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An essential host dietary fatty acid promotes TcpH inhibition 
of TcpP proteolysis promoting virulence gene expression in 
Vibrio cholerae
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ABSTRACT Vibrio cholerae is a Gram-negative gastrointestinal pathogen responsible 
for the diarrheal disease cholera. Expression of key virulence factors, cholera toxin and 
toxin-coregulated pilus, is regulated directly by ToxT and indirectly by two transmem
brane transcription regulators (TTRs), ToxR and TcpP, that promote the expression of 
toxT. TcpP abundance and activity are controlled by TcpH, a single-pass transmembrane 
protein, which protects TcpP from a two-step proteolytic process known as regulated 
intramembrane proteolysis (RIP). The mechanism of TcpH-mediated protection of TcpP 
represents a major gap in our understanding of V. cholerae pathogenesis. The absence 
of tcpH leads to unimpeded degradation of TcpP in vitro and a colonization defect in 
a neonate mouse model of V. cholerae colonization. Here, we show that TcpH protects 
TcpP from RIP via direct interaction. We also demonstrate that α-linolenic acid, a dietary 
fatty acid, promotes TcpH-dependent inhibition of RIP via co-association of TcpP and 
TcpH molecules within detergent-resistant membranes (DRMs) in a mechanism requiring 
the TcpH transmembrane domain. Taken together, our data support a model where V. 
cholerae cells use exogenous α-linolenic acid to remodel the phospholipid bilayer in vivo, 
leading to co-association of TcpP and TcpH within DRMs where RIP of TcpP is inhibited by 
TcpH, thereby promoting V. cholerae pathogenicity.

IMPORTANCE Vibrio cholerae continues to pose a significant global burden on health 
and an alternative therapeutic approach is needed, due to evolving multidrug resistance 
strains. Transcription of toxT, stimulated by TcpP and ToxR, is essential for V. cholerae 
pathogenesis. Our results show that TcpP, one of the major regulators of toxT gene 
expression, is protected from proteolysis by TcpH, via direct interaction. Furthermore, we 
identified a gut metabolite, α-linolenic acid, that stimulates the co-association of TcpP 
and TcpH within detergent-resistant membranes (also known as lipid-ordered membrane 
domains), thereby supporting TcpH-dependent antagonism of TcpP proteolysis. Data 
presented here extend our knowledge of RIP, virulence gene regulation in V. cholerae, 
and, to the best of our knowledge, provides the first evidence that lipid-ordered 
membranes exist within V. cholerae. The model presented here also suggests that TTRs, 
common among bacteria and archaea, and co-component signal transduction systems 
present in Enterobacteria, could also be influenced similarly.

KEYWORDS virulence, regulated intramembrane proteolysis, α-linolenic acid, 
detergent-resistant membrane

V ibrio cholerae tightly regulates the expression of its virulence factors, such as 
cholera toxin (CtxAB) and the toxin co-regulated pilus (TcpA-F) to reach the 

optimal site of infection, the crypt of intestinal villi (1–6). Transcription of these essential 
virulence factors is regulated by ToxT, an AraC-like transcription factor (7–10). Similarly, 
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transcription of toxT is highly regulated and positively stimulated by TcpP and ToxR, 
two transmembrane transcription regulators (TTRs) each contain a cytoplasmic 
DNA-binding domain, a single transmembrane domain, and a periplasmic domain (11–
14). Both ToxR and TcpP directly bind to the promoter region of toxT, at −180 to −60 and 
−55 to −37 respectively, and are required for toxT transcription (9, 15, 16).

TcpP is regulated via transcription and post-translational mechanisms (17–24). 
Post-translational regulation of TcpP occurs by two proteases, Tail-specific protease (Tsp) 
and YaeL, through a process known as Regulated Intramembrane Proteolysis (RIP) (25–
27). RIP is a form of gene regulation conserved across all domains of life that allows 
organisms to rapidly respond to extracellular cues, commonly by liberating a transcrip
tion factor or a sigma factor, from membrane sequestration (28). Two well-characterized 
bacterial systems controlled by RIP mechanisms are the extracytoplasmic stress response 
in E. coli and sporulation in Bacillus subtilis. These systems require RIP of RseA and 
SpoIVFB, respectively, to release their respective sigma factors (σE and pro-σK) from the 
membrane and stimulate gene expression (29–35). Similarly, both systems have their 
respective TcpH analog, RseB and BofA, which function to prevent RIP of RseA and 
SpoIVFB via different mechanisms (30, 36–41). Regulation of TcpP by this mechanism 
diverges from these systems because the transcription activity of TcpP is not activated 
by RIP but, rather, is inactivated by RIP, removing TcpP from the cytoplasmic membrane 
and thereby decreasing toxT transcription (25–27). Recent work has demonstrated that 
TTRs are common to both archaea and bacteria, with TTRs encompassing up to 41% of 
all transcription factors for certain species (42). In addition, other TTRs systems similar 
to TcpPH, otherwise known as co-component signal transduction systems, are common 
among the Enterobacteria and are rapidly evolving (43, 44). There has been substantial 
work detailing how some co-component systems respond to bile salts, but our current 
understanding of RIP of TcpP is limited (43–50).

Under RIP-permissive conditions in vitro, TcpP is sensitive to proteolysis by tail-specific 
protease (Tsp; site-1 protease) and subsequently by YaeL protease (site-2 protease) 
(25–27). RIP of TcpP is inhibited by its associated protein, TcpH, under specific in vitro 
conditions (25–27). In cells lacking TcpH, TcpP is constitutively degraded via RIP (25–27). 
However, the mechanism by which TcpH inhibits RIP and how TcpH-dependent RIP 
inhibition is modulated by extracellular stimuli remains unknown.

In this report, we provide evidence that TcpH protects TcpP from RIP via direct 
interaction. Furthermore, we explore the role of the membrane, specifically detergent-
resistant and detergent-soluble membranes (DRM and DSM, respectively), in regulating 
TcpP-TcpH association. DRM and DSM (i.e., lipid-ordered and lipid-disordered membrane 
domains) are known to form in both eukaryotic and prokaryotic organisms (51–57). In 
prokaryotes, DRMs are small phospholipid domains that exist within both inner and 
outer membranes (52, 53, 57). They are composed of saturated phospholipids and 
hopanoids that tightly interact, resulting in a structured membrane region with low 
fluidity. Conversely, DSMs are enriched in unsaturated phospholipids resulting in high 
fluidity (51–53, 55–64).

Our model suggests that in vivo TcpP and TcpH preferentially associate with DRMs. 
This leads to enhanced inhibition of RIP by TcpH, thereby resulting in elevated TcpP 
levels and toxT transcription. We also show that utilization of exogenous α-linolenic 
acid, a long-chain poly-unsaturated fatty acid present in vivo, stimulates TcpP and 
TcpH association within DRMs. Data generated here support a model where, once V. 
cholerae cells enter the gastrointestinal tract, cellular uptake of α-linolenic acid results in 
modification of the phospholipid profile and leads to an increase in the abundance of 
TcpP and TcpH molecules within DRMs, thereby stimulating inhibition of RIP. Our work 
indicates that TcpH is also likely responsive to α-linolenic acid in many V. cholerae strains, 
due to high conservation of the TcpH transmembrane domain. The work discussed 
here further expands our current understanding of co-component signal transduction 
systems common to enteric pathogens among Enterobacteria and provides an example 
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as to how the cytoplasmic membrane can modulate TTR activity, common among 
bacteria and archaea.

RESULTS

Altering the transmembrane and periplasmic domains does not disrupt TcpH 
activity in vitro

To identify regions within TcpH critical for its role in protecting TcpP from RIP, 
we constructed transmembrane (TM) domain chimeric fusions and periplasmic TcpH 
deletions (Peri). Two TM chimeras and one Peri deletion strain (ToxSTcpH, EpsMTcpH, 
and TcpH∆103-119, respectively) were tested, and the allele encoding each was recom
bined into the V. cholerae genome so as not to disrupt the tcpP coding sequence, and 
under normal tcpPH transcriptional control (Fig. 1A). Growth of the resulting strains 
was unaffected in comparison with wild-type V. cholerae in virulence inducing (Vir Ind) 
conditions (i.e., LB pH 6.5, 30°C) (Fig. S1A). Modification of the TcpH TM or Peri domain 
still supported protection of TcpP, WT toxT transcription, and regulated virulence factor 
production similar to WT TcpH and better than ΔtcpH (Fig. 1B through D; Fig. S1B).

