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ABSTRACT Despite the importance of intra-species variants of viruses for causing 
disease and/or disrupting ecosystem functioning, there is no universally applicable 
standard to define these. A (natural) gap in whole-genome average nucleotide identity 
(ANI) values around 95% is commonly used to define species, especially for bacterioph
ages, but whether a similar gap exists within species that can be used to define intra-
species units has not been evaluated yet. Whole-genome comparisons among members 
of 1,016 bacteriophage (Caudoviricetes) species revealed a region of low frequency of 
ANI values around 99.2%–99.8%, showing threefold or fewer pairs than expected for 
an even distribution. This second gap is prevalent in viruses infecting various cultured 
or uncultured hosts from a variety of environments, although a few exceptions to this 
pattern were also observed (3.7% of total species) and are likely attributed to cultivation 
biases or other factors. Similar results were observed for a limited set of eukaryotic 
viruses that are adequately sampled, including SARS-CoV-2, whose ANI-based clusters 
matched well with the WHO-defined variants of concern, indicating that our findings 
from bacteriophages might be more broadly applicable and the ANI-based clusters 
may represent functionally and/or ecologically distinct units. These units appear to 
be predominantly driven by (high) ecological cohesiveness coupled to either frequent 
recombination for bacteriophages or selection and clonal evolution for other viruses 
such as SARS-CoV-2, indicating that fundamentally different underlying mechanisms 
could lead to similar diversity patterns. Accordingly, we propose the ANI gap approach 
outlined above for defining viral intra-species units, for which we propose the term 
genomovars.

IMPORTANCE Viral species are composed of an ensemble of intra-species variants 
whose individual dynamics may have major implications for human and animal health 
and/or ecosystem functioning. However, the lack of universally accepted standards to 
define these intra-species variants has led researchers to use different approaches for this 
task, creating inconsistent intra-species units across different viral families and confu
sion in communication. By comparing hundreds of mostly bacteriophage genomes, we 
show that there is a widely distributed natural gap in whole-genome average nucleo
tide identity values in most, but not all, of these species that can be used to define 
intra-species units. Therefore, these results advance the molecular toolbox for tracking 
viral intra-species units and should facilitate future epidemiological and environmental 
studies.
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R ecognized viral species are often not homogeneous but consist of phenotypically 
and genotypically distinct variants (or intra-species populations), each of which 

could have distinct and major impacts on human and animal health, trophic webs, 
and ecosystem functioning. For example, bacteriophages may exert population control 
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of relevant environmental bacteria, such as Synechococcus, whose temporal genetic 
diversity co-varies with cyanophages due to viral infections (1). Additional studies 
have documented the constant rise and fall of genome variants as the underlying 
mechanism for the overall stable abundance of bacteriophage species over time (2, 
3). Another example was the emergence of a new coronavirus variant in 2019 that 
initiated the SARS-CoV-2 pandemic, which has killed an estimate of 6.95 million people 
across the world (World Health Organization, WHO). Beyond humans, the populations of 
European rabbits decreased by 60%–70% when a new, more lethal variant of the rabbit 
hemorrhagic disease virus appeared (4). As a consequence, species that feed on rabbits, 
such as the Iberian lynx, followed the decline in rabbit populations in a clear example 
of how viral variants can influence trophic webs. Therefore, viral variants are apparently 
an important unit of viral diversity. However, a widely accepted definition of what a viral 
variant is and how much diversity it should encompass remains elusive.

The International Committee on Taxonomy of Viruses (ICTV) oversees the develop
ment, regulation, and maintenance of a universal taxonomic classification of viruses. 
However, the ICTV does not regulate the classification and nomenclature of organisms 
below the species level nor does it provide a definition or criteria for intra-species units. 
The lack of a clear definition has led to confusion; most notably, the same (intra-species) 
terms, such as strain or variant, have been frequently used with different standards and 
meanings. For instance, van Regenmortel defined strain as a virus with unique pheno
typic characteristics (5). Accordingly, viruses with the same phenotype but different 
genomic sequences are considered to be the same strain, and the author reserves 
the term “variant” for these cases. Others, however, employed “variant” to distinguish 
between viruses with different phenotypes (6, 7), contrasting with the definition given 
by van Regenmortel. The variety of definitions is also reflected in the diversity of criteria 
used to delineate intra-species units. Some authors used sequence identity values or 
clustering patterns of phylogenetic trees of single genes (8, 9), while others employed 
whole-genome similarities, with a range of identity thresholds (98%–100%) (10–12). It is 
important to note that the selection of the gene to use is typically an arbitrary decision, 
while different genes might produce different results (10). Furthermore, the whole-
genome sequence identity thresholds were primarily employed for practical reasons and 
convenience, but their biological relevance in nature, if any, remains unknown.

