
GAGE-seq concurrently profiles multiscale 3D genome 
organization and gene expression in single cells

Tianming Zhou1, Ruochi Zhang1,5, Deyong Jia2, Raymond T. Doty3, Adam D. Munday3, 
Daniel Gao4,6, Li Xin2,4, Janis L. Abkowitz3,4, Zhijun Duan3,4,#, Jian Ma1,#

1.Ray and Stephanie Lane Computational Biology Department, School of Computer Science, 
Carnegie Mellon University, Pittsburgh, PA 15213, USA

2.Department of Urology, University of Washington, Seattle, WA 98195, USA

3.Division of Hematology and Oncology, Department of Medicine/Fred Hutch Cancer Center, 
University of Washington, Seattle, WA 98195, USA

4.Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, 
USA

5.Present address: Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, 
Cambridge, MA 02142, USA

6.Present address: Department of Chemistry, Pomona College, Claremont, CA 91711, USA

Abstract

The organization of mammalian genomes features a complex, multiscale three-dimensional (3D) 

architecture, whose functional significance remains elusive due to limited single-cell technologies 

that can concurrently profile genome organization and transcriptional activities. Here, we 

introduce GAGE-seq, a scalable, robust single-cell co-assay measuring 3D genome structure and 

transcriptome simultaneously within the same cell. Applied to mouse brain cortex and human bone 

marrow CD34+ cells, GAGE-seq characterized the intricate relationships between 3D genome 

and gene expression, showing that multiscale 3D genome features inform cell type-specific gene 

expression and link regulatory elements to target genes. Integration with spatial transcriptomic 

data revealed in situ 3D genome variations in mouse cortex. Observations in human hematopoiesis 

unveiled discordant changes between 3D genome organization and gene expression, underscoring 

a complex, temporal interplay at the single-cell level. GAGE-seq provides a powerful, cost-

effective approach for exploring genome structure and gene expression relationships at the single-

cell level across diverse biological contexts.
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INTRODUCTION

Connecting genotype to phenotype remains a challenge due to the complex 

principles governing genome functions. Mammalian genomes are organized within 

the three-dimensional (3D) space of the cell nucleus1, featuring architectural 

structures across genomic scales, including chromosome territories2, A/B compartments3, 

subcompartments3,4, topologically associating domains (TADs)5,6 and subTADs7,8, and 

chromatin loops9,10. These structures play critical roles for gene regulation, cellular 

development, and disease progression11–16. Single-cell analyses provide unique insights 

into these processes, uncovering variability in 3D genome features in individual cells that 

bulk analyses might mask14,17,18. Yet, understanding how changes in multiscale 3D genome 

structure within a single cell influence its transcriptional program and cellular phenotypes 

remains a major challenge in epigenomics.

Cellular and molecular heterogeneity is pivotal in differentiation and tissue development. 

Advances in single-cell technologies, such as scRNA-seq and single-cell Hi-C (scHi-

C), have deepened our understanding of cellular heterogeneity19–21 and 3D genome 

organization17,22–28. To fully unravel the connections between 3D genome organization and 

transcriptional activity in individual cells, technologies that can concurrently measure both 

in the same cell are needed. Current computational approaches enable some integration of 

scHi-C and scRNA-seq27,29,30, revealing connections between 3D genome organization and 

gene expression at cell-type level. However, such integration cannot capture the individual 

cell differences and cell-to-cell variation between structure and function, as it correlates data 

from separate cells. While imaging-based methods can provide simultaneous 3D genome 

organization and transcriptional activity within the same cells, they are constrained by 

low throughput and limited genomic coverage31–34. These limitations underscore the need 

for high-throughput genomic technologies capable of co-assaying 3D genome and gene 

expression in the same cell.

Here, we report GAGE-seq (genome architecture and gene expression by sequencing), 

a highly scalable and cost-effective method for simultaneously profiling of chromatin 

interactions and gene expression in single cells. GAGE-seq, thanks to its combinatorial 

barcoding strategy, offers higher methodological throughput, as well as greater efficiency 

and effectiveness than recent technologies such as HiRES35. We applied GAGE-seq to 

profile 9,190 cells across diverse mammalian cell lines and tissues, including mouse 

brain and human bone marrow. Specifically, we developed an experimental and analytical 

framework for elucidating the connections between multiscale 3D genome features and cell 

type-specific gene expression, as well as their spatial and temporal interplay.

RESULTS

Overview of GAGE-seq

GAGE-seq is a high-throughput, effective, and robust single-cell multiomics technology 

that simultaneously profiles the 3D genome and transcriptome in individual cells (Fig. 1a). 

GAGE-seq leverages the highly scalable “combinatorial indexing” paradigm previously 

employed in sci-Hi-C22,36–38, as well as other single-cell methods39–42 (Fig. 1a). The 
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procedure can be summarized as follows: (i) The RNA in cross-linked and permeabilized 

cells or nuclei is reverse transcribed (RT) with a biotinylated poly(T) or random 

hexamer primer containing DNA sequences, facilitating the ligation of the first-round 

barcoded cDNA adaptors (Supplementary Fig. 1, Supplementary Table 1); (ii) Cross-linked 

chromatins are efficiently fragmented (the first round chromatin fragmentation) using two 

4-cut restriction enzymes (RE), CviQI and MseI, both producing the same adhesive DNA 

end 5’-TA, enabling the identification of chromatin interactions via proximity ligation; (iii) 

After a second round of chromatin fragmentation to introduce adhesive DNA ends for 

ligating the first-round barcoded DNA adaptors (Supplementary Fig. 1, Supplementary Table 

1), cells/nuclei are distributed to a 96-well plate, where the first-round barcodes for DNA 

or cDNA are introduced through ligation of barcoded adaptors; (iv) Intact cells/nuclei are 

then pooled, diluted, and redistributed to a second 96-well plate, where the second-round 

barcodes for DNA or cDNA are introduced through ligation; (v) After reverse-crosslinking 

to release barcoded nucleic acids, all genomic DNA and cDNA are pooled, and biotinylated 

cDNA fragments are separated from genomic DNA with streptavidin beads; (vi) Sequencing 

libraries for scHi-C and scRNA-seq are separately generated and sequenced (Methods); and 

finally, (vii) Matched scHi-C and scRNA-seq profiles are identified according to the well-

specific barcoding combinations (Fig. 1a, Supplementary Fig. 1, Supplementary Table 1, 

Methods). This combinatorial cellular indexing strategy can be further extended to achieve 

even larger throughput using additional rounds of ligation-mediated barcoding.

Quality validation and benchmarking of GAGE-seq

To assess the quality and specificity of GAGE-seq data, we performed experiments 

using a mixture of human (K562) and mouse (NIH3T3) cell lines (Fig. 1b–e, Methods, 

Supplementary Methods). Successful separation of human and mouse reads in both scHi-

C and scRNA-seq data was demonstrated, identifying 683 human and 568 mouse cells 

out of 1,500 expected, along with 57 doublets observed in line with the expected 4.4% 

collision rate (Fig. 1b–e). Cells passing stringent quality criteria exhibited an average 

of 181,240 (K562, 39.2% duplicate rate) and 206,113 (NIH3T3, 38.0% duplicate rate) 

chromatin contacts (>1Kb intra-chromosomal) for scHi-C, as well as an average of 24,784 

(K562, 35.7% duplicate rate) and 16,596 (NIH3T3, 31.2% duplicate rate) unique molecular 

identifiers (UMIs) from 3,699 (K562) and 2,256 (NIH3T3) genes per cell for scRNA-seq 

(Fig. 1, Supplementary Table 2). These robust results underscore GAGE-seq’s ability 

to concurrently measure single-cell chromatin interactions and transcriptome with high 

sensitivity and accuracy. In addition, GAGE-seq’s efficient fragmentation of crosslinked 

chromatin before proximity ligation, enabled by two four-cutters (Fig. 1a, Methods), allows 

for efficient detection of multi-way interactions, with >25% of all identified chromatin 

contacts in each scHi-C library (Supplementary Table 2).