While the TM TcpH supports higher levels of TcpP in vitro compared to ΔtcpH, we 
sought to determine whether the TM TcpH chimeras specifically inhibited RIP of TcpP. RIP 
of TcpP can be measured directly in a ΔyaeL mutant as the substrate of YaeL is a TcpP 
degradation intermediate (TcpP*) (27). Thus, TcpP* accumulates under RIP permissive 
conditions (i.e., LB pH 8.5, 37°C) or in the absence of tcpH in ΔyaeL cells (27). TcpP* lacks 
most of its periplasmic domain and therefore has a lower molecular weight (~17 KDa) 
compared to TcpP (~29 KDa), thus enabling us to determine the RIP status of TcpP via 
western blot. When TcpH is active and RIP is thereby inhibited, we observe only full-
length TcpP and no TcpP*. When TcpH, ToxSTcpH, or EpsMTcpH constructs were ectopically 
expressed, we observed only full-length TcpP and no TcpP* (Fig. 1E). Taken together, our 
data indicate that ToxSTcpH and EpsMTcpH inhibit RIP of TcpP in vitro.

TcpH TM domain is critical for the colonization of infant mice

The TM and Peri domain of TcpH can withstand considerable modifications and maintain 
function during in vitro experiments. Despite their wild-type activity in vitro, strains 
expressing ToxSTcpH, and EpsMTcpH colonized infant mice to levels significantly lower 
than the wild type, more closely resembling colonization levels of ΔtcpH (Fig. 2A). 
TcpH∆103-119 supported the same level of TcpH-dependent virulence gene expression in 
vitro as both ToxSTcpH and EpsMTcpH but colonized infant mice to a similar degree as wild 
type (Fig. 2A). As TcpA expression is critical for V. cholerae to colonize infant mice, we 
examined TcpA levels in the inocula of ToxSTcpH and EpsMTcpH used to infect infant mice. 
We found that ToxSTcpH and EpsMTcpH produced similar levels of TcpA compared to wild 
type (Fig. S2A).

We also quantified fluid accumulation (which requires a higher inoculum cell density) 
in infected mice, which is dependent on CtxAB synthesis. Due to no observable differen-
ces between EpsMTcpH and ToxSTcpH colonization of infant mice, ToxSTcpH was not 
included in these experiments. Mice infected with EpsMTcpH and ΔtcpH exhibited lower 
fluid accumulation compared to those infected with wild-type V. cholerae, and EpsMTcpH 
was unable to colonize infant mice to wild-type levels (Fig. 2B and C). These data support 
our hypothesis that EpsMTcpH is unable to colonize infant mice due to an inability to 
support virulence factor production in vivo.

To determine whether the presence of other microbes in the gastrointestinal tract 
might influence the ability of the TM TcpH strains to support pathogenicity, we cultured 
wild type and the TM TcpH constructs (TM and Peri) aerobically in both filter-sterilized 
and non-filtered mouse fecal media for 21 hours (Fig. S2B and C). Given that V. cholerae 
colonizes the small intestine and that this area of the gastrointestinal tract is relatively 
oxygen limited, these testing conditions are sub-optimal. However, all strains exhibited 
similar cell densities at the indicated time points in both filtered and non-filtered fecal 
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FIG 1 TcpH transmembrane and periplasmic constructs protect TcpP, support toxT expression and virulence factor production. (A) Diagram of TcpH transmem

brane constructs (EpsMTcpH and ToxSTcpH) and periplasmic construct (TcpH∆119-103). TcpH has a single transmembrane domain (also a Sec signal sequence), 

at its N-terminus, and two periplasmic cysteine residues (C114 and C132), represented by “s.” The transmembrane domain of TcpH was replaced with the 

transmembrane domain of ToxS (ToxSTcpH) and EpsM (EpsMTcpH) as both ToxS and EpsM are known to be localized to the cytoplasmic membrane with similar 

domain topology as TcpH (65, 66). In-frame deletion of periplasmic residues is indicated by a dashed line. (B-E) in vitro characterization of TcpH transmembrane 

and periplasmic chromosomal constructs grown under virulence-inducing conditions. Data presented in these panels were collected from three independent 

experiments. (B) Western blots of whole-cell lysates probed with α-TcpP (top), α-TcpH (middle), and α-TcpA (bottom). (C) Average toxT transcription of TcpH 

variants, determined via ∆∆CT method. toxT fold change is relative to WT V. cholerae. (D) CtxB levels, measured via enzyme-linked immunosorbent assay, in 

culture supernatants collected from cultures incubated with V. cholerae cells cultured in virulence-inducing conditions for 24 hours. Error bars represent the 

standard error of the mean. See Fig. S1B for the unmodified western blots in panel B. (C-D) Samples from independent experiments were averaged across three 

technical replicates. (E) Western blots of spheroplast fractions (cytoplasm and cytoplasmic membrane fractions). TcpH transmembrane constructs (ToxSTcpH and 

EpsMTcpH) and native TcpH were expressed from pBAD18 in ΔtcpH ΔyaeL background under virulence-inducing conditions for 6 hours. All strains, excluding WT, 

are ΔtcpH ΔyaeL.

Research Article mBio

August 2024  Volume 15  Issue 8 10.1128/mbio.00721-24 4

https://doi.org/10.1128/mbio.00721-24


media (Fig. S2B and C). While end-point cell densities of all strains were similar, those 
expressing ToxSTcpH and EpsMTcpH produced TcpA levels below that of wild type, 
although not statistically significant (Fig. S2D). Deletion of TcpH periplasmic residues had 
no effect on TcpA production (Fig. S2D). These data do not suggest that members of the 
mouse gastrointestinal microflora negatively impact the growth of the TM TcpH strains. 
Taken together, these data suggest that the TcpH TM domain is critical for TcpH function 
in the gastrointestinal tract to protect TcpP from RIP, thereby supporting downstream 
virulence factor production. In support of this, we also found that the TcpH TM domain is 
highly conserved among V. cholerae strains (Fig. S3). Due to its wild-type levels of 
colonization and ability to support wild-type levels of TcpA synthesis in mouse fecal 
media, we excluded the TcpH Peri deletion strain from further experiments.

FIG 2 TcpH transmembrane domain is critical in vivo. (A) Colony forming units (CFUs) per gram of 3- to 6-day-old infant mouse intestine 21 hours post-infection 

(1 × 106 inoculum dose). The horizontal line indicates the average CFU/g of intestine. These data were collected from three independent experiments with 5–11 

replicates per group. (B and C) Fluid accumulation and CFUs per gram of infant mouse intestine 18 hours after infection (1 × 108 inoculum dose). Data were 

collected from two independent experiments. (D) Representative fatty acids were identified in the lumen of infant mouse intestine, see SI Appendix Table S1 

for a complete list of fatty acids identified. Data presented here are an average of 9 replicates. Error bars represent standard error of the mean in panels A–C 

and standard deviation of the mean in panel D. A Mann-Whitney U test (panels A and B) and a one-way ANOVA (panel C) were used to determine statistical 

significance. * Indicates a P-value less than 0.05.
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toxT transcription is enhanced with crude bile and is dependent on the TcpH 
TM domain