Previous efforts have reported the existence of sequence-discrete viral units with 
intra-unit genome-wide ANI values being usually greater than 95%, a threshold that 
has been proposed as a reference standard to define viral species (or viral operational 
taxonomic units [vOTUs]), especially for bacteriophages (13–15). That is, the ANI values 
among genomes of the same species are higher than 95%, contrasting with <90% ANI 
to members of other species. Thus, there appears to be a natural gap in ANI values 
distribution between species, although the exact range of ANI values corresponding 
to the gap may differ in some species, with 90%–95% ANI being the most observed 
area by far. This is similar to the 95% ANI threshold commonly employed for microbial 
species definition (16, 17), and thus, sequence-discrete species seem to exist similarly 
for both microbes and their viruses. Recently, comparison of intra-species ANI values 
among genomes of the same bacterial species revealed the existence of a similar ANI 
gap between 99.2% and 99.8%, which has been proposed as a threshold to define 
intra-species units based on genomic data (18). Here, we aimed to test whether a 
similar intra-species gap exists for viruses, which can be used to define or refine existing 
intra-species units and assess the underlying molecular and/or ecological mechanisms 
for any such gap.

RESULTS AND DISCUSSION

An ANI gap within cultured viral species around 99.2%–99.8%

We tested the existence of a similar ANI gap to that observed previously within 
prokaryotic species (18) among viral genomes using a data set that included 75,012 
bacterial viral (i.e., bacteriophage) genomes (viral isolates and prophages), which 
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represented 306 distinct species with a minimum of 20 genomes per species (Table 
S1). The ANI histogram based on all possible 51,522,103 intra-species pairwise genome 
comparisons revealed a substantial gap between 99.2% and 99.8% ANI (Fig. 1A). To 
ensure that this gap was not due to just a few highly sampled species, we subsampled 

FIG 1 An intra-species ANI gap exists at around 99.2%–99.8% and is consistently detected after 1,000 subsampling rounds. (A) Histogram of ANI values without 

normalization to the same number of pairs per species. A total of 51,522,103 pairwise comparisons between 75,012 bacteriophage genome pairs showing >95% 

were used. Note the pronounced drop in pairs between 99% and 99.8% ANI (~300,000 per 0.1 units of ANI) compared to lower and higher ANI values (1,300,000 

pairs at 97.4% ANI and 10,000,000 pairs at 100% ANI). (B) Histogram of smoothed counts (sm_method=“gam”) using data subsampled to get the same number of 

pairs per species (n = 150; see Materials and Methods). Green bars indicate valleys, while blue bars indicate intermediate values and peaks. (C) Peaks (blue) and 

valleys (green) detected after 1,000 bootstrap events of subsampling to 150 genome pairs per species and automatic peak and valley detection.
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the data to the same number of pairs (150) per species. This subset corroborated the 
existence of the gap revealed based on the full data (Fig. S1). Specifically, we found 854 
values to fall within the 95.5% ANI bin vs 316 for the 99.5% ANI bin for the subset. We 
estimated that if the ANI values were randomly and evenly distributed between 95% 
and 100% ANI, we would have expected 847 comparisons per every 0.1% bin of ANI 
(43,200 pairs in total, divided by 51 bins between 95% and 100%). In contrast, within the 
99.4%–99.6% bins, there were only 374, 316, and 367 pairs, which are about 2.7 times 
fewer pairs than expected by chance. Indeed, bootstrapped (1,000) subsampling to the 
same number of pairs per species followed by automated peak and valley identification 
pointed to 99.3% as the deepest and most consistent valley in the ANI value distribution 
(Fig. 1B and C).