Validating GAGE-seq in additional cell lines, GM12878 and MDS-L, further confirmed its 

robustness, specificity, sensitivity, and reproducibility (Fig. 2, Supplementary Fig. 2 and 3, 

Methods, Supplementary Methods). Whole-genome and whole-library level analysis showed 

GAGE-seq’s chromatin interaction and gene expression profiles strongly correlating with 

published datasets (Fig. 2a–b). Low collision rate (Fig. 1b), binomial distribution of scHi-C 

reads (Fig. 1b, Supplementary Fig. 2a and 3a), typical chromatin contact decay curve (Fig. 
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2c), high cis-trans ratio (Fig. 1c, Supplementary Fig. 2c and 3c, Supplementary Table 2–4), 

and aggregated pseudobulk and single-cell chromatin contact maps (Fig. 2d, Supplementary 

Fig. 4 and 6), as well as pseudobulk and single-cell A/B compartment scores and insulation 

scores (Fig. 2e), further confirmed the specificity of the GAGE-seq scHi-C signals. The 

specificity of the GAGE-seq scRNA-seq signals was demonstrated through low collision 

rate (4.6% in the K562/NIH3T3 library) (Fig. 1d), binomial distribution of RNA reads 

(Fig. 1d, Supplementary Fig. 2d and 3d), and the fact that the majority of RNA reads 

(86%) mapped to the gene body (Fig. 2f), complemented by the pseudobulk and single-cell 

RNA signal distribution at individual gene loci (Fig. 2g, Supplementary Fig. 5). Notably, 

similar to SHARE-seq43, GAGE-seq scRNA-seq reads were found to be 25%−50% intronic 

(Fig. 2f), indicating enriched nascent RNA. The high reproducibility across replicates 

was demonstrated at multiple levels (Fig. 2a,b,d,e,g,h,i), and its methodological resolution 

(library complexity) of scHi-C matched existing lower-throughput, unimodal methods, such 

as Dip-C26,27, as well as sn-m3C-seq44,45 (Fig. 2j). GAGE-seq scRNA-seq data quality was 

also comparable to existing methods (Fig. 2k). In line with previous scHi-C studies23,36, 

GAGE-seq scHi-C data revealed cell cycle stages (Supplementary Fig. 6, Supplementary 

Methods). Compared to the recent HiRES method35, GAGE-seq offers major advantages in 

throughput, efficiency, and cost-effectiveness (Fig. 2j–k, Supplementary Fig. 10 and 11), as 

well as in resolving rare cell types in complex tissues (see later section and Supplementary 

Results)

GAGE-seq reveals complex cell types in mouse cortex

To demonstrate the utility of GAGE-seq in unveiling complex cell types based on single-cell 

3D genome features and gene expression within a tissue context, we turned our focus to the 

adult mouse brain cortex, known for its cell type diversity. Applying GAGE-seq on cells 

from the mouse cortex (8-9 weeks old), we generated 3,296 high-quality joint single-cell 

profiles of chromatin interactions and transcriptomes (Methods, Supplementary Methods). 

On average, each cell displayed 231,136 chromatin contacts (at ~50% duplication rate), with 

20,160 UMIs and 1,883 genes per cell (~59% duplication rate), in line with the adult mouse 

whole brain data from the recently published HiRES data (Supplementary Fig. 7 and 9, Fig. 

2j–k, Supplementary Table 5).

Our GAGE-seq scRNA-seq data identified 28 known cell types across three major lineages 

in the mouse cortex, including 15 excitatory neuron subtypes, 8 inhibitory neuron subtypes, 

and 5 glial cell subtypes, such as astrocytes and oligodendrocytes (Fig. 3a–b, Supplementary 

Fig. 12 and 14). These cell identities were confirmed by unique marker gene expressions 

(Fig. 3b). Notably, GAGE-seq scRNA-seq data enabled the delineation of many rare 

neuronal subtypes not identified by HiRES35, such as L5 PT CTX, Sncg, and Meis2 

(Fig. 3a–b, Supplementary Fig. 13–15). Reanalysis of HiRES mouse brain data with 

Fast-Higashi46 further confirmed the superior performance of GAGE-seq in identifying 

complex cell subtypes, despite a lower sequencing depth in GAGE-seq (Supplementary Fig. 

16 and 17; Supplementary Results). Although 3D genome features are known to encode 

cell identity35,47, scHi-C often identified fewer cell types in complex tissues than scRNA-

seq27,44,45,48. Utilizing Fast-Higashi for scHi-C embedding, GAGE-seq distinguished all 

28 transcriptome-defined cell types, including the aforementioned L5 PT CTX, Sncg, and 
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Meis2 rare subtypes (Fig. 3c, Supplementary Fig. 13–15). The scHi-C-based delineation 

supports these cell types with distinct 3D genome features, with insulation scores 

surrounding gene bodies showing cell type-specific connection with gene expression (Fig. 

3d; see later section with more analysis).

Spatial integration reveals in situ 3D genome variation

Using GAGE-seq to map the 3D genome and transcriptome of single cells, we explored 

the in situ variation of the 3D genome in the adult mouse cortex. We leveraged GAGE-seq 

scRNA-seq as a “bridge” for this analysis. Recently, the spatial transcriptomics method 

MERFISH successfully discerned the spatial organization of distinct cell populations in the 

mouse primary motor cortex49. We started by integrating our GAGE-seq scRNA-seq data 

with the MERFISH data using Seurat50, allowing us to establish a connection between the 

two datasets (Methods).

We focused on the excitatory neuron cell types present in both GAGE-seq and MERFISH 

datasets. Within the integrated embedding space, cells primarily clustered by cell type, 

and cells from both datasets integrated cohesively, indicating high correlation between cell 

types identified by the two methods (Fig. 3e, Supplementary Fig. 18, Methods). We next 

characterized the in situ variation of both marker gene expression and 3D genome features 

of these maker gene loci in the mouse cortex. As a proof of principle, we investigated 

the in situ pattern of marker genes for L5 intratelencephalic (IT) CTX. The observed and 

inferred gene expression demonstrated a high degree of congruence, further supporting the 

reliability of the integration (Spearman’s r=0.76, two-sided P=0; Supplementary Fig. 19b–c, 

j–k). Layer 5, where L5 IT CTX cells reside, corresponded with the highest expression level, 

scA/B value27, gene body score (Supplementary Methods), and a low single-cell insulation 

score (Fig. 3f–g, Supplementary Fig. 19), reinforcing the overall correlation between 

expression and 3D genome structure. Interestingly, despite consistently low expression 

levels and gene body scores in more superficial layers, the scA/B value increased and the 

single-cell insulation score decreased slightly around layer 3, a cortical layer containing 

the L2/3 IT CTX cells that are not adjacent to the tissue boundary, suggesting potential 

discrepancies of expression and various 3D genome features at finer spatial resolution 

(highlighted by arrows in Fig. 3f–g, Supplementary Fig. 19).

Impact of 3D genome on gene expressions in single cells

We next rigorously examined the relationship between gene expression and various 

multiscale 3D genome features in single cells, including A/B compartments, TAD-like 

domains, and chromatin loops.