Data presented here and elsewhere indicate that TcpH-dependent RIP inhibition is 
affected by different in vitro and in vivo environmental signals and that the TM domain 
of TcpH is critical for that function (25–27). Vibrio species can use exogenous fatty acids 
present in bile (e.g., linoleic, linolenic, dihomo-gamma-linolenic, arachidonic, eicosapen
taenoic, and docosahexaenoic acid) via the VolA and FadL/FadD pathways (67–71), 
resulting in modification of phospholipid composition (71, 72). As our data suggested 
that the TM domain of TcpH is important in vivo, we sought to determine whether 
there are fatty acids present in the infant mouse gastrointestinal tract that can be 
utilized directly by V. cholerae. We identified 62 different fatty acids within the infant 
mouse gastrointestinal tract, see Table S1. Among the 12 most abundant fatty acids, we 
found that linoleic (18:2), linolenic (18:3), dihomo-gamma-linolenic (20:3), arachidonic 
(20:4), eicosapentaenoic (20:5), and docosahexaenoic acid (22:6) are present in the infant 
mouse gut (Fig. 2D; Table S1). Moreover, the fatty acid profile within infant mice is 
similar to humans with oleic acid (18:1), linolic (18:2), α-linolenic (18:3), stearic (14:0), 
and palmitic acid (16:0) as the major fatty acids present (Table S1) (73) As our data 
demonstrate that the infant mouse gut contains fatty acids that V. cholerae utilizes to 
modify its membrane, we sought to determine whether phospholipid changes could 
influence TcpH-dependent inhibition of TcpP RIP. We measured toxT expression from a 
transcription reporter (pBH6119-toxT::GFP) in cells grown in media supplemented with 
Bovine Crude Bile (0.4%), which contains various fatty acids that are utilized by V. cholerae 
to remodel its membrane (71). Transcription of toxT from this reporter was elevated in 
the presence of crude bile in WT cells, which is consistent with prior studies (74), but 
not in cells expressing EpsMTcpH or ToxSTcpH (Fig. S4A). This suggested that native TcpH 
responds to changes in phospholipid composition to inhibit RIP and that the TM domain 
of TcpH is essential to sense and/or respond to this change. As a negative control, we 
measured toxT transcription under non-inducing conditions known to stimulate RIP of 
TcpP (25–27), and in these conditions, toxT expression was indeed reduced (Fig. S4A). 
In addition, we measured toxT expression in ∆tcpH cells with and without crude bile 
present, observing no increase in toxT expression (Fig. S4A). This confirms that the 
conditions used here do not simply promote TcpP function in the absence of TcpH.

We also measured toxT transcript levels directly via RT-qPCR with RNA isolated from 
wild-type cells grown in the presence of crude bile (Fig. S4B) and observed a similar 
increase in toxT transcription. Lastly, we found that cells expressing native TcpH or TcpH 
TM chimeras grew with similar rates in crude bile-supplemented media (Fig. S1C). Taken 
together, these data support a model that TcpH responds to host stimuli, specifically 
fatty acids or constituents of crude bile, through a mechanism requiring its native TM, 
and antagonizes RIP of TcpP, leading to increased toxT transcription.

α-Linolenic acid enhances toxT expression by promoting TcpH-dependent 
inhibition of RIP

Crude bile is a mixture of saturated and unsaturated fatty acids, as well as bile salts 
(e.g., cholate and deoxycholate). To determine whether bile salts or fatty acids in crude 
bile were responsible for elevated toxT transcription in WT, we supplemented virulence-
inducing media with cholate/deoxycholate (Purified Bile) (100 µM of each), palmitic acid 
(500 µM), stearic acid (500 µM), linoleic (500 µM), α-linolenic acid (500 µM), arachidonic 
acid (500 µM), and docosahexaenoic acid (500 µM). The concentration of bile and fatty 
acids chosen has also been used in prior studies (71). Using the toxT::GFP transcription 
reporter plasmid, we observed elevated toxT transcription in wild-type cells with only 
crude bile or α-linolenic acid present (Fig. 3A; Fig. S4A). Increased toxT expression with 
crude bile or α-linolenic acid was not observed in ∆tcpH,EpsMTcpH or ToxSTcpH cells (Fig. 
S4A), demonstrating that TcpH, and its native TM domain, is still needed to inhibit RIP 
and TcpP is necessary to promote toxT transcription in the presence of these compounds. 
In addition to the results obtained with the toxT::GFP reporter, we measured toxT mRNA 

Research Article mBio

August 2024  Volume 15  Issue 8 10.1128/mbio.00721-24 6

https://doi.org/10.1128/mbio.00721-24


levels using RT-PCR in WT cells grown under the same conditions. Consistent with the 
reporter plasmid data, we observed elevated toxT mRNA in the presence of α-linolenic 
acid (~2.5 fold) (Fig. S4B). Using a toxT::GFP fusion, we determined that the optimal 
concentration for elevated expression is 50 µM linolenic acid (Fig. S4C). There was no 
difference in growth rate in cells expressing either native TcpH or TcpH TM chimeras 

FIG 3 α-Linolenic acid stimulates a TcpH transmembrane-dependent increase in toxT transcription, elevated TcpP levels, and 

does not increase tcpP expression. (A) toxT expression in WT (black bars) and EpsMTcpH (gray bars) was determined using a 

plasmid based toxT::GFP transcription reporter. toxT transcription was determined by measuring GFP fluorescence (excitation 

488 nm and emission 515 nm) and optical density (600 nm). (B) TcpP abundance in WT (black bars) and EpsMTcpH (gray bars) 

cells cultured for 8 hours relative to WT cells cultured under virulence inducing conditions for 4 hours. TcpP abundance was 

quantified via densitometry analysis of western blots, calculated by ImageJ. See Fig. S10B for westerns used for densitometry 

analysis. (C) tcpP transcription in WT V. cholerae cells using RT-qPCR, determined via ∆∆CT method. tcpP transcription is relative 

to WT Vir Ind. (A–C) The data here are an average of three or more independent experiments, and error bars represent the 

standard error of the mean. (A and B) A one-way ANOVA was used to determine statistical significance. * Indicates a P-value of 

less than 0.05.
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when cultured with purified bile or α-linolenic acid (Fig. S1D and E). Similar concentra
tions of other unsaturated fatty acids (linoleic, arachidonic, and docosahexaenoic acid) 
did not lead to an increase in toxT expression (Fig. S4D).

We reasoned that enhanced toxT transcription in the presence of crude bile or 
α-linolenic acid was due to enhanced inhibition of RIP, leading, in turn, to elevated levels 
of TcpP. Thus, we quantified TcpP levels under Vir Ind conditions supplemented with 
crude bile or α-linolenic acid (Fig. 3B). TcpP levels in wild-type cells were significantly 
elevated in the presence of crude bile or α-linolenic acid (Fig. 3B). By contrast, growth in 
α-linolenic acid had no effect on TcpP levels in cells expressing EpsMTcpH (Fig. 3B). Loss of 
TcpH led to degradation of TcpP under all conditions indicating that Tsp and YaeL activity 
is not inhibited by the addition of crude bile or α-linolenic acid (Fig. S10B). We conclude 
that (i) elevated toxT transcription in the presence of crude bile or α-linolenic acid is due 
to enhanced inhibition of RIP via TcpH and (ii) altering the phospholipid composition of 
the cells with exogenous crude bile or α-linolenic acid enhances TcpH function in RIP 
inhibition through a mechanism that requires the native transmembrane domain.

As TcpP levels are elevated upon supplementation of crude bile or α-linolenic acid, 
we considered it possible that elevated tcpP transcription could contribute to elevated 
TcpP levels. One possible mechanism is that tcpP transcription is directly influenced by 
α-linolenic within the cytoplasm. Prior studies have shown that linoleic acid can rapidly 
diffuse into the cytoplasm of V. cholerae where we reasoned it might influence tcpP gene 
expression (75, 76). To determine whether tcpP transcription is influenced by crude bile 
or α-linolenic acid, we measured tcpP transcription in wild-type V. cholerae cells using 
both RT-qPCR and a transcription reporter, tcpP::lacZ. Neither crude bile nor α-linolenic 
acid supplementation led to increased tcpP transcription (Fig. 3C; Fig. S5A). These data 
indicate that crude bile and α-linolenic acid influence TcpP levels post-transcriptionally.

To confirm that V. cholerae cells incorporate α-linolenic acid into phospholipids under 
our growth conditions, we analyzed the fatty acid profile of phospholipids from V. 
cholerae cells cultured with and without α-linolenic acid (Fig. S5B). In the presence of 
α-linolenic acid, more than 80% of acyl chains within V. cholerae were 18:3. This is 
consistent with prior published data (71, 72). Furthermore, prior studies indicate that 
V. cholerae does not synthesize 18:3 fatty acids under standard laboratory conditions 
(77, 78) Taken together, these data suggest that V. cholerae cells are utilizing exogenous 
α-linolenic acid for phospholipid synthesis (Fig. S5B).