The species included in the data set belong to the Caudoviricetes class (realm 
Duplodnaviria) and infect 609 different bacterial host species classified in 15 phyla, 
associated with animals or humans as well as environmental sources, which highlights 
the diversity of the data set. Among the host species, Escherichia coli (19), Mycobacterium 
smegmatis (20), Mycobacterium abscessus (12), and Serratia marcescens (10) were the 
most predominant. Most of these viral species showed an intra-species ANI gap (see 
Fig. S2 for examples and https://github.com/baldeguer-riquelme/Viral-ANI-gap/ for all 
species evaluated). Indeed, 273 of the total 306 analyzed viral species (89.2%) showed an 
area of low frequency of pairs between 99.2% and 99.8% ANI when assessed individually, 
as opposed to collectively above (groups 1 and 2; see Fig. S3 for examples of each 
group). On the other hand, 26 species (8.5% of the total) did not show any peaks or 
valleys within the 99.2%–99.8% ANI, which do not provide evidence in favor or against 
the gap (undetermined distribution, group 3), and only seven species (2.5%) presented 
a contradictory distribution (group 4). That is, the latter species showed a peak rather 
than a valley of around 99.2%–99.8% (Table 1). Therefore, these results revealed a widely 
distributed, but not absolutely universal, natural genomic threshold for distinguishing 
intra-species units within the Caudoviricetes.

Support for the ANI gap by culture-independent, long-read metagenomic 
data

To assess whether or not culture-independent data are consistent with the existence 
of the ANI gap based on isolate genomes described above, we analyzed uncultured 
viral genomes recovered by fosmid sequencing and PacBio HiFi long-read metagenomes. 
Fosmids are cloning vectors of inserts up to 48 kbp long, thus allowing the recovery of 
complete or partial individual viral genomes. Similarly, PacBio HiFi provides high-quality 
consensus reads up to 25 kbp long. Therefore, both sequencing strategies could offer 
high resolution among co-occurring, uncultured viral genomes obtained directly from 
the environment with minimal sequencing error and bypassing isolation biases.

As shown in Fig. 2, the analysis of the uncultured viral genomes recovered by fosmid 
or long-read sequencing also supported the existence of the ANI gap. Indeed, 9 out of 

TABLE 1 Classification of individual species based on the ANI distribution patternb

ANI gap

Group 1
(multiple clusters)

Group 2
(one cluster)

Group 3
(undetermined)

Group 4
(exceptions)

Total 
species

Prokaryotic 231 (75.5%) 42 (13.7%) 26 (8.5%) 7 (2.3%) 306
Fosmid 7 (53.8%) 2 (15.4%) 4 (30.8%) 0 (0%) 13
Long readsa 269 (38.6%) 305 (43.8%) 92 (13.2%) 31 (4.4%) 697
aFor long reads, we found the gap to be shifted toward lower ANI values (98.8%–99.5%), so this range was 
employed to define the gap, and an average ANI ≥99.5% was used to define species in group 2.
bGroup 1 refers to the species that show a valley between 99.2% and 99.8%; group 2 includes species with 
predominately high-identity genomes or highly clonal (average ANI >99.8%); group 3 represents species with 
no peak or valley between 99.2% and 99.8%, which is not consistent or contradictory with the gap (undeter
mined); and finally, group 4 includes species showing a peak rather than a valley between 99.2% and 99.8% (i.e., 
contradictory with the gap). The number of species within each group is shown, as well as the percentage they 
represent in parenthesis.

Research Article mBio

August 2024  Volume 15  Issue 8 10.1128/mbio.01536-24 4

https://github.com/baldeguer-riquelme/Viral-ANI-gap/
https://doi.org/10.1128/mbio.01536-24


the total 13 species adequately covered by fosmid sequencing presented the ANI gap, 
4 species displayed an undetermined distribution, and none were inconsistent with the 
gap, similar to the results reported above for isolate genomes (Table 1). For 9 of these 
13 species, we detected overlapping ends, indicating complete and circular genomes 
that truly represent single, distinct species rather than different regions of the same 
genome. The latter cannot be completely ruled out for the remaining four species. 
Fosmid metadata did not provide helpful information related to the taxonomy and/or 
ecology of the corresponding species, and thus we can only conclude that these species 
represented marine taxa/samples, while their hosts remain unknown. Nevertheless, a 
previous study showed that these fosmids better represent the in situ abundant viruses 
than isolates (20) and are, most likely, a closer representation of the actual diversity in 
nature. Regarding long-read sequences, we did also observe a gap albeit slightly shifted 
toward lower ANI values (98.8%–99.5%). Remarkably, 574 out of a total of 697 detected 
species in the long-read data sets displayed a clear ANI gap (group 1: 269; group 2: 
305), 92 did not present a peak or valley at the gap (undetermined species), and only 
31 showed an incompatible distribution (Table 1). The species displaying the ANI gap 
represented three distinct environments (i.e., human gut, chicken gut, and seawater), 
supporting its widespread existence in nature. It should be mentioned that long-read 
data mostly represent fragmented genomes, resulting in a higher dispersion of ANI 
and percentage of shared genome values around the mean; nevertheless, the gap was 