Our analysis of the 3,461 genes expressed in inhibitory neurons (n=508) or excitatory 

neurons (n=1,938) revealed a strong correlation between cell type-specific gene expression 

and scA/B value, reflecting compartmentalization variations27,29 (Fig 4a, top panels). 

Inhibitory neurons, for instance, showed a much higher expression for 432 genes which 

corresponded to a higher scA/B value (t-test P=1.1e-46; Fig. 4a, top middle panel). Most of 

the 391 genes with a higher scA/B value in inhibitory neurons also snowed notably higher 

expression levels in these cells compared to excitatory neurons (t-test P=7.5e-26, Fig. 4a, top 
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right panel). Overall, there is a significant correlation between differential gene expression 

and differential scA/B value (Pearson’s r=0.38, P<1e-100, Fig. 4a, top left, Supplementary 

Fig. 20). At the chromatin domain level, we identified a negative correlation between cell 

type-specific gene expression and the associated single-cell insulation score across cell 

types (Fig. 4a, bottom panels, Supplementary Fig. 21), suggesting that TAD-like domain 

variations around the gene body are accompanied with changes in transcriptional activity of 

the gene. This phenomenon, aligning with previous findings at the cell type level29, may be 

attributed to domain melting noted in highly expressed long genes in mouse hippocampus 

and midbrain neurons47.

We subsequently examined the relationship between single-cell insulation score surrounding 

the gene body and the potential occurrence of domain melting within our diverse collection 

of cell types revealed by GAGE-seq (Supplementary Methods). We focused on the 

four genes (Grik2, Dscam, Rbfox1, and Nrxn) known to undergo domain melting47, 

profiling their scA/B value, single-cell insulation score, and single-cell gene expression. 
Notably, these genes manifested high expression across almost all 28 cell subtypes 

revealed by GAGE-seq, with the exception of Dscam and Grik2 in VLMC and Micro 

cells (Supplementary Fig. 22, Fig. 3d). As expected, Dscam, Rbfox1, and Nrxn3 were 

predominantly in the active A compartment in the majority of cell subtypes (Fig. 3d, 

Supplementary Fig. 22), while the Grik2 locus was in a weak B compartment across all the 

cells, despite its high expression (Supplementary Fig. 22). Aggregated single-cell insulation 

scores varied across the gene body, with most cell subtypes showing lower scores correlating 

with elevated gene expression (Fig. 3d, Supplementary Fig. 22). The aggregated chromatin 

contact maps indicate potential occurrence of domain melting around these gene bodies (Fig. 

3d, Supplementary Fig. 23). A similar phenomenon was also detected for the Rbfox1 locus 

across different excitatory neurons (Fig. 3d, low panels).

We next further confirmed the above observed connection between multiscale 3D genome 

features and gene expression at single cell resolution. Higher gene expression in a cell 

often corresponded to a higher scA/B value and lower single-cell insulation score in the 

same cell (Fig. 4b, Supplementary Fig. 24). For instance, of the 432 genes showing a 

significantly elevated scA/B value in inhibitory neurons, most displayed higher expression 

in these neurons than in excitatory neurons (Spearman’s r=0.22, P=7.4e-28, n=2446 cells; 

Fig. 4b, top panel). At the chromatin domain level, the 198 genes expressed highly in Pvalb 

cells exhibited notably lower single-cell insulation scores than in other inhibitory neurons 

(Spearman’s r=0.45, P=1.5e-26, n=508 cells; Fig. 4b, low panel). Thus, the connection 

between multiscale 3D genome features and gene expression is evident at the single-cell 

resolution.

We then confirmed our observations on single loci. As a proof of principle, we focused 

on the Pvalb inhibitory subtype (including both Pvalb a and Pvalb b). We first selected 

genes that have 1) significantly higher scA/B values and expression in inhibitory neurons 

compared to excitatory neurons (Fig. 4a, top panels, Supplementary Fig. 25), and 2) 

significantly higher expression and lower single-cell insulation scores in Pvalb compared 

to other inhibitory neurons (Fig. 4a, bottom panels, Supplementary Fig. 26, Supplementary 

Methods). This approach led us to the Erbb4 gene. The Erbb4 gene plays a pivotal role 
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in the central nervous system and has been linked to schizophrenia51. As expected, we 

observed differential A/B compartment states correlated with cell type-specific expression of 

the Erbb4 gene (Fig. 4c), and differential single-cell insulation score that suggests domain 

melting in the gene locus (Fig. 4d, low panel). The TAD-like domain structure of the 

Erbb4 gene body in Sst and Meis2 cells appears to be melted in Pvalb cells (i.e., less 

pronounced), which is again accompanied with high gene expression in Pvalb cells (Fig. 

4d, top panel). Additionally, it appears that the Erbb4 gene body interacts more frequently 

with the downstream two small TAD-like domains in Pvalb cells than in Sst and Meis2 

cells (Fig. 4d, top panel). On a finer scale, we also observed a cell type-specific putative 

enhancer-promoter chromatin loop at the TSS of the Erbb4 gene in Pvalb cells (Fig. 4e–

g, Supplementary Methods). Moreover, when integrating with chromatin accessibility, the 

putative enhancer region exhibits differential chromatin accessibility that correlates with the 

cell type-specific expression of the Erbb4 gene (Fig. 4f).

Integrative analysis of GAGE-seq and chromatin accessibility

We next aimed to demonstrate how integrating GAGE-seq with chromatin accessibility data 

enhances the connection between CREs and target genes. For this, we integrated GAGE-

seq with Paired-seq data (from the same mouse cortex region)52 (Supplementary Results, 

Supplementary Methods). Overall, genes with distinct contributions from 3D genome and 

chromatin accessibility show varied functions (Supplementary Fig. 27–28) and integrating 

3D genome and chromatin accessibility data markedly improves gene expression prediction 

accuracy (Supplementary Fig. 29).

Our integrative analysis of GAGE-seq and chromatin accessibility enhances the connection 

of CREs to their target genes. The gene expression and transcription start site (TSS)-CRE 

interaction frequency correlation decreases with greater genomic distance between TSS 

and CRE (Fig. 5a, Supplementary Methods). Also, overlaps between Paired-seq-identified 

gene-CRE pairs and those identified by other approaches generally decrease with increasing 

genomic distance between TSS and CRE (Supplementary Fig. 30). However, refining 

with GAGE-seq data markedly improved this overlap, particularly for long-range (>100kb) 

gene-CRE pairs (Fig. 5b, Supplementary Fig. 30, Supplementary Results), highlighting the 

advantage of GAGE-seq in revealing CRE-gene pairs (Supplementary Results).

We also explored the joint regulation of gene expression by 3D genome and chromatin 

accessibility at individual gene loci. A strong correlation was found between Epha4 gene 

expression and the chromatin interaction frequency with a distal CRE, as well as between 

Epha4 gene expression and chromatin accessibility at the TSS and the distal CRE in 

different excitatory neuron subtypes (Fig. 5c–e). Motif analysis of chromatin accessibility 

peaks identified potential binding sites for transcription factors Twist2 (Spearman’s 

P=1e-289) and Arx (Spearman’s P=2e-132) (Fig. 5f). However, no significant differences 

were noted for A/B compartment value, insulation score, and gene body score of the 

Epha4 locus across neuron subtypes (Supplementary Fig. 31), indicating that fine-scale 

CRE-chromatin looping instead of changes in the large-scale 3D features may be responsible 

for the cell type-specific Epha4 expression (Supplementary Results).
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Developmental stages of human hematopoiesis

Hematopoiesis is a classic model system with well-characterized cell type changes and their 

associated gene expression signatures, making it an ideal model for exploring the dynamic 

relationship between 3D genome structure and gene expression. We generated GAGE-seq 

profiles of 2,815 human bone marrow (BM) CD34+ cells after stringent quality filtering 

(Supplementary Fig. 32–34, Supplementary Table 6, Methods, Supplementary Methods), 

obtaining an average of 265,336 chromatin contacts (at ~50% duplication rate) and detecting 

on average 5,504 UMIs and 985 genes per cell (at ~63% duplication rate), which is in line 

with the publicly available scRNA-seq datasets (Supplementary Fig. 32–34, Supplementary 

Table 6). To mitigate the potential impact of 3D genome’s cell-cycle dynamics23, we 

restricted our analysis to high-quality G0/G1 phase cells (837 cells) (Supplementary 

Methods).