We next sought to determine whether WT and EpsMTcpH were equally capable of 
utilizing exogenous fatty acids. We cultured cells with cerulenin, an inhibitor of de novo 
fatty acid synthesis, or with cerulenin plus exogenous fatty acids (79–82). Cerulenin alone 
led to a growth defect irrespective of which form of TcpH was being expressed (Fig. S5C). 
The inclusion of saturated or unsaturated fatty acids restored partial growth of both WT 
and EpsMTcpH (Fig. S5C). These data indicate that WT and EpsMTcpH are equally capable 
of incorporating exogenous fatty acids into their phospholipid bilayer.

Co-association of TcpP and TcpH with detergent-resistant membranes is 
required for enhanced RIP inhibition

Our work demonstrates that under conditions that modify phospholipid composition, 
TcpP levels are enhanced, and toxT transcription is increased. Elevated levels of TcpP 
are due to enhanced inhibition of RIP by TcpH rather than increased tcpP transcrip
tion, and this inhibitory function requires the native TcpH TM domain. In addition 
to α-linolenic acid, arachidonic and docosahexaenoic acid also modify phospholipid 
composition in V. cholerae (71). Despite causing similar changes to the phospholipid 
profile, these polyunsaturated fatty acids do not have a significant effect on toxT 
transcription (Fig. 3A; Fig. S4AD). These data indicate the phospholipid profile does not 
predict TcpH-dependent inhibition of RIP. Exogenous fatty acids can be utilized directly 
as acyl chains in de novo phospholipid synthesis (83, 84). Thus, while gross phospholi
pid composition can remain similar with supplementation of α-linolenic, arachidonic, 
and docosahexaenoic acid, (i.e., relative abundance of cardiolipin, phosphatidylglycerol, 
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and phosphatidylethanolamine), the overall biophysical properties of the cytoplasmic 
membrane (i.e., membrane fluidity) can differ due to differences in acyl chain compo
sition. We reasoned that the differences in observed TcpH-dependent enhanced RIP 
inhibition could be due to differences in the biophysical properties of the cytoplasmic 
membrane (e.g., membrane fluidity). To test this, we quantified membrane fluidity in 
WT and EpsMTcpH with and without exogenous fatty acids using a fluorescent lipophilic 
pyrene-based probe (Fig. 4A). Cells cultured with α-linolenic acid demonstrated elevated 
membrane fluidity, observed as a higher ratio of dimeric to monomeric pyrene probe 
(Fig. 4A). We did not observe a change in membrane fluidity in WT or EpsMTcpH cells 
cultured with linoleic, arachidonic, or docosahexaenoic acid (Fig. 4A).

FIG 4 TcpP and TcpH abundance increases in detergent-resistant membranes in the presence of α-linolenic acid. (A) Membrane fluidity of WT (black bars) 

and EpsMTcpH (gray bars) cells, cultured with and without unsaturated fatty acids, determined by the ratio of excimer (470 nm) and monomer (400 nm) of 

pyrenedecanoic acid. Data were collected from three or more independent experiments. (B) The abundance of TcpP molecules within the Triton soluble (i.e., 

TS; lipid disordered) and Triton insoluble (i.e., TI; lipid ordered) fractions in WT and EpsMTcpH cells. (C) Relative abundance of TcpH and EpsMTcpH within the 

TI and TS membrane fractions. (B-C) Data presented here were collected from three independent experiments. TcpP and TcpH abundance were measured via 

densitometry using ImageJ. See Fig. S10 for representative western blots. TI and TS membrane fractions were collected by gentle freeze-thaw lysis. Cells that 

were cultured in α-linolenic acid (LA, 500 µM) are indicated by +. (A–C) Error bars represent the standard deviation. A one-way ANOVA was used to determine 

statistical significance. * Indicates a P-value less than 0.05, and ns indicates a lack of statistical significance.
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Poly-unsaturated fatty acids (PUFA), such as omega-3 fatty acids, influence lipid-
ordered membrane domains within the cytoplasmic membrane of T-cells (85, 86). 
Lipid-ordered membrane domains, also called lipid rafts, are regions of the membrane 
enriched in saturated fatty acids, cholesterol (or, in some bacterial species, hopanoids), 
and proteins with specific TM domain qualities (e.g., long TM domain(s) and low TM 
surface area) (56, 64, 87). As a result, lipid-ordered membrane domains tend to be 
thicker and less fluid than other areas of the membrane (55). n3-PUFA (i.e., omega-3 fatty 
acids) increase the size and stability of lipid-ordered membrane domains and thereby 
can influence membrane protein association within lipid rafts (56, 85, 86). We hypothe
sized that TcpP and TcpH molecules can associate within lipid-ordered membrane 
domains and that α-linolenic acid (an omega-3 fatty acid) supplementation increases 
the association of TcpP and TcpH molecules within lipid-ordered membrane domains.

Lipid-ordered membrane domains, also known as DRMs, are defined due to their 
insolubility in Triton X-100 (61, 88). Triton X-100 has been used in the study of both 
eukaryotic and prokaryotic organisms to isolate lipid-ordered and lipid-disordered 
membrane domains (51–56). Thus, to test our hypotheses, we used Triton X-100 to 
separate lipid-ordered and lipid-disordered membrane domains from cellular lysates.

Under Vir Ind conditions, TcpP and TcpH associate with Triton X-100 insoluble 
(TI; considered to be enriched with lipid-ordered membrane domains) and Triton 
X-100 soluble membrane fractions (TS; considered to be enriched with lipid-disordered 
membrane domains) (Fig. 4B and C). Supplementation with α-linolenic acid resulted in 
increases in both TcpP and TcpH in the TI fraction in WT cells (Fig. 4B and C). Like TcpH, 

EpsMTcpH is also associated with both the TI and TS membrane fractions (Fig. 4C). In 
contrast to WT, there was no observable increase in EpsMTcpH or TcpP levels in the TI 
fraction upon growth with α-linolenic acid in EpsMTcpH expressing cells (Fig. 4B and C). 
Surprisingly, we observed a decrease in EpsMTcpH abundance in the TS fraction during 
growth with α-linolenic acid (Fig. 4C). It is unclear why EpsMTcpH levels decrease in the 
TS fraction when α-linolenic acid is present. Our data indicate that there is a trend of 
lower TcpP levels in the TS fraction in EpsMTcpH cells cultured with α-linolenic acid (Fig. 
4B; Fig. S6A and B). TcpH stability has been reported to be improved by TcpP and, thus, 
reduction of TcpP abundance in the TS fraction could contribute to lower EpsMTcpH 
levels in the TS fraction (89). However, it is also possible that α-linolenic acid utilization 
simply reduces the stability of EpsMTcpH in the TS fraction specifically. Regardless, it 
remains unclear why EpsMTcpH levels decrease in the TS fraction when α-linolenic acid is 
present. Taken together, these data suggest that the native TM domain of TcpH enables 
enhanced association within TI fractions (i.e., lipid-ordered membrane domains), and 
thereby supports elevated TcpP abundance within the TI fraction, during growth with 
α-linolenic acid.

Prior studies revealed that studying lipid-ordered membrane domains with this 
biochemical method can yield dramatically different results with changes in detergent 
concentration and temperature (90). We thus performed similar experiments using an 
alternative TI extraction method, which still relies on Triton X-100, that differs in cell 
lysis temperature. Using this method, we observed the same trend of increased TcpH 
and TcpP abundance within the TI fraction in WT cells with α-linolenic acid present 
(Fig. S6). Similarly, we did not detect an increase in TcpP or EpsMTcpH abundance in 
the TI fraction when α-linolenic acid was present for EpsMTcpH cells (Fig. S6). Lastly, 
our data indicate that both arachidonic and docosahexaenoic acid do not stimulate 
TcpH-dependent protection of TcpP. Thus, to further test our model, we quantified 
TcpP and TcpH abundance in TI and TS membrane fractions upon exposure to either 
arachidonic or docosahexaenoic acid (Fig. S7). We did not observe any change in the 
abundance of TcpH or TcpP within TI or TS membrane fractions. These data indicate that 
the effect of α-linolenic acid on TcpP and TcpH abundance in TI membranes is indeed 
specific and not the result of our Triton X-100-based biochemical separation of TI and TS 
membranes.
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Excluding EpsMTcpH, it remained unclear if α-linolenic acid supplementation induced 
a general association of membrane proteins to the TI fraction. To test this, we quantified 
levels of a 19 KDa non-specific membrane protein in TI and TS fractions with and without 
α-linolenic acid (Fig. S8A). We observed no change in the abundance of this protein 
in the TI or TS fractions with α-linolenic acid supplementation (Fig. S8A). These data 
indicate that α-linolenic acid supplementation does not induce a general association of 
proteins with the TI fraction. Furthermore, we also observed that with α-linolenic acid 
supplementation, the TI fraction had a higher association of 16:0 fatty acids and a lower 
association of 18:3 fatty acids than the TS fraction (Fig. S8B). This is consistent with prior 
studies indicating that lipid-ordered membrane domains are enriched with saturated 
fatty acids (62).