FIG 2 Fraction of shared gene content vs ANI for uncultured viral species recovered by fosmids (A) and long-read metagenomes (B). In the main panel of each 

figure, dots represent individual pairwise comparison of genomes of the same species, while histograms at the top and right side show the frequency of values 

for ANI and shared genome, respectively, similarly to Fig. 1. Note the low frequency of pairs with ANI values around 99.5%. Plots for each viral species with more 

than 10 genomes can be found in https://github.com/baldeguer-riquelme/Viral-ANI-gap/.
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evident even for these partial genomes (Fig. 2B). Further analyses showed that the slight 
downward shift of the ANI gap observed for long-read data was due to (i) a relatively 
high-sequencing error rate (0.5% vs 0.01% in the isolate genomes described above) and 
(ii) the lack of an assembly step that corrects or minimizes the impact of such errors.

SARS-CoV-2 clusters defined by the ANI gap match WHO variants

The SARS-CoV-2 is probably the most sequenced virus to date, with more than 8 million 
genomes deposited in the NCBI database at the time of this writing. Furthermore, 
epidemiologic studies have provided detailed information on the phenotypic character
istics of the virus such as transmissibility or virulence of different viral variants. The WHO 
used these genotypic and phenotypic information to identify variants of concern (VOCs), 
which include the most dangerous variants and the main drivers of the SARS-CoV-2 
pandemic (21, 22). To date, five SARS-CoV-2 variants, named Alpha, Beta, Gamma, Delta, 
and Omicron, have been declared as VOCs by the WHO (23), and an additional one, 
named Epsilon, has been also declared by the Centers for Disease Control and Prevention 
(CDC) of the United States (24).

To assess whether a similar ANI gap to the one revealed for bacteriophages above 
exists for human/animal viruses such as SARS-CoV-2 and minimize the potential bias 
introduced by different protocols, reagents, or assembly pipelines, we analyzed only the 
SARS-CoV-2 genomes deposited by the CDC (USA) and the Robert-Koch Institute (RKI, 
Germany), two of the main submitting institutions. Then, we randomly subsampled the 
data set to get the same number of genomes for each one of the six VOCs. The analysis of 
the CDC genomes showed a weak but evident signal of an ANI gap at around 99.8% (Fig. 
3A). When the analysis was restricted to high-quality genomes only (without any Ns), the 
gap was even more clearly observed (Fig. 3B), and the ANI values were less dispersed, 
especially at lower ANI values. This result highlights that undetermined positions (i.e., 
Ns) increase the noise of the ANI calculation, and thus high-quality genomes should be 
used for accurate results, especially for relatively short genomes such as SARS-CoV-2. The 
genomes sequenced by the RKI yielded similar results (Fig. S4).

Remarkably, the distribution of genome pairs into the same or different variants 
overlapped, almost perfectly, with the highest and lowest peaks, respectively (Fig. 3C). 
Considering the ANI value with the lowest number of pairs (99.83%) as a threshold 
to define variants, we found that 99.4% of all pairs above this threshold represented 
genomes belonging to the same variant. Conversely, only 3.2% of all pairs below 99.83% 
ANI involved genomes of the same variant. This result indicates that classification and 
identification of variants based on the intra-species ANI gap produce almost the same 
result as the combination of genotypic and phenotypic data employed by the interna
tional institutions. While the latter data are certainly needed for other purposes such 
as virulence assessment, the ANI gap offers a simple and complementary approach to 
identify viral variants. Furthermore, this result demonstrates that the resulting ANI-based 
clusters are associated with significantly distinct phenotypic characteristics. While we are 
able to confirm the latter only for the SARS-CoV-2 based on the abovementioned results, 
we hypothesize that clusters defined by the ANI gap within other viral species may also 
present significant phenotypic and/or ecological differences.