Unsupervised clustering of GAGE-seq scRNA-seq data revealed six clusters (five clusters 

with continuous diffusion and one distinct cluster), each displaying unique gene signatures 

(Fig. 6a–b). Based on the gene expression signatures and known marker genes53, we 

annotated these clusters into known cell types: hematopoietic stem cell (HSC), multipotent 

progenitor (MPP), lymphoid-primed MPP (LMPP), multi-lymphoid progenitor (MLP), 

megakaryocyte-erythroid progenitor (MEP), and B lymphocyte natural killer cell progenitors 

(B-NK) (Fig. 6a–b). These clusters, representing all three major blood cell lineages, showed 

a lymphoid lineage preference. Our GAGE-seq scHi-C data also successfully resolved these 

six cell types (Fig. 6a–b), further demonstrating the ability of the 3D genome to encode cell 

type information.

Focusing on four of the six identified cell types (HSC, MPP, MLP and B-NK), which 

represent early B-NK lineage, we used GAGE-seq to reconstruct the developmental 

trajectory, demonstrating the dynamic interplay between genome structure and gene 

expression along this trajectory. Transcriptome and 3D genome-based pseudotime 

trajectories, inferred from GAGE-seq data, were highly congruent (Fig. 6c, Supplementary 

Fig. 35–36, Methods), suggesting that global 3D genome temporal variations overall mirror 

transcriptional changes and differentiation progression. Further, we created an integrated 

pseudotime trajectory (Fig. 6d, Methods), which was confirmed by the accurate alignment of 

the four cell types along the differentiation pseudotime and the observation that earlier-stage 

progenitors (e.g., HSCs) decrease while later-stage cells (e.g., B-NK) increase along the 

pseudotime (Fig. 6d–e).

Temporal interplays between 3D genome and gene expression

Comparisons between marker gene expression and 3D genome features in individual cell 

types during differentiation pseudotime suggest complex temporal interplay between both 

scA/B values and single-cell insulation scores with marker gene expressions (Supplementary 

Results, Supplementary Fig. 37–43).

We then performed an unsupervised clustering to further unravel relationships between 

gene expression and 3D genome features in the B-NK differentiation, based on all genes 

expressed in at least twenty single cells in the trajectory (Methods). We identified 11 distinct 
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gene clusters (Fig. 6f). Notably, 5 of these 11 clusters showed a negative correlation between 

the changes in gene expression and scA/B value over pseudotime (Fig. 6g left panel, 

Supplementary Fig. 41). We closely examined gene cluster 9, where expression increases 

while scA/B value decreases. We selected two genes, JAK1 and ITPR1, which exhibit the 

highest similarity with the average temporal patterns of this gene cluster. Their scA/B value 

at the gene bodies indeed decreases over pseudotime without A/B compartment switches 

(Fig. 6h left panels).This analysis identified gene groups with varied temporal patterns, 

including discordant patterns in expression and scA/B value, as reported previously27, 

during differentiation.

Regarding chromatin domains, a uniform temporal trend was observable in the aggregated 

single-cell insulation scores across all gene clusters, mirroring the pattern seen in the marker 

gene sets (Fig. 6g, Supplementary Results, Supplementary Fig. 41), indicating global 3D 

genome changes, manifested by widespread TAD-like domain re-organizations, in B-NK 

cells. For JAK1 and ITPR1, the single-cell insulation scores increased abruptly from MLP 

to B-NK, correlating with gene expression (Fig. 6h right panels), supported by aggregated 

contact maps (Fig. 6i, Supplementary Fig. 42–43). Additionally, we found that genes of 

different sizes appear to have distinct patterns with respect to single-cell insulation scores 

(Supplementary Fig. 44).

DISCUSSION

Our high-throughput multiomic single-cell technology, GAGE-seq, delivers an integrative 

approach to co-assay 3D genome structure and gene expression in individual cells with 

high resolution. We show that GAGE-seq can reveal complex cell types from complex 

tissues not identified by other existing methods. Additionally, its data integration with spatial 

transcriptomic data points to great potential to reach a deeper understanding of 3D genome 

variation within complex tissues. Importantly, GAGE-seq also facilitates the reconstruction 

of differentiation trajectories based on 3D genome features, transcriptomes, or both. Our 

integration of GAGE-seq with single-cell chromatin accessibility data further highlights the 

advantage of GAGE-seq in linking CREs and their target genes. The high congruence 

between these modalities underscores the intimate connection between the temporal 

variations of the 3D genome and transcriptional rewiring during cell differentiation. Notably, 

GAGE-seq has revealed much more nuanced relationships between 3D genome features and 

gene expression during bone marrow B-NK lineage differentiation, creating a resource for 

future studies to disentangle causal gene regulatory changes in differentiation through the 

lens of 3D genome in single cells.

GAGE-seq is characterized by its efficiency, scalability, robustness, cost-effectiveness, 

and adaptability. We envision that GAGE-seq, along with our analytical tools, could 

significantly enhance the current toolkit for single-cell epigenomics. With wide-ranging 

applications, GAGE-seq can deepen our understanding of genome structure and function, 

providing insights into normal development and disease pathogenesis. Future refinements, 

such as enhancing barcoding strategy for higher throughput and improving detection of 

chromatin contacts, may allow GAGE-seq to construct high-resolution cell atlases and 

assess the role of pathogenic noncoding single-nucleotide variants on chromatin loops54 
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in a massively parallel manner. Additionally, we anticipate a future application where 

GAGE-seq will be integrated with spatial labeling technologies, producing spatially-resolved 

scHi-C and scRNA-seq data. Such advancements will likely open up new avenues of 

investigation, such as exploring the role of the 3D genome in various tissue development 

and disease progression. Ultimately, GAGE-seq may offer the opportunity to integrate 

different molecular features in single cells, leading to a more comprehensive understanding 

of genome structure, cellular function, and their spatiotemporal variability.

METHODS

Ethics statement

The present study complies with all pertinent ethical regulations. All the mice used in this 

study received humane care in compliance with the principles stated in the Guide for the 

Care and Use of Laboratory Animals, NIH Publication, 1996 edition, and the protocols 

were approved by the Institutional Animal Care Committee (IACUC) at the University of 

Washington.

Cell lines used

K562 (#CCL-243, ATCC), GM12878 (#GM12878, Coriell) and NIH3T3 cells (CRL-1658, 

ATCC) were purchased from the respective vendors. The myelodysplastic cell line MDS-

L was a gift from Dr. Kaoru Tohyama (Kawasaki University of Medical Welfare). See 

Supplementary Methods for cell culture details.

GAGE-seq experimental details

Preparation of the 96-well plates of barcoded adaptors.—Two separate barcoding 

rounds of ligation reactions are used in GAGE-seq (as detailed in Supplementary Table 1). 