TcpP and TcpH interaction is critical for inhibition of RIP

Our data indicate that increased association of TcpP and TcpH molecules in the TI 
fraction results in enhanced RIP inhibition. The mechanism underlying this RIP inhibi
tion remains unclear. Lipid-ordered membrane domains function as protein concentra
tors and thereby promote interaction between membrane-localized proteins (58). We 
hypothesized that enhanced co-association within the TI fraction increased RIP inhibition 
due to direct interaction between TcpP and TcpH.

To test direct TcpP-TcpH interaction, we used a co-affinity precipitation approach. We 
genetically fused a His(6 x)-Hsv or Hsv-His(6 x) tag to the C-terminus and N-terminus, 
respectively, of TcpP, resulting in tcpP-His-Hsv and Hsv-His-tcpP. We could then extract 
TcpP from membrane fractions using NTA-Ni beads and identify TcpH and TcpP in elution 
fractions with ɑ-TcpH and ɑ-Hsv antibody. Proteins tagged at the amino terminus are 
described with the tag noted first (e.g., Hsv-His-TcpP), while those tagged at the carboxy 
terminus are described with the tag noted second (e.g., TcpP-His-Hsv).

First, we tested whether both the N- and C- terminally tagged TcpP function 
like native TcpP by measuring CtxB production. CtxB production was similar to WT, 
expressing native TcpP, irrespective of which terminus the tag was placed (Fig. S8C).

Co-precipitation experiments indicated that the C-terminally tagged TcpP could 
associate with TcpH, while the N-terminally tagged TcpP could not (Fig. 5A and B). 
Physical interaction between the C-terminally tagged TcpP and TcpH also correlated 
to protection from RIP, as determined by lack of accumulation of TcpP degradation 
intermediates in ΔyaeL cells expressing C-terminally tagged TcpP (Fig. 5C). In such cells, 
the product of Tsp action on TcpP accumulates because the second-site protease YaeL 
is not present to eliminate it (26, 27). We observed a greater accumulation of TcpP 
degradation intermediates (between 24 KDa and 19 KDa) in cells expressing N-terminally 
tagged TcpP compared to those expressing C-terminally tagged TcpP (Fig. 5C). The 
24 kDa TcpP degradation intermediate from N-terminally tagged TcpP is also observed 
in cells expressing native TcpP in the absence of TcpH (Fig. 5C and D). Considering that 
the N-terminally tagged TcpP is sensitive to RIP even with TcpH present suggests a defect 
in its association with TcpH and its recognition by the RIP proteases. Despite this defect, 
N-terminally tagged supports WT CtxB production (Fig. S8C). We conclude this is the 
result of overexpression of N-terminally tagged TcpP. Native expression of tcpP leads to 
accumulation of only TcpP* in a ΔtcpH ΔyaeL background (Fig. 1E), but overexpression of 
tcpP in a ΔtcpP ΔtcpH ΔyaeL background yields both full length and TcpP* (Fig. 5D). These 
data indicate that artificial elevation of TcpP levels, via overexpression, can outpace RIP.

Our data demonstrate that TcpP-His-Hsv is less sensitive to RIP in the presence of 
TcpH. Prior studies have demonstrated that modification of the C-terminus of TcpP can 
lead to TcpH-independent resistance to RIP (91). To determine whether the addition of 
His-Hsv to the C-terminus of TcpP promotes resistance to RIP independent of TcpH, we 
expressed tcpP-His-Hsv, Hsv-His-tcpP, and tcpP in a ΔtcpP ΔtcpH ΔyaeL background. We 
observed TcpP degradation intermediates, including TcpP* (~17 KDa), in all strains (Fig. 
5D). To determine whether our Hsv-His tagged TcpP variants are equally sensitive to RIP, 
we quantified the abundance of full-length TcpP and the detected degradation 
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intermediates (Fig. 5E). These data indicate that both N and C-terminally tagged TcpP are 
equally sensitive to degradation. These data show that the addition of His(6 x)-Hsv to the 
C-terminus of TcpP does abrogate the need for TcpH to protect TcpP-His-Hsv from RIP 
(Fig. 5D). In summary, our data indicate that TcpP and TcpH interact and that this 
interaction is important for inhibition of RIP of TcpP. These data support a model 

FIG 5 TcpP and TcpH interaction is critical for TcpH-dependent inhibition of RIP. (A and B) Co-affinity precipitation of ectopically expressed tcpP-His-HsV 

(A), Hsv-His-tcpP (B). Triton soluble (TS). (C) Ectopic expression of Hsv-His-tcpP and tcpP-His-HsV in ΔyaeL cells under virulence-inducing conditions. Hsv-His-TcpP is 

more sensitive to RIP than TcpP-His-Hsv, as seen by the accumulation of TcpP degradation intermediates between 26 and 19 kDa. (D) Ectopic expression of tcpP 

and tcpP-His-HsV in ΔtcpP ΔtcpH ΔyaeL cells under virulence inducing conditions. Samples were probed with α-TcpP (left) and α-Hsv (right) antibodies. (E) The 

ratio of full-length TcpP (29 KDa) to other TcpP degradation products (i.e., TcpP*) in western blots found in panel D. Abundance of full-length TcpP and TcpP* was 

determined via densitometry, using ImageJ. ns, indicates no statistical significance. A one-way ANOVA was used to determine statistical significance. (A–D) tcpP 

constructs were all ectopically expressed from pBAD18 using arabinose (Ara 0.1% wt/vol). +indicates arabinose was added to the culture. The data here represent 

samples collected from three independent experiments.
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whereby increased association of TcpP and TcpH molecules in the TI leads to enhanced 
RIP inhibition due to interaction. To further test this hypothesis, we performed additional 
co-precipitation experiments by expressing TcpP-His-Hsv in cells cultured with and 
without α-linolenic acid. We found that TcpH co-precipitated with TcpP-His-Hsv in the TI 
fraction with and without α-linolenic acid (Fig. S9). Due to the poor growth of cells 
expressing TcpP-His-Hsv in media containing α-linolenic acid, relative to the abundance 
of TcpP-His-Hsv was lower when α-linolenic acid was present. To account for this growth 
defect, we normalized TcpH levels to the abundance of TcpP-His-Hsv in the TI fraction. 
With this normalization, we found that more TcpH co-precipitated when cells were 
cultured with α-linolenic acid (Fig. S9B). These data support our hypothesis that α-
linolenic acid supports elevated interaction between TcpP and TcpH molecules in TI 
membranes.

It remains unclear why Hsv-His-TcpP is unable to interact with TcpH. Single-molecule 
tracking studies indicate that TcpP may be sensitive to RIP while interacting with the toxT 
promoter (91). The Hsv tag is enriched with negatively charged amino acids (Hsv amino 
acid sequence: QPELAPEDPED). Given that DNA has an intrinsic negative charge, the 
addition of Hsv-His(6 x) to the N-terminus of TcpP may promote a conformation similar 
to the conformation that TcpP molecules adopt when actively interacting with DNA. This 
hypothesis requires additional experiments to test.