In addition to SARS-CoV-2, the existence of the ANI gap was also examined for a 
small set of eukaryotic viruses that have been adequately sampled and belonged to the 
Duplodnaviria, Riboviria, and Varidnaviria realms. Similarly to the results reported above 
for bacteriophages, the gap was observed for a variety of viruses that infect humans, 
mosquitoes, birds, ruminants, or pigs (Fig. S5). All three realms included species that 
showed a clear ANI gap (Table S1). However, given the small size of the eukaryotic 
data set and the fact that different thresholds for intra-species units are frequently used 
for these viruses compared to bacteriophages (19, 25–27), the results reported here 
for the eukaryotic genome data set cannot be broadly extrapolated to all (or most) 
eukaryotic viruses. Nonetheless, the fact that at least some eukaryotic viruses display 
the intraspecies gap indicates that the gap might be a widespread feature of viruses, 
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not only bacteriophages. Interestingly, a threshold of 1% and 0.5% nucleotide differen-
ces between genomes was previously proposed to define human Alphapapillomavirus 
lineages and sublineages, respectively (28), and our 99.8% ANI threshold closely matches 
WHO’s designation of VOCs for SARS-CoV-2. Future research should more rigorously 
assess the existence of an intra-species ANI gap in eukaryotic viruses by sequencing, for 
instance, a broader range of species.

Definition of intra-species clusters: a proposal for the term genomovar

Our results show that intra-species units of many bacteriophages may be distinguishable 
based on their ANI values. Given the multiple definitions of what constitutes a viral 
strain or a genetic variant, we propose the 99.5% ANI clusters, as the mean of the 99.2–

FIG 3 ANI histograms of the SARS-CoV-2 genomes sequenced by the US CDC. (A) Histogram with a random subset of 6,481 genomes (Ns allowed) belonging 

to the Alpha (n = 1,250), Beta (n = 534), Delta (n = 1,250), Gamma (n = 1,250), Epsilon (n = 947), and Omicron (n = 1,250) VOCs was analyzed, that is, 41,996,880 

pairs in total. A subtle ANI gap at around 99.8% can be observed (see vertical line). (B) Histogram with 5,041 high-quality genomes (i.e., without Ns) belonging 

to the Alpha (n = 1,250), Beta (n = 99), Delta (n = 1,250), Gamma (n = 1,035), Epsilon (n = 157), and Omicron (n = 1,250) VOCs was analyzed, that is, 27,620,280 

pairs in total. After removing genomes with Ns, the data reveal a clearer bimodal distribution and a more pronounced ANI gap for the SARS-CoV-2 genomes. 

(C) Histogram shows the same data as in B, but the bars are colored based on whether the genomes compared are assigned to the same variants by WHO (in 

blue) or not (in pink). Note the limited overlap between the two groups.
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99.8 value, to be referred to as genomovars. This term was proposed decades ago to 
distinguish bacterial groups that typically belong to the same species and show distinct 
genotypic and phenotypic features, but these features did not represent enough of 
a diagnostic phenotype to qualify the groups as distinct species (29, 30). It has been 
recently proposed to use the term genomovar to refer to the intra-species genomic 
clusters of prokaryotic organisms that share more than 99.5% ANI because the term is 
well fit for this purpose (31). Therefore, our proposal herein is to use the same term 
for both viral and bacterial intra-species clusters in order to provide consistency and 
facilitate communication. We suggest the midpoint value (i.e., 99.5% ANI), rather than 
the upper value (i.e., 99.8% ANI), of the gap as a more conservative threshold, and in 
order to account for the variation in ANI gap values observed among different species. 
However, this ANI threshold should only be considered as a practical and convenient 
standard to define intra-species units and genomovars, and researchers are encouraged 
to adjust this threshold to better match the ANI value distribution revealed by the data of 
their phage of interest.

A remaining question is how to call the genomes whose pairwise identities fall within 
the area of the valley (gap). These genomes might represent an intermediate state of 
evolution toward becoming a new genomovar or members of a genomovar that has 
not been adequately sampled due, for instance, that it thrives in other conditions or 
sites than those preferably sampled to date. It is difficult at present to ascertain which 
of these scenarios is true and thus, what the biological meaning and classification of 
these intermediate genomes should be. Therefore, we recommend not to assign these 
intermediate genomes to an existing genomovar and instead call them as unassigned 
until further information from different sources is available (e.g., phenotypic properties) 
or designate them as new/novel genomovars. The latter option may be more practical, in 
our view.

What are the underlying mechanism(s) for the 99.5% ANI gap?

