.66/—-0.12

0.64
0.47
—0.45

0.044
0.044

—0.68/-0.18

0.51
0.45
—0.46

0.017
0.017
0.017

—0.017/-0.006

—0.016/-0.007
0.006/0.023

2-oxoglutaric acid semialdehyde

Oxo-heptadecanoic acid

Ci17H3203

C16H2602
CsH405
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Fig. 5. Plot showing the first two principal components of a principal component analysis
based on the breath signal intensities from the 14 highest scoring compounds found
during statistical analysis. About 55.4% of the variance can be explained with the first
two principal components. The two black-lined areas show the separation of healthy
controls and COPD subjects, the last one incorporating one healthy control.

Summary of the “take home message”

In this case-control study we analysed exhaled breath in patients
with chronic obstructive pulmonary disease (CODP) and healthy con-
trols using an untargeted metabolomics approach. Over 3’000 com-
pounds were measured in real-time with an ambient mass spectrometric
technique and the most discriminating features were identified. We
were able to predict COPD with an accuracy of 89% (CI 74-97%). In
addition, it was possible to elucidate compounds which intensities
correlate with the subjects’ FEV; (% predicted) and FEV;/FVC ratio.
The ambient MS approach enables fast analysis of COPD related com-
pounds in exhaled breath and could support the existing diagnostic
tools in the future.
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