DISCUSSION

TTRs are broadly distributed and highly diverse among bacteria and archaea (42). 
Within archaea, TTRs have been found to regulate motility and pilin gene transcrip
tion in response to dangerous temperatures and nutrient-limiting conditions (92, 93). 
Within bacteria, TTRs have been found to regulate bile salt resistance, toxin production, 
antibiotic resistance, acid resistance, natural competence, pilin/fimbriae transcription, 
type-3 secretion systems, biofilm formation, metabolism, and have been implicated in 
the modulation of the human immune system (13, 94–107). In addition, both TcpP 
and ToxR have accessory proteins, TcpH and ToxS, respectively, that protect them from 
RIP (14, 25, 26, 48, 108–111). RIP is a form of gene regulation conserved across all 
domains of life that allows organisms to rapidly respond to extracellular cues, commonly 
by liberating a transcription factor or a sigma factor, from membrane sequestration 
(28). Canonical bacterial RIP systems act by releasing an anti-sigma factor fro m the 
cytoplasmic membrane to influence gene expression (28, 112). TTRs are sensitive to 
RIP (e.g., CadC) (86). However, RIP of TTRs, such as TcpP, results in their inactivation, 
typically leading to decreased gene expression. The fundamental mechanisms of RIP 
for TcpP are understood in terms of the primary proteases that work in the two-step 
pathway (26, 27), but the regulatory mechanisms influencing these activities have been 
less well studied. It is clear that TcpH is essential to inhibit RIP of TcpP and that its 
ability to protect TcpP from RIP changes in response to temperature and pH (14, 25–27). 
Our data indicate that RIP of TcpP is inhibited by direct interaction with TcpH which 
regulates the production of virulence factors, CT and TcpA, which thereby impacts the 
colonization of the gastrointestinal tract. We also provide evidence that α-linolenic acid, a 
host dietary fatty acid, plays a role in inhibiting RIP by increasing the local concentration 
of TcpP and TcpH within DRM. This is the first indication that the membrane environment 
itself influences the activity of both a TTR and a co-component signal transduction 
system, and these data demonstrate that a dietary fatty acid, in addition to taurocholate, 
influences TcpP activity (43, 74). Whether α-linolenic acid or other omega-3 or omega-6 
fatty acids influences other co-component signal transduction systems remains to be 
tested.

α-Linolenic acid is an essential omega-3 fatty acid used to synthesize arachidonic 
and docosahexaenoic acid in humans and mice (113, 114). α-Linolenic acid is acquired 
via dietary supplementation and has health benefits ranging from anti-carcinogenic, 
anti-atherogenic, anti-inflammatory, improved memory, and anti-diabetic activity (113–
130). V. cholerae uses exogenous long-chain fatty acids, such as α-linolenic acid, to 
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remodel its phospholipid composition (71, 72). Long-chain fatty acids are transported 
across the outer membrane by FadL into the periplasmic space where FadD cova
lently modifies the fatty acids by adding an acyl-CoA group, resulting in the forma
tion of long-chain fatty acyl-CoA (LCFA-CoA) (67–70). Utilization of exogenous fatty 
acids impacts Vibrio spp. pathogenicity, motility, and antibiotic resistance (71, 72, 131). 
Moreover, fadL is highly expression by V. cholerae during the colonization of infant 
rabbits, and loss of fadL results in a large fitness disadvantage in vivo (132). Our work is 
aligned with these findings and demonstrates that (i) toxT transcription is enhanced in 
the presence of α-linolenic acid; (ii) TcpP levels are elevated in the presence of α-linolenic 
acid; (iii) tcpP transcription is not increased with exogenous α-linolenic acid; (iv) TcpP 
and TcpH avidly associate within DRM in the presence of α-linolenic acid; (v) TcpP-TcpH 
interaction is important for inhibition of RIP; and (vi) enhanced toxT expression in the 
presence of α-linolenic acid is dependent on co-association of TcpP and TcpH in the DRM.

Our data support a model where, once present in the gastrointestinal tract (GI), V. 
cholerae cells take up and incorporate α-linolenic acid, present in the GI tract of infant 
mice (Fig. 2D), into phospholipids, thereby altering the composition of the cytoplas
mic membrane. This influences TcpH and TcpP molecules to increase their association 
with lipid-ordered membrane domains. n-3 polyunsaturated lipids (i.e., omega-3 fatty 
acids) are known to increase lipid-ordered domain size in eukaryotes by promoting 
aggregation of existing lipid-ordered membrane microdomains (83, 84). As lipid-ordered 
membrane domains are known to be relatively small in size (6–200 nm) (58, 60), we 
hypothesize that this leads to an increase in the local concentration of TcpP and 
TcpH molecules, thereby allowing TcpH to enhance RIP inhibition of TcpP via increased 
interactions with TcpP (Fig. 6).

Previous studies have investigated the role of exogenous fatty acids in the pathogen
esis of V. cholerae. These concluded that FadD is required for wild-type toxT expression 
through a mechanism involving its effect on TcpP levels (138, 139). These prior publica
tions support our model as an accumulation of α-linolenic acid in the periplasmic space 
or within the cytoplasmic membrane, due to loss of fadD, results in a reduction in TcpP 
levels, rather than an increase (138, 139). This work indicates that free α-linolenic acid 
(i.e., not incorporated in phospholipids) within the periplasmic space, cytoplasm, or 
within the cytoplasmic membrane, does not promote TcpH-mediated inhibition of RIP. In 
conjunction with the data presented here, this indicates that α-linolenic acid needs to be 
incorporated into the cytoplasmic membrane as a phospholipid to influence TcpH 
function.

Transmembrane domain length and surface area are major factors in determining the 
preference of a protein for lipid-ordered (enriched with proteins having longer TM 
domain and low surface area) or lipid-disordered (enriched with proteins having shorter 
TM domain and high surface area) membrane domains (140). We demonstrated that 
TcpH and TcpP increase localization within DRM domains in the presence of α-linolenic 
acid while EpsMTcpH does not (Fig. 4). EpsMTcpH has a shorter TM domain than TcpH (20 
amino acids vs 22 amino acids) and a higher overall surface area (108 Å2 vs 92 Å2). Our 
data suggests that the TM domain properties of EpsMTcpH molecules inhibit its transition 
from the TS fraction to the TI fraction in the presence of α-linolenic acid, and thereby the 
ratio of EpsMTcpH to TcpP molecules within the TI fraction is insufficient to enhance the 
protection of TcpP and support elevated toxT expression. In support of this, the TM 
domain of TcpH is also highly conserved across V. cholerae strains (Fig. S3). Alternatively, 
it is also possible that TcpH, and not EpsMTcpH, undergoes post-translational modification 
(e.g., palmitoylation) within its TM domain. We view this as unlikely as TcpH is not 
predicted to have a palmitoylation site within its TM domain. Furthermore, TcpH-like 
proteins in other co-component signal transduction systems in Salmonella enterica 
serovar Typhimurium and Yersinia pseudotuberculosis also have comparable surface area 
per TM residue to TcpH (STM0345: 97 Å2, BZ17_3282: 94 Å2, BZ17_3565: 101Å2). This 
indicates that host dietary fatty acids may also influence these co-component systems in 
S. Typhimurium and Y. pseudotuberculosis.
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FIG 6 α-Linolenic acid stimulates co-association of TcpP and TcpH within detergent-resistant membranes promoting 

TcpH-dependent inhibition of RIP. (A) Under virulence inducing (Vir Ind) conditions TcpP and TcpH molecules are associated 

with Triton insoluble (gray; TI) and Triton soluble (red; TS) membrane domains. (B) In the presence of exogenous α-linolenic 

(Continued on next page)

Research Article mBio

August 2024  Volume 15  Issue 8 10.1128/mbio.00721-2415

https://doi.org/10.1128/mbio.00721-24


Unexpectedly, EpsMTcpH supports an overall higher level of toxT gene expression than 
wild-type TcpH, despite having lower levels of TcpP with α-linolenic acid present. It is 
unclear how this is occurring. Super-resolution imaging experiments aimed at under
standing how TcpP molecules locate the toxT promoter from the cytoplasmic membrane 
revealed that TcpP molecules transition to a slow diffusion state before interacting with 
the toxT promoter (91, 141, 142). As EpsM has been shown to interact with EpsL (a 
component of the Eps Type-II secretion system) (65), we hypothesize that elevated levels 
of toxT expression in EpsMTcpH are due to reduced TcpP diffusion rates via interaction 
with the Type-II secretion system (i.e., TcpP-epsMTcpH-Eps).