Viral infection can proceed through a lytic cycle, where a virus infects a host cell, 
replicates inside the cell, and finally, be released to the extracellular media as infectious 
virions, or through a lysogenic cycle, where the virus is first integrated into the host 
genome, often via a non-homologous recombination mechanism, until a signal activates 
the lytic cycle. These two infection strategies can generate different events and types 
of recombination. During lytic cycles, viral genome recombination may occur when two 
viruses co-infect the same cell, a phenomenon that has been observed in up to 50% of 
the total infected cells in the surface of the oceans and other environments (32). Once 
both genomes are inside the cell, recombination can take place coupled to replication 
(33), generating the widely described mosaicism of viral genomes (34). On the other 
hand, lysogenic viruses can incorporate some host genes into their genome during 
excision, generating a new recombinant virion. Thus, during lytic cycles, recombination 
usually—but not exclusively—happens between pairs of viruses, while in lysogenic 
cycles, recombination occurs mostly between a virus and its host. Since recombination 
is apparently an important mechanism that could drive viral genome evolution (33), we 
examined if it could be the underlying mechanism that maintains the intra-species ANI 
gap. Specifically, we tested the hypothesis that recent recombination is more frequent, 
and unbiased across the genome, within a cluster (e.g., a species or a genomovar) vs 
between clusters of genomes and thus can serve as the mechanism of cohesion for 
the cluster. For this, we first measured the fraction of genes showing >99.8% identity 
between genome pairs (F100) relative to the expected number of such high-identity 
genes based on their ANI value and assuming no recombination (F100 expected; see 
Materials and Methods for details), as a proxy for recent recombination events (Fig. 
4A). For this analysis, we focused on the Salinibacter ruber phage species for which 
more genomes are available from a natural population (35). The data set included 177 
high-quality viral genomes able to infect the same host (Sal. ruber strain M8) that were 
recovered from two ponds of the same saltern in Majorca Island, Spain, sampled (just) 

Research Article mBio

August 2024  Volume 15  Issue 8 10.1128/mbio.01536-24 8

https://doi.org/10.1128/mbio.01536-24


2 weeks apart in 2014. ANI distribution values highlighted a gap at 99.6%, consistent 
with the data reported above for all viral species (Fig. 1), which translated to nine distinct 

FIG 4 Quantifying the role of recombination as a force of cohesion of the intra-species units. (A) Gene identity plot of a reference genome (genome 13v8 of 

genomovar 5) against query genomes of different genomovars. Plots are sorted by decreasing ANI against the reference genome (rightmost value). Each black 

line in the plot represents the position of a gene of the reference genome (x-axis) shared by the query genome and the percent identity of the shared homolog 

(y-axis); no lines represent genes that are specific to the reference genome (no match in the query genome). For each pair of genomes, shared genes with 

identities above 99.8% were considered as (recently) recombinant (red arrows, recombination as a force of cohesion); genes with identities below 99.8% within 

the pair of genomes in question but above 99.8% with another genome were classified as recombinant with a third partner (blue arrows, recombination as 

a force of diversification); genes with identities below 99.8% for all analyzed pairs were considered non-recombinant (green arrows, representing recent point 

mutations). (B) Cumulative curve of the number of genes of the reference genome found to have recently recombined with a genome of another genomovar 

when adding the latter genomes sequentially in the analysis (x-axis). Top plot shows the number of recombined genes as a fraction of the total genes in the 

reference genome, while the bottom plot shows the number of recombined genes newly detected by each genome added to the analysis. (C) Quantification of 

the strength of recombination as a force of cohesion (red) and diversification (blue) following the gene classification described in panel A. Note that the impact 

of cohesive recombination, measured by the number of recombinant genes (left) or their total length (middle), is greater than diversifying recombination. GV, 

genomovar.
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99.6% ANI-based genomovars. Genomes sharing <99.6% ANI shared more high-identity 
genes than expected based on the model with no recombination (Fig. S6). Furthermore, 
we calculated the fraction of recombinant genes, defined as showing >99.8% nucleotide 
identity between a reference genome and all genomes of different genomovars (so, 
pairwise genome ANI <99.5%) and observed that recombination occurred in 83%–100% 
of the genes in the reference genome, depending on the genome used as reference 
(Fig. 4B; Fig. S7). Therefore, recombination is not only frequent enough but also occurs 
throughout the entire genome.