The design of the scRNA-seq part barcodes resembles that of Split-seq42 and SHARE-seq43 

(Supplementary Table 1). The molecular structure of the scHi-C part barcodes is depicted in 

Supplementary Fig. 1.

Cell lysis.—Crosslinked cells of K562, NIH3T3, GM12878, MDS-L, human bone marrow 

Cd34+ cells (as detailed in the Supplementary Methods) were thawed from −80°C or liquid 

nitrogen. 0.2 ml of high-salt lysis buffer 1 (50 mM HEPES pH 7.4, 1 mM EDTA pH 8.0, 

1 mM EgTA pH 8.0, 140 mM NaCl, 0.25% Triton X-100, 0.5% IGEPAL CA-630, 10% 

glycerol, and 1× proteinase inhibitor cocktail (PIC)) was added per 1 × 106 cells. The cell 

solution was mixed thoroughly and incubated on ice for 10 min. After this, cells were 

pelleted at 500xg for 2 min at 4°C and then resuspended in 0.2 ml of high-salt lysis buffer 

2 (10 mM Tris-HCl pH 8, 1.5 mM EDTA, 1.5 mM EgTA, 200mM NaCl, 1× PIC). The 

solution was incubated on ice for 10 min. Following this, cells were then pelleted at 500xg 

for 2 min at 4°C and then resuspended in 200 μl of 1 × T4 DNA ligase buffer (NEB, 

B0202S) containing 0.2% SDS. They are then incubated at 58°C for 10 min. To quench the 

reaction, 200 μl ice-cooled 1x NWB and 10 μl 10% Triton X-100 (MilliporeSigma, 93443) 

were added to the tube. Finally, cells were spun at 500xg for 4 min at 4°C. For crosslinked 

mouse brain cortex cells, the treatment was simplified. The step involving high-salt lysis 

buffer 1 and high-salt lysis buffer 2 was omitted, and 0.1% SDS was used for cell lysis.
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Reverse transcription.—SDS treated cells were resuspended in 400 μl of RT mix (final 

concentration of 1x RT buffer, 500 mM dNTP, 10 mM Biotinylated RT primers, 7.5% 

PEG 6000 (VWR, 101443-484), 0.4U/ml SUPERase•In™ RNase Inhibitor, and 25U/ml 

Maxima H Minus Reverse Transcriptase (ThermoFisher Scientific, EP0752)). The RT 

primers contain a poly dT tail, a biotin molecule, and a universal ligation overhang. The 

sample then underwent a series of heating cycles. Initially, it was heated at 50 oC for 10 

minutes, then it went through 3 thermal cycles (8 °C for 12s, 15 °C for 45s, 20 °C for 45s, 

30°C for 30s, 42 °C for 2 min and 50 °C for 3 min). Afterwards, the sample was again 

incubated at 50 oC for 10 minutes. After reverse transcription, 600 μl of 1x NWB was 

added, the sample was centrifuged at 500x g for 3 minutes, and the supernatant was then 

removed.

1st-round chromatin fragmentation, proximity ligation, and 2nd-round 
chromatin fragmentation.—Cells were resuspended in 400 μl of restriction enzyme 

(RE) digestion mix (1x T4 ligase buffer (NEB, B0202S), 500U MseI (NEB, R0525M), 

240U CviQI (NEB, R0639L), 0.32 U/ml Enzymatics RNase Inhibitor, 0.05 U/ml SUPERase 

RNase Inhibitor), and incubated at room temperature (25 °C) for 2 hr. Cells were then 

centrifuged at 500x g for 3 minutes at 4 °C, and the supernatant was removed. The 

remaining cell pellet was washed twice with 300 μl of 1x NWB, and as much supernatant 

was removed as possible. Next, the pellet was resuspended in 200 μl of ligation mix (1x 

T4 ligation buffer (NEB, B0202S), 50 Units T4 DNA ligase (ThermoFisher Scientific, 

EL0012), 0.32 U/ml Enzymatics RNase Inhibitor, 0.05 U/ml SUPERase RNase Inhibitor) 

and incubated at 16 °C overnight. This was followed by adding 20 μl 10x T4 ligation buffer, 

1 μl SUPERase RNase Inhibitor and 20 μl DdeI (NEB, R0175L). The sample was then 

incubated at 37 °C for 1 hr and centrifuged at 500x g for 3 minutes, with the supernatant 

removed afterwards.

Combinatorial cellular barcoding.—Cells were resuspended in 330 μl of ligation 

mix (1x T4 ligase buffer (NEB, B0202S), 100 Units T4 DNA ligase (ThermoFisher 

Scientific, EL0012), 0.25 mg/ml BSA (ThermoFisher Scientific, AM2618), 5% PEG-4000 

(ThermoFisher Scientific, EL0012), 0.32 U/ml Enzymatics RNase Inhibitor, 0.05 U/ml 

SUPERase RNase Inhibitor) and distributed into each well (3 μl/well) of the first-round 

barcoding plate, which already contained 2 μl of CARE-seq 1st-round adaptors in each well. 

This barcoding plate was then incubated at 25 °C for 3 hr. Afterwards, cells from all 96 

wells were pooled into three 1.5 ml tubes, and 5 μl of 10% NP-40 (ABCam, ab142227) was 

added to each tube. This is followed by centrifuging at 500x g for 3 minutes at 4 °C. The 

supernatant was then removed and cells were resuspended in 300 μl 1x NWB containing 

0.033% SDS and combined into one 1.5 ml tube. Cells were then pelleted at 500x g for 2 

minutes at 4 °C. After three additional rounds of washing with 300 μl 1x NWB containing 

0.033% SDS, cells were resuspended in 200 μl 1x NWB containing 0.1% SDS and filtered 

with with 10 μm or 20 μm cell ministrainer (PluriStrainer, 43-10010-50 or 43-10020-40). 

Cells were inspected under a microscope and counted with a hemocytometer. Approximately 

7,500 cells were diluted with 1.25 ml of a dilution buffer containing 0.4x NEBuffer 2 (NEB, 

B7002S), 2 mg/ml BSA (ThermoFisher Scientific, AM2618), and 0.08 μM RNA ligation-1 

block, and distributed into each well (3 μl/well) of a 96-well plate (the 2nd-round barcoding 
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plate). Then, 2 μl of cell lysis buffer (5x NEBuffer 2, 0.625% SDS) were then added to each 

well of the 2nd-round barcoding plate. The plate was incubated at 60 °C for at least 24 hr.

For the 2nd-round barcoding, 1.5 μl of pre-mixed GAGE-seq adapters (0.2 μM Hi-C-AD2 

and 0.17 μM RNA-AD2) were added to the plate, followed by 23.5 μl of ligation mix (3 

μl 1x T4 ligase buffer (NEB, B0202S), 0.15 μl 50 mg/ml BSA (ThermoFisher Scientific, 

AM2618), 1 μl 10% Triton X-100 (MilliporeSigma, 93443), 0.03 μl 20 μM 5’-P-TNA-

Nextera-P5-AD, 0.03 μl 20 μM 5’-P-TA-Nextera-P5-AD, 0.03 μl 10 μM RNA ligation-1 

block, and 0.8 μl T4 DNA ligase (ThermoFisher Scientific, EL0012)). The ligation was 

carried out at 25 °C for 24 hr, and then stopped by adding 2 μl of proteinase K digestion mix 

(0.2 μl proteinase K (ThermoFisher Scientific, AM2546), 0.5 μl 10% SDS and 1.8 μl water) 

to each well. A reverse crosslinking was carried out at 60 °C for 20 hr.