In addition, it also appears that the surface area of the transmembrane domain of 
TcpP influences its function. Prior analysis of TcpP transmembrane domain revealed 
that mutation of L152 and W162/S163 with alanine (which reduces the overall surface 
area of the transmembrane domain) increased toxT expression (143). It remains unclear 
why these mutations increase TcpP function, but given the data presented here, it is 
possible that TcpPL152A and TcpP W162A/S163A may have a greater propensity than 
TcpP, in the absence of α-linolenic acid, to associate within DRMs (i.e., lipid-ordered 
membrane domain). Prior work has also noted that many TTRs have a similar transmem
brane surface area and also an overall lower amount of sensory domains (42). Further 
indicating that TTRs, like TcpP, respond to the cytoplasmic membrane.

Based on our data here and other literature, we hypothesize that phospholipid 
remodeling of V. cholerae occurs in the lumen during the initial stages of infection. 
Our data suggest that this remodeling promotes TcpH-mediated inhibition of RIP and 
promotes toxT transcription. However, unsaturated fatty acids can also inhibit the 
degradation and activity of ToxT (73, 74, 133). This likely prevents premature expression 
of TCP which is known to stimulate microcolony formation and thereby could inhibit 
penetration of the mucus layer (134). Bicarbonate present at high concentrations at 
the surface of epithelial cells, competes with unsaturated fatty acids to activate ToxT 
once V. cholerae reaches the surface of epithelial cells, its primary site of infection (135–
137). There is also evidence that bicarbonate represses toxT transcription (136). This 
indicates that expression of toxT, stimulated by enhanced RIP antagonism, during early 
infection (i.e., the lumen) is critical for V. cholerae to cause disease. Due to the essential 
nature of omega-3 and omega-6 fatty acids, it is technically challenging to test the role 
of α-linolenic acid directly in vivo and will require future sophisticated in vivo studies. 
Evaluating the in vivo model proposed here will be the subject of future experiments. 
α-Linolenic acid represents the first in vivo signal that modulates RIP of TcpP, and, to 
the best of our knowledge, the first evidence that lipid-ordered and lipid-disordered 
membrane domains exist in V. cholerae. The data presented here further expand our 
knowledge of the complex virulence regulatory cascade in V. cholerae, our knowledge of 
rapidly evolving co-component signal transduction systems in enterobacteria, and TTRs 
in bacteria and archaea.

FIG 6 (Continued)

acid, V. cholerae cells uptake α-linolenic acid (via VolA, FadL) and utilize it directly for phospholipid remodeling via the addition 

of coenzyme A (CoA), via FadD (67–70). This leads to changes in the overall phospholipid profile of V. cholerae, indicated by 

the blue and orange phospholipids (68–71). Under these conditions, a majority of TcpP and TcpH molecules transition to the 

TI membranes leading to enhanced inhibition of RIP by TcpH. The net result of α-linolenic acid supplementation is an increase 

in toxT transcription, indicated by an increase in red toxT mRNA. (C) In the lumen of the gastrointestinal tract, ToxT activity is 

thought to be inhibited by unsaturated fatty acids and thus inhibits ToxT-dependent virulence factor expression (75, 76, 131, 

133–137). (D) Near the surface of epithelial cells, bicarbonate is actively secreted from intestinal epithelial cells and, as such, 

the concentration of bicarbonate is elevated, including in the crypt of intestinal villi (133–137). As bicarbonate can stimulate 

ToxT activity, ToxT-dependent virulence gene expression is proposed to be stimulated near epithelial cells (133–137).
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MATERIALS AND METHODS

Bacterial culture conditions

Unless otherwise stated Escherichia coli and V. cholerae were grown at 37°C in Luria-Ber
tani broth (LB) with vigorous shaking (210 rpm). LB was prepared as previously described 
(144). To stimulate virulence factor production, V. cholerae strains were subcultured, to 
an O.D. of 0.01, and grown under virulence inducing conditions (Vir Ind; 30°C, LB pH 6.5 
± 0.5, and 110 rpm) or non-virulence inducing conditions (non-Vir Ind; 37°C, LB pH 8.5 
± 0.5, and 210 rpm). Media used for both Vir Ind and non-Vir Ind were sterilized using 
1L 0.22 µm vacuum filtration units (Sigma) after pH adjustment. Unless otherwise stated, 
antibiotics were used at the following concentrations: ampicillin (100 µg/mL), chloram
phenicol (30 µg/mL), streptomycin (100 µg/mL), and cerulenin (10 µg/mL). Overexpres
sion of constructs by pBAD18 was induced by culturing strains in LB containing 0.1% 
arabinose. For additional information on growth conditions for ex-vivo mouse fecal 
experiments, experiments with components of crude bile (including α-linolenic acid), 
and a complete list of bacterial strains see SI Appendix, Materials and Methods and Table 
S2.

Plasmid construction

Briefly, DNA fragments 500 bp upstream and downstream of the target gene were 
connected to the DNA insert by splicing via overlap extension PCR (Thermo Scientific) 
(see Table S3). Plasmid vectors were then digested with KpnI-HiFi and XbaI (New England 
BioLabs) at 37°C for 2 hours. Insert and vector fragments were then added to the Gibson 
assembly master mix (New England BioLabs) and incubated at 50°C for 30 minutes. 
Plasmids were then introduced to E. coli ET12567 ∆dapA (λpir +) by electroporation. 
pKAS32 plasmids were then transferred to V. cholerae strains via mating on LB agar 
plates at 30°C overnight. pBAD18 plasmids were introduced into V. cholerae strains via 
electroporation.

Mutant construction

Briefly, mutants were constructed using allelic exchange as previously described (145). 
V. cholerae harboring pKAS32 derivatives were grown in 2 mL LB for 2 hours (37°C), and 
then an additional 2 hours with added streptomycin (2,500 µg/mL). After a total of 4 
hours of incubation, 20 µL of culture was spread on LB agar plates containing strepto
mycin (2,500 µg/mL) and incubated at 37°C overnight. Colonies that were resistant to 
streptomycin were screened via colony PCR. Mutants were confirmed by sequencing the 
region of interest (GeneWiz).

Growth curves

V. cholerae strains were subcultured from an overnight culture to a final optical density 
(600 nm) of 0.01 in 200 µL of virulence-inducing media, LB, or M9 minimal media 
(supplemented with 0.05% glucose) per well of a 96-well plate. The plate was then 
incubated at 30°C or 37°C in a SPECTROstar Omega plate reader (BMG LABTECH), with 
shaking and optical density measurements every 30 minutes.

Western blots

Western blots were performed as previously described (26). Briefly, after cell lysis, 
samples were normalized by total protein concentration, determined via a Bradford assay 
or Bicinchoninic acid assay (Sigma Aldrich). Samples were run on SDS page gels (12.5% 
acrylamide) for 1.5 hours at 90–120 volts and then transferred to nitrocellulose mem
branes overnight at 35 mA or for 2 hours at 200 mA. Membranes were blocked with 5% 
non-fat milk, 2% bovine serum albumin, 0.5% Tween-20, in Tris-buffered saline for 1 hour 
followed by incubation with primary antibodies for 1 hour. Membranes were washed 
three times with Tris-buffered saline. Secondary antibodies were incubated with the 
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membrane for 1 hour. Membranes were washed three times with Tris-buffered saline and 
then incubated with SuperSignal HRP Chemiluminescence substrate (Thermo Fisher). 
Membranes were imaged with an Amersham Imager 600. For additional information see 
SI Appendix, Materials and Methods.

Enzyme-linked-immunosorbent assay

Enzyme-linked immunosorbent assay (ELISAs) were performed as previously described 
(26, 146). Briefly, 10 µL of culture supernatant was added to 140 µL PBS-T (phosphate-
buffered saline, 0.05% Tween-20, 0.1% BSA) in row A of plates coated with GM1 
(monosialotetrahexosylganglioside) and then diluted down each column. After 1 hour 
of incubation, plates were then washed with PBS-T three times. Primary (α-CtxB 1:8000, 
Sigma Aldrich) and secondary antibodies (Goat anti-Rabbit IgG-HRP 1:5,000, Sigma 
Aldrich) were diluted in PBS-T. 100 µL of diluted antibody was added to each well 
and incubated for 1 hour at room temperature, with three rounds of washing after 
incubation. 100 µL of TMB (3,3′,5,5′-tetramentylbenzidine, Sigma) was added to each well 
and the reaction stopped by addition of 100 µL of 2M sulfuric acid. The optical density 
(450 nm) was measured for each well using SPECTROstar Omega plate reader (BMG 
LABTECH). For additional information, see SI Appendix, Materials and Methods.