A recombination event could increase similarity between the two partner genomes, 
but it could also increase dissimilarity between the two genomes when recombination 
occurs with a third genome that is more divergent; recombination can be both a force 
of cohesion and diversification. To assess the relative importance of these two forces, 
we classified genes into three groups for each pairwise genome comparison: recombi
nant genes (>99.8% identity within the genome pair considered, a proxy for cohesion 
force), recombinant genes with a third partner (<99.8% identity within the genome pair 
considered but >99.8% identity with a third genome, a proxy for diversification force), 
and non-recombinant genes (<99.8% identity within the genome pair considered, proxy 
for point mutation force) (Fig. 4A). We randomly selected one reference genome from 
each genomovar and calculated the total number, length, and mismatches of genes 
classified in the three categories described above (Fig. 4C; Fig. S8). We observed that 
mismatches between a pair of genomes mainly involved “recombinant genes with a 
third partner” rather than “non-recombinant genes” because most of the low-identity 
alleles between the pair of genomes evaluated had a high identity (>99.8% identity) 
match with another genome, of a different genomovar, in our collection. These results 
suggested that recent point mutations have a relatively small impact on the evolution 
of these genomes relative to recombination. Furthermore, the number and length of 
“recombinant genes” were higher than that of “recombinant genes with a third partner” 
for five out of nine genomovars, while only three genomovars displayed higher numbers 
for “recombinant genes with a third partner,” and one genomovar showed similar values 
for both categories. While our empirical approach, most likely, underestimates the 
frequency of recombinant genes with a third partner because our genome collections 
do not cover the total diversity of the natural population, cohesive recombination had 
similar contribution to diversifying recombination for at least a couple of the genome 
pairs evaluated when we added the genes found in the mutation group to the third 
partner group. These results do indicate that recombination as a cohesion force might 
be, overall, frequent enough.

It is important to note that it is not possible to perform this type of analysis for 
members of the same genomovar due to the high identity across the whole genome 
(i.e., there is no signal over the background level of sequence identity to detect 
recombination). Consistent with this assumption, F100 values among members of the 
same genomovar (>99.6% ANI) fall inside the confidence interval of the model that 
assumes no recombination (see purple dots in Fig. S6). However, since recombination 
between genomovars is frequent, recombination within the same genomovar is certainly 
expected and is likely even higher in frequency, given also that recombination generally 
increases with increasing sequence identity of the recombining partners (36). Therefore, 
recombination might also be the main force of cohesion and evolution of genomovars of 
DNA viruses, in addition to the force of cohesion at the species level.

In contrast to the Sal. ruber bacteriophages mentioned above, we observed low 
frequency of recombination for SARS-CoV-2 genomes (e.g., F100 values fall inside the 
confidence interval of the model that assumes no recombination for most SARS-CoV-2 
genomes; Fig. S9), consistent with recent literature (37–39), even though SARS-CoV-2 
genomes also show a clear ANI gap similar to Sal. ruber bacteriophages (Fig. 3). Thus, it 
is likely that mutation rather than recombination is the main genetic mechanism driving 
SARS-CoV-2 genome diversification. This finding suggests that different mechanisms (i.e., 
cohesive recombination vs diversifying point mutation) could have similar results on the 
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intra-species diversity patterns of DNA and RNA viruses, that is, the existence of an ANI 
gap. Furthermore, the study of the SARS-CoV-2 dynamics has shown the emergence 
of new and more infectious SARS-CoV-2 genomovars that replace the existing genomo
vars, in a clear example of ecological competition (40, 41). These results indicate that 
competition between genomovars (i.e., selection) may also be an important underlying 
mechanism for the ANI gap in at least some viruses such as SARS-CoV-2. Accordingly, 
intermediate genomes (i.e., their ANI values fall within the gap) might present less 
competitive phenotypes on their way to extinction by natural selection or genomovars 
that thrive under other conditions and/or hosts and, hence, possibly not adequately 
sampled.