Reverse crosslinking and separation of scHi-C and scRNA-seq libraries.
—After reverse crosslinking, the sample in each 96-well plate was pooled into 12 

DNA low-binding 1.5 ml tubes (Eppendorf, 022431021). Genomic DNA (gDNA) and 

cDNA were precipitated by adding 66 μl 3M Sodium Acetate Solution (pH 5.2) 

(MilliporeSigma,127-09-3), 1 μl GlycoBlue (ThermoFisher Scientific, AM9515) and 720 

μl iso-propanol (MilliporeSigma, I9516) to each tube, followed by incubating at −80 °C for 

at least 1 hr. The samples were then centrifuged at 15000 rpm for 10 min and the pellet in 

each tube were resuspended in 30 μl 1x NEBuffer 2 containing 0.15% SDS. After incubation 

at 37 °C for 10 min, the samples were combined into one DNA low-binding tube. gDNA 

and cDNA were precipitated by adding 66 μl 3M Sodium Acetate Solution (pH 5.2) and 

720 μl iso-propanol, followed by incubating at −80 °C for at least 1 hr. The sample was 

then centrifuged at 15000 rpm for 10 min and the pellet was resuspended in 100 μl buffer 

EB (Qiagen, 19086). For each sample of a 96-well plate, 5.5 μl of MyOne C1 Dynabeads 

were washed twice with 1x B&W-T buffer (5mM Tris pH 8.0, 1M NaCl, 0.5mM EDTA, 

and 0.05% Tween 20) and resuspended in μl of 2x B&W buffer (10mM Tris pH 8.0, 2M 

NaCl, and 1mM EDTA) and added to the sample tube. The mixture was incubated at room 

temperature for 60 min and put on a magnetic stand to separate supernatant and beads.

Library construction and sequencing.—Sequencing libraries were constructed as 

described in detail in the Supplementary Methods. Both scHi-C and scRNA-seq libraries 

were pooled and paired end sequencing (PE 150) were performed on the HiSeq, NextSeq, or 

NovaSeq platform (Illumina).

GAGE-seq data processing workflow

Demultiplexing.—DNA and RNA reads were assigned to wells based on the two rounds 

of barcodes. For DNA reads, only read 2 was used for demultiplexing, allowing at most 1 

mismatch in each of the two rounds of barcodes. DNA reads with more than 5 mismatches 

in the region between the two rounds of barcodes (the 9th-23rd nt) were discarded. After 

demultiplexing, the first 12 nt were removed from read 1 and the first 35 nt were removed 

from read 2. For RNA reads, only read 1 was used for demultiplexing, allowing at most 1 

mismatch in each barcode round. RNA reads with more than 6 mismatches in the region 
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between the two rounds of barcodes (the 19th-48th nt) or with more than 6 mismatches in 

the region downstream of the first round of barcode (the 57th-71th nt) were discarded.

The two reference genomes were combined into a single reference genome file used for 

all GAGE-seq libraries. For DNA reads, BWA (0.7.17)68 was used for alignment. The 

combined reference genome was indexed using command bwa index -a bwtsw. Paired, 

trimmed DNA reads were aligned to the combined reference genome using command bwa 

mem -SP5M. For RNA reads, STAR (2.7.8a)69 was used for alignment. The GENCODE 

annotation files for human (v36) and mouse (vM25) were downloaded and concatenated. 

The combined reference genome was indexed using command --runMode genomeGenerate 

--sjdbOverhang 100 with the combined gencode annotation file. Only read 2 of RNA reads 

was aligned with the command STAR --outSAMunmapped Within.

Identification of contact pairs from DNA reads.—Pairtools (0.3.1.dev1)70 was used 

to identify contact pairs from paired DNA reads with command pairtools parse --walks-

policy all --no-flip --min-mapq=10. After that, walk reads (i.e., DNA reads containing 

multiple ligation sites) were further processed. Briefly, we assumed that any pair of loci in 

the same DNA read forms a valid contact pair, and these contact pairs were included in the 

results.

Deduplication of contact pairs.—The contact pairs were deduplicated. We extract the 

genomic positions of the two ends of each contact pair. We define two contact pairs as 

directly duplicated if the two contact pairs’ first ends lie within 500 nt apart and their 

second ends also within 500 nt. If two contact pairs are not directly duplicated, but are 

directly or indirectly duplicated with a third contact pair, we define the first two contact pairs 

as indirectly duplicated. Among each cluster (i.e., connected component) of (in)directly 

duplicated contact pairs, the one with the largest difference between its two ends’ genomic 

positions was retained, and the rest were marked as duplicates.

Deduplication of RNA reads.—The RNA reads were deduplicated. Two RNA reads 

are defined as directly duplicated if there is at most 1 mismatch in their UMI and if 

their genomic positions differ by at most 5 nt. The rest of the process is similar to the 

deduplication of contact pairs. Only one RNA read from each duplicate cluster is retained.

GAGE-seq integrative analysis for mouse brain cortex.

Integration with MERFISH data.—Integration of GAGE-seq data and MERFISH data 

was done with Seurat (4.1.1)50. Only scRNA-seq profiles from the GAGE-seq data were 

used for this integration. In the GAGE-seq mouse brain cortex data, the following cell types 

of excitatory neurons were used: L2/3 IT CTX a, L2/3 IT CTX b, L2/3 IT CTX c, L4 IT 

CTX, L4/5 IT CTX, L5 IT CTX, L6 IT CTX, L6 CT CTX a, L6 CT CTX b, L5/6 NP CTX, 

and L6b CTX. In the MERFISH data, cells from L2/3 IT, L4/5 IT, L5 IT, L5/6 NP, L6 CT, 

L6 IT, and L6b were used. Each time, the selected cells from GAGE-seq were integrated 

with one slice from the MERFISH data. All genes detected and expressed in both GAGE-seq 

and MERFISH were used. The ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions were 

used with default parameters, except that the number of dimensions was set to 10.
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Inference of whole-transcriptome expression and 3D genome features for 
MERFISH cells.—The integrated single-cell expression profiles of GAGE-seq data 

and MERFISH data were scaled by the ‘ScaleData’ function from Seurat with default 

parameters, and the first 30 PCs were calculated by the ‘RunPCA’ function. A 50-nearest 

neighbor regressor was created to estimate whole-transcriptome expression and 3D genome 

features from the 30-dimensional PC space. The regressor was trained on GAGE-seq data 

and then applied to the MERFISH data. The Gaussian kernel was used as the weight 

function. For each MERFISH cell, the bandwidth was defined as the 0.3 quantile of the 

distances to the 50 nearest neighbors.

Integration with Paired-seq data.—The integration of GAGE-seq data with Paired-seq 

data52 was done using Seurat. Only scRNA-seq profiles from the GAGE-seq data and 

the Paired-seq data were used for this integration. In the GAGE-seq mouse brain cortex 

data, we excluded three cell types: L2 IT RvPP, L2/3 IT RSP, and L5 IT RSP. In the 

Paired-seq data, cells from BR_NonNeu_Endothelial, HC_ExNeu_CA1, HC_ExNeu_CA23, 

HC_ExNeu_DG, HC_ExNeu_Subiculum, and HC_NonNeu_Ependymal were excluded. 

The ‘SelectIntegrationFeatures’, ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions 

were used with default parameters.