Infant mouse colonization

Infant mouse colonization experiments were performed as previously described (147, 
148). Briefly, 3- to 6-day-old infant mice were orogastrically inoculated with ~1×106 

bacterial cells. Infant mice were kept at 30°C in sterile bedding and euthanized either 18 
hours or 21 hours after infection. For fluid accumulation studies, a higher inoculum dose 
was used (~1×108) and infant mice were weighed prior to collection of mouse intestines, 
and mouse intestines were weighed after blotting on absorbent paper. Homogenates 
were then serially diluted in PBS, spread on LB plates containing streptomycin, and 
incubated at 37°C overnight. For additional information see SI Appendix, Materials and 
Methods.

Real-time quantitative PCR (RT-qPCR)

RT-qPCR experiments were performed as previously described (149). Briefly, RNA was 
preserved in 1 mL of Trizol (Sigma Aldrich) and then extracted from cells using an 
RNEasy kit (Qiagen). RNA was then treated with Turbo DNase. cDNA was generated 
from DNase-treated RNA using Superscript III reverse transcriptase (Thermo Scientific) as 
previously described (150). 5 ng of cDNA was used with SYBR green master mix (Applied 
Biosystems) to perform the RT-qPCR. recA was used as a housekeeping gene (150). See 
Table S3 for primers. For additional information, see SI Appendix, Materials and Methods.

β-Galactosidase activity assay

β-galactosidase activity and Miller units were determined as previously described (151). 
Cells were resuspended in 1 mL of Z-buffer (Na2HPO4 60 mM, NaH2PO4 40 mM, KCl 
10 mM, MgSO4 1 mM, β-mercaptoethanol 50 mM, pH 7.0). Cells were permeabilized 
with 60 µL of SDS (0.1%) and chloroform and then incubated at 30°C for 10 minutes. 
200 µL of ortho-Nitrophenyl-ß-galactoside (4 mg/mL) was added and incubated at room 
temperature until a color change was observed. 500 µL of sodium bicarbonate was 
added to stop the reaction. The optical density for each sample was measured (at both 
420 nm and 55 nm). For additional information, see SI Appendix, Materials and Methods.

Triton X-100 subcellular fractionation

Cells were collected and washed with PBS. For spheroplast fractionation, cells were 
resuspended in 100 µL of 200 mM Tris HCl. After resuspension, components were added 
sequentially to each sample: 200 µL of 200 mM Tris HCl and 1M sucrose, 20 µL of 10 mM 
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EDTA, 20 µL of lysozyme (10 mg/mL), 10 µL of protease inhibitor cocktail (Sigma), and 
600 µL of H2O. Samples were then incubated at room temperature for 30 minutes. After 
room temperature incubation, 700 µL of 2% Triton X-100, 50 mM Tris HCl, and 10 mM 
MgCl2 were added. For gentle cell lysis, pelleted cells were resuspended in 10 mL of 
TS buffer (1% Triton X-100, 10 mM imidazole, 500 mM HEPES, 10% glycerol, 2M MgCl2). 
Samples then underwent three rounds of freeze-thaw lysis in 180-proof ethanol at 
−80°C. Triton X-100 soluble and insoluble membrane fractions were then separated by 
ultracentrifugation (100,000 × g 1 hour). The supernatant (i.e., the Triton X-100 soluble 
fraction; TS) and the pellet (i.e., the Triton X-100 insoluble fraction; TI) were collected. The 
TI fraction was resuspended in 500 µL of TI buffer (1% Tween 20, 0.5M MOPS, and 10 mM 
imidazole). The TS fraction was concentrated using Amicon protein concentrators with a 
10 KDa cutoff (Sigma).

Subcellular fractionation

Cells were fractionated following the Tris-sucrose-EDTA method (152, 153). Briefly, 
spheroplast fractions were resuspended in 500 µL 0.45% NaCl. To lyse the spheroplasts, 
50 µL of 10% SDS was added, and samples were then boiled for 5–10 minutes. Periplas
mic fractions were concentrated using trichloroacetic acid (TCA) (1, 2). Pelleted whole 
cells were resuspended in 50–200 µL of resuspension buffer (50 mM Tris-HCl, 50 mM 
EDTA, pH 8.0). Cells were then lysed by the addition of lysis buffer (10 mM Tris-HCl, 
1% SDS) and boiled for 5–10 minutes. All fractions were stored at −20°C until use. For 
additional information see SI Appendix, Materials and Methods.

Co-affinity precipitation

V. cholerae strains were grown under Vir Ind for 6–8 hours. After incubation, cells were 
resuspended in PBS, proteins were cross linked by the addition of 1 mM Dithiobis 
(succinimidyl propionate) or 1 mM Suberic acid bis (N-hydroxysuccinimide ester) and 
incubated on ice for 30 minutes. 50 µL of Tris HCl pH 8.5 was added (1M final concentra
tion) and samples were incubated on ice for an additional 15 minutes. Cells were then 
pelleted (2,450 × g 15 minutes) and TI and TS fractions were collected via the gentle 
cell lysis method. After collection of TI and TS fractions, 100 µL of washed His-affinity gel 
(i.e., Ni-NTA Magnetic Agarose Beads) (ZYMO Research) and 10 µL of protease inhibitor 
cocktail (Sigma) were added to the TI and TS fractions, and samples were incubated on a 
rocking platform overnight at 4°C. Samples were then centrifuged to collect the Ni-NTA 
agarose beads (2,450 × g 15 minutes). After collection, the Ni-NTA agarose beads were 
washed three times with their respective buffers (i.e., TS buffer for TS samples). An equal 
volume of laemmli buffer was added to each sample (BIO-RAD) and then boiled for 5 
minutes. Boiled samples were then used directly for western blot analysis.

Fatty acyl methylester analysis

Analysis of fatty acids from whole V. cholerae cells was done as previously described 
(154). Briefly, cells were lysed via the addition of 300 µL of extraction solvent [com
posed of methanol, chloroform, and formic acid (20:10:1, vol/vol/vol)]. After lipids were 
extracted, the fatty acyl methylester (FAME) reactions were carried out as described (154). 
After the FAME reactions, fatty acid content was measured via Gas-Liquid Chromatog
raphy using a DB-23 column (Agilent, part number: 122–2332). Molar values of each 
peak were then normalized to an internal standard (15:0) to calculate the total molar 
percentage of each fatty acid detected.

Membrane fluidity

Membrane fluidity was measured as previously described (155) using a membrane 
fluidity kit that quantifies the fluorescence of a lipophilic dye (Pyrenedecanoic acid) 
(Abcam). Ethanol was used as a positive control (156). Briefly, WT and EpsMTcpH cells 
were grown under specified conditions for 8 hours, for additional information see SI 
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Appendix, Materials and Methods. After incubation, cells were collected from 1 mL of 
culture and resuspended in 500 µL LB. Cells were incubated with the fluorescent lipid 
reagent for 30 minutes at room temperature. Cells were then washed twice with LB and 
fluorescence (excitation, 350 nm, and emission, 400 nm and 470 nm) was quantified for 
each sample. Unlabeled cells and non-Vir ind conditions were used as negative controls.

Mass spectrometry

Sample fatty acid and metabolite extraction was performed by protein precipitation 
with ethanol, as previously described (157). For each sample, 20 ng of d8-arachidonic 
acid was used as an internal control. Samples were homogenized in a bead mill for 2 
minutes (ThermoFisher). Samples were incubated at –20°C for 1 hour and then protein 
was removed by centrifugation (15,000 x g for 20 minutes). The supernatants underwent 
an additional round of protein precipitation, as described above. Samples were dried via 
speedvac, and then reconstituted in 200 µl of acetonitrile. Chromatographic alignment, 
isotope correction, peak identification, and peak area calculations were performed using 
MAVEN software. Concentrations of each analyte were determined against the peak 
area of the d8-arachidonic acid internal standard. Additional fatty acids (C24–C28) were 
identified by comparison against certified reference materials and natural products as 
no reference standards are readily available. For additional information, see SI Appendix, 
Materials and Methods
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