Conclusions

While the data set analyzed here certainly under-sampled total viral species diversity, 
it includes genomes for 1,016 species, primarily from the Caudoviricetes class (realm 
Duplodnaviria), as well as a smaller set of eukaryotic viruses belonging to the realms 
Duplodnaviria, Riboviria, and Varidnaviria. Thus, we believe that the data set is large 
enough to allow some initial views of the patterns of intra-species diversity at least for 
bacteriophages. Our findings highlight the accuracy and robustness of the ANI gap 
to distinguish viral variants and suggest that genomovars defined by this gap can 
carry distinct phenotypic (e.g., different virulence and/or infectivity) and/or ecological 
properties. Therefore, we consider the data presented here as strong evidence for the 
widespread—but not necessarily universal—existence of functionally distinct intra-spe
cies units for bacteriophages. Finding similar patterns within a few eukaryotic viral 
species evaluated (e.g., SARS-CoV-2) indicates that the results reported here might apply 
more broadly to viruses, but this assumption needs to be more rigorously tested in the 
future with more eukaryotic viral species. Our data support that the 99.5% ANI threshold 
can be useful for most bacteriophage species, but we also recognize that viral genome 
diversity is vast, and therefore, the threshold may need to be adjusted for specific viral 
species. For the latter, we suggest obtaining the ANI value distribution for the species 
in question and assessing whether, and at what range of ANI values, genomovar-discrim
inating valleys appear. Several viral species in our data set did not show this major 
ANI pattern presumably due to sampling bias or their true diversity, and they should 
be studied in the future to better understand the mechanisms driving intra-species 
diversity. Furthermore, it should be mentioned that the ANI gap reported here using 
fosmid and long-read metagenome sequences might not be observed in short-read 
metagenomic studies due to the assembly step merging highly similar sequences into 
a consensus (e.g., sequences sharing >97%–98% nucleotide identity) (42). Finally, our 
results indicated that the ANI gap may be the result of either recombination (Sal. 
ruber bacteriophages) or selection-driven diversifying mutation (SARS-CoV-2 genomes), 
confirming earlier hypotheses that gene exchange (recombinogenic speciation) and 
ecology (ecological speciation) can both explain the appearance and maintenance of 
species and intra-species units. It would be interesting to study additional species in the 
future to advance our understanding of the relative importance of these two processes 
and their interplay. We expect that the proposed ANI methodology and threshold 
advance the set of genomic tools to define and track the units of intra-species diversity, 
thus facilitating future epidemiological and environmental studies.

MATERIALS AND METHODS

The bacteriophage genomes analyzed here were retrieved from JGI IMG/VR data
base, selecting only those recovered from prokaryotic isolate genomes to avoid 
any effects (masking) from the assembly of metagenomic reads. Thus, the IMG/VR 
genomes analyzed here mainly represent proviruses or pseudolysogens. This data 
set was complemented with viral isolates from “The Actinobacteriophage Database” 
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(https://phagesdb.org/) (43) and NCBI using the following search string: “Viruses[Organ
ism] NOT cellular organisms[ORGN] NOT wgs[PROP] NOT gbdiv syn[prop] AND 
(srcdb_refseq[PROP] OR nuccore genome samespecies[Filter])” (Table S1). Since there 
are no tools to confidently estimate viral genome completeness for all types of viruses 
(i.e., available tools work well for certain groups of viruses, such as Caudoviricetes), only 
genomes longer than 20 kbp were analyzed with the aim of reducing the potential noise 
introduced by very incomplete genomes. In addition, 177 recently published Salinibacter 
ruber bacteriophage genomes (35) were also included in the data set. As a result, the 
final data set comprised a total of 75,012 genomes longer than 20 kbp (Table S1) that 
correspond to 72,915 lysogens/pseudolysogens and 2,097 viral isolates.

Uncultured genome sequences of fosmids and long-read metagenomes were 
downloaded from the NCBI genome and SRA databases, respectively (Table S1). All 
fosmid sequences are of marine origin and have been described previously (44, 45). 
Presumably, due to the large amount of DNA required to perform long-read sequencing, 
we did not find any viral long-read metagenomes in public databases at the time of this 
writing. Instead, we used 19 PacBio HiFi cellular metagenomes from human and chicken 
guts as well as seawater samples described previously (46–50). Sequences were quality 
filtered using filtlong v0.2.1 (https://github.com/rrwick/Filtlong) with a minimum read 
length of 10 kbp and a minimum window quality of 99. Samples with at least 5,000 
surviving reads were first analyzed by VirSorter2 v2.2.4 (51) to identify viral sequences 
and then with checkv v1.0.1 (52) to further refine these sequences as viral or host 
derived. Only those reads with at least one identified viral gene and more viral genes 
than host genes were retained for further analysis.

The 8.15 million SARS-CoV-2 genomes were downloaded from NCBI (accessed on 
2 August 2023), and then, to retain only high-quality genomes, sequences with any 
undetermined position (Ns) identified by the FastA.filterN.pl (content = 0) script of the 
enveomics collection (53) were discarded. For the CDC sequences, we subsampled them 
to 1,250 genomes per VOC (except Epsilon and Beta VOCs that had only 157 and 99 
available genomes, respectively), that is, 5,041 genomes were used in total. The RKI data 
set was subsampled to 300 genomes per VOC (except Gamma and Epsilon VOCs with 