Inference of accessibility for GAGE-seq cells.—The integrated single-cell expression 

profiles of GAGE-seq data and Paired-seq data were scaled by the ‘ScaleData’ function 

from Seurat with default parameters. The first 20 PCs were calculated by the ‘RunPCA’ 

function. To estimate whole-transcriptome expression and 3D genome features from the 

40-dimensional PC space, we created a 50-nearest neighbor regressor, which was trained on 

Paired-seq data and then applied to the GAGE-seq data. The Gaussian kernel was used as the 

weight function. For each GAGE-seq cell, the bandwidth was set based on the 0.3 quantile 

of the distances to the 40 nearest neighbors.

GAGE-seq integrative analysis for bone marrow

Trajectory and pseudotime.—The pseudotime of human bone marrow cells was 

inferred by the ‘sc.tl.diffmap’ and ‘sc.tl.dpt’ function in Scanpy (1.9.3)71, jointly from the 

paired scRNA-seq profiles and scHi-C profiles. Specifically, cells in the HSC, MPP, MLP, 

and B-NK clusters were included. The first 5 PCs of the scRNA-seq profiles were used 

for the scRNA-based pseudotime and the first 2 PCs of the Fast-Higashi embeddings of 

the scHi-C profiles were used for the scHi-C-based pseudotime. The 5 scRNA-seq PCs 

and the 2 scHi-C PCs were then concatenated and used for the joint pseudotime. The 

‘sc.pp.neighbors’ function was used to construct the neighbor graph with 30 (scRNA-based 

and joint pseudotime) or 20 (scHi-C-based pseudotime) nearest neighbors per cell. The 

‘sc.tl.diffmap’ and ‘sc.tl.dpt’ function was applied with 10 diffusion components to learn a 

latent representation focusing on the trajectory and to infer the pseudotime for single cells. 

The origin of the trajectory was set based on the average expression level of HSC marker 

genes previously identified53.

Unsupervised clustering of genes.—The clustering of genes was based on the 

expression and scA/B value. Genes expressed in at least 20 cells were included. To generate 
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features for genes, 1) the expression levels and scA/B values were z-score normalized per 

gene among all cells. 2) cells were evenly divided into 10 bins based on the pseudotime, and 

3) the average values of the expression and scA/B value in each bin were calculated for each 

gene. This process led to 20 features for each gene. The Louvain clustering algorithm was 

then applied to genes with 20 neighbors, a resolution of 1.5. The correlation was used as the 

distance metric.

Statistics and reproducibility

Boxplots in all figures show the median, first, and third quartiles, and whiskers extend 

no further than 1.5× interquartile range. The robustness and reproducibility of GAGE-seq 

were validated extensively by using multiple cell lines and primary tissue cells (both mouse 

and human). Blinding was not relevant to the study, thus data collection and analysis 

were not performed blind to the conditions of the experiments. No statistical method was 

used to predetermine sample size. The experiments were not randomized. Specifics on 

additional statistics used for each analysis are described in detail in the Methods section and 

Supplementary Methods.

Additional experimental methods, methods for quality control and benchmarking, methods 

for identifying single-cell 3D genome features, and other methods are described in the 

Supplementary Methods.

Data availability

All sequencing data from this study have been submitted to GEO under the accession 

# GSE238001. We use the following publicly available datasets in this work: in situ 
Hi-C datasets from Rao et al.3 (GSE: GSE63525); scHi-C datasets from Nagano et al.17 

(GEO: GSE48262), Nagano et al.23 (GEO: GSE94489), Ramani et al.22 (GEO: GSE84920), 

Kim et al.37 (4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 4DNESIKGI39T, 

4DNES1BK1RMQ, and 4DNESTVIP977), Tan et al.26 (GEO: GSE117876), Tan et al.57 

(GEO: GSE121791), Tan et al.27 (GEO: GSE162511), Flyamer et al.24 (GEO: GSE80006), 

Gassler et al.60 (GEO: GSE100569), Stevens et al.25 (GEO: GSE80280), Collombet et al.59 

(GEO: GSE129029), Lee et al.44 (GEO: GSE124391), Liu et al.45 (GEO: GSE132489), 

and Mulqueen et al.58 (GEO: GSE174226); scRNA-seq datasets from Chen et al.62 

(GEO: GSE126074), Plongthongkum et al.56 (GEO: GSE157660), Chen et al.55 (GEO: 

GSE178707), Ma et al.43 (GEO: GSE140203), Xu et al.65 (ArrayExpress: E-MTAB-11264), 

Xiong et al.66 (GEO: GSE158435), Zhu et al.63 (GEO: GSE130399), Zhu et al.52 (GEO: 

GSE152020), Cao et al.61 (GEO: GSE117089), Mimitou et al.64 (GEO: GSE126310), and 

Zhang et al.53 (GEO: GSE137864); HiRES co-assayed scHi-C and scRNA-seq datasets 

from Liu et al.35 (GEO: GSE223917); MERFISH spatial transcriptome datasets from Zhang 

et al.49 (Brain Image Library: cf1c1a431ef8d021); Paired-seq co-assayed scRNA-seq and 

scATAC-seq from Zhu et al.52 (GEO: GSE152020).

Code availability

The source code of the GAGE-seq data processing and analysis workflows can be accessed 

at: https://github.com/ma-compbio/GAGE-seq, which has also been deposited via Zenedo 

(https://doi.org/10.5281/zenodo.10888453)72. In our GitHub repository, we have provided 
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notebooks (https://github.com/ma-compbio/GAGE-seq/tree/main/scripts_analysis) that detail 

the integration between GAGE-seq and Paired-seq data for single-cell joint analysis of 3D 

genome structure, chromatin accessibility, and gene expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview and validation of GAGE-seq.
a. Schematic representation of the GAGE-seq workflow detailing the simultaneous 

single-cell profiling of 3D genome architecture and gene expression. b-e. Validations 

demonstrating the specificity of GAGE-seq using mixed experiments with the human 

(K562) and mouse (NIH3T3). b and d. Scatter plots showing the collision level in the 

GAGE-seq scHi-C (b) and scRNA-seq (d) libraries, and histograms showing the binomial 

distribution of reads mapped to hg38 (top) and mm10 (right). c. Scatter plot showing the 

cis:trans ratio of scHi-C reads. e. Scatter plot showing the well-separation of scHi-C and 

scRNA reads of valid cellular indices from that of empty indices. Mouse is colored in green, 

human in orange, collisions in red, and empty indices in gray.
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Figure 2. High-quality scHi-C and scRNA-seq data generated by GAGE-seq.
a. Pearson’s correlation between the aggregated scHi-C profiles from GAGE-seq replicates 

and the bulk in situ Hi-C data3. b. Comparison of aggregated scRNA-seq profiles of GAGE-

seq replicates with NEAT-seq55, SHARE-seq43, and SNARE-seq256. Pearson’s correlation 

is shown. c. Decay curves of chromatin contact for the GAGE-seq scHi-C libraries. d. 

Comparison of aggregated contact maps between two GAGE-seq K562 replicates (upper), 

and between the combined GAGE-seq K562 library and an in situ Hi-C library3 (lower). e. 

Comparison of A/B compartments and TAD-like domain calling at the human beta-globin 
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locus between GAGE-seq (pseudo bulk) and in situ Hi-C3. f. RNA read distribution across 

gene bodies in the GAGE-seq scRNA libraries. g. Aggregated single-cell gene expression 

profiles at the GAPDH locus. Upper panel: scRNA-seq signals of GAGE-seq libraries of 

K562, GM12878, and MDS-L cells (hg38). Lower panel: scRNA-seq signals of SHARE-

seq in GM12878 cells (hg19)43. h. Reproducibility between two biological replicates of 

GAGE-seq scHi-C libraries. i. Reproducibility between two biological replicates of GAGE-

seq scRNA libraries. r2 statistics are shown. j. Comparison of GAGE-seq scHi-C library 

size with published scHi-C17,22–27,37,57–60 and co-assay methods35,44,45. k. Comparison of 

scRNA-seq library size (upper) and the number of detected genes (lower) with published 

co-assay methods35,43,52,55,56,61–66.
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Figure 3. Cell types in mouse cortex characterized by GAGE-seq scHi-C and scRNA-seq.
a and c. UMAP visualization of mouse cortex scRNA-seq (a) and scHi-C profiles (c) from 

GAGE-seq. Insets: UMAP visualization of excitatory neuron subtypes (top) and inhibitory 

neuron subtypes (bottom). b. Cell type-specific expression (based on scRNA-seq in GAGE-

seq) of known marker genes, including glial types, neuronal types, and neuron subtypes. 

d. Visualization of cell type-specific 3D chromatin architecture and gene expression at 

representative gene loci. Left: aggregated single-cell insulation score (100-Kb resolution, 

upper) and gene expression (lower) at the Girk2 locus and the Rbfox1 locus. Right: 

aggregated contact maps (50-Kb resolution) of the Girk2 locus (top panel, excitatory vs 

inhibitory neurons) and the Rbfox1 locus (low panel, L4 & L4/5 IT CTX vs L2/3 CTX). 

Cell types selected in the right panels are highlighted by green lines (higher expression) 

or red lines (lower expression) in the corresponding left panels. e. UMAP visualization of 

the integration of GAGE-seq and a MERFISH dataset49. f. Inferred spatial patterns of gene 

Zhou et al. Page 23

Nat Genet. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression and 3D genome features of L5 IT CTX marker genes. g. In situ plots of inferred 

single-cell gene expression (left) and scA/B value (right) for L5 IT CTX marker genes. 

Layer 3 was highlighted by black arrows in panels (f) and (g). The cell type abbreviations 

are based on the naming convention used in67.
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Figure 4. 3D genome features inform cell type-specific gene expressions in the mouse cortex.
a. Correlations between gene expression and 3D genome features across neuron cell types. 

Upper row: inhibitory (n=508) vs. excitatory (n=1938). Lower row: Pvalb (n=188) vs. 

other inhibitory (n=320). Left column: correlation between differential expression and 

differential 3D genome feature (Pearson’s correlation coefficients and the P-values from 

one-sided tests for nonzero correlations shown). Middle column: volcano plot of differential 

scA/B value and single-cell insulation score; Right column: volcano plot of differential 

expression. P-values from one-sided t-tests with unequal variance are shown in middle 

and right columns. b. Single-cell level correlation of gene expression with scA/B value 
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(upper) or insulation score (lower) in inhibitory neurons (432 genes) and Pvalb (198 genes), 

respectively (Spearman’s correlation coefficients and the P-values from one-sided tests for 

nonzero correlations shown). c. Comparison of A/B compartment (200-Kb resolution) of the 

Erbb4 locus between inhibitory and excitatory neurons. Pearson’s correlation matrices of 

aggregated contact maps (top) and the A/B compartment scoretracks (bottom) are shown. d. 

Comparison of the pseudo-bulk contact map (50-Kb resolution) of the Erbb4 locus between 

Pvalb and other inhibitory subtypes. Pseudo-bulk contact maps (upper) and the insulation 

scores (bottom) are displayed. Two Pvalb-specific strides (white arrow) and melted TAD 

(black arrow) are shown in the top panel. The gene body is shown right under the contact 

matrices in (c) and (d), while the bottom panels highlight differential 3D genome features 

with light red boxes. e. Loop example in Pvalb (lower) and Sst and Meis2 (upper) inhibitory 

subtypes at 10-Kb resolution. Aggregated contact maps, regulatory element annotations52 

(right), and TSS of Erbb4 (bittin arrow) are shown. f. Differential accessibility around the 

enhancer in Pvalb (left) vs. Sst and Meis2 (right), with a 1kb enhancer region highlighted 

(black arrow). The P-values of one-sided Mann-Whitney U tests are shown. g. Loop vs. 

non-loop contacts correlation with expression. P-values from two-sided tests for nonzero 

Spearman’s correlation coefficients are shown (n=3,105 cells).
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Figure 5. Integrative analysis of GAGE-seq and chromatin accessibility in the mouse cortex.
a. Correlation coefficient (n=3,105 cells) between expression and TSS-CRE interaction 

frequency for each gene-CRE pairs from Paired-seq data63, grouped by genomic distance 

between TSS and CRE. b. Comparison between gene-CRE pairs corroborated by other 

sources (red) and those identified only from Paired-seq data63 (yellow). The P-value of 

two-sided Mann-Whitney U test is shown. c-e. The combined effect of 3D genome and 

accessibility on expression at the Epha4 locus. c. Correlation of interaction-expression for 

a specific gene-CRE pair at the Epha4 gene, with dots representing single cells colored by 

cell type. d. Expression (upper) and TSS-CRE interaction frequency (lower) comparison 

among excitatory subtypes, revealing heightened levels in IT and PT subtypes. The P-values 

of one-sided Mann-Whitney U tests are shown. e. Accessibility comparison around the 

TSS and CRE (chr1: 77410959-77411960) of the Epha4 gene among excitatory subtypes, 

showing higher accessibility IT and PT subtypes. The P-values of two-sided Mann-Whitney 

U tests are shown. IT and PT subtypes are compared against CT, NP, and L6b subtypes in 

(d) and (e). In panel (e), *: P<1e-3; **: P<1e-5; ***: P<1e-10; the P-values in the upper 

left plot are (from left to right): 2e-11, 7e-20, 8e-34, 7e-52; the P-values in the upper right 

plot are: 6e-4, 6e-8, 7e-6, 2e-6, 1e-4. f. Binding sites of transcription factors Twist2 and Arx 

at the CRE of the Epha4 gene, depicting both the canonical motif (top) and the identified 

binding motif sequence (bottom) for each TF.
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Figure 6. Interplay between 3D genome variation and gene expression changes in human bone 
marrow differentiation.
a. UMAP visualization of GAGE-seq scRNA-seq (left) and scHi-C profiles (right) of human 

bone marrow CD34+ cells. b. Average expression of known marker genes on the UMAP 

plot. The 6 panels include n=124, 78, 24, 82, 126, and 356 genes for HSC, MPP, LMPP, 

MEP, MLP, and B-NK, respectively. c-d. Inferred B-NK lineage trajectory and pseudotime 

from scHi-C profiles (c) and jointly from scRNA-seq and scHi-C profiles (d), displayed 

by cell type (upper) and pseudotime (lower). e. Cell type compositions across 10 equally 
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divided pseudotime bins. f. UMAP visualization of gene clusters determined by the temporal 

trend of expression and scA/B value. g. Temporal trends of gene expression (upper row), 

scA/B value (middle row), and single-cell insulation score (lower row) of gene clusters 9 

(left column) and 10 (right column). h. scA/B (left) and single-cell insulation score (right) of 

the JAK1 (upper) and ITPR1 (lower) loci (at 100-Kb resolution). Each row represents a cell, 

ordered by the joint pseudotime from left to right. Heat maps were smoothed by a Gaussian 

kernel with a receptive field of 10 neighboring cells and 1 neighboring bin in each direction. 

i. Pseudo-bulk contact maps (at 50-Kb resolution) of HSC and B-NK at the JAK1 (upper) 

and ITPR1 (lower) loci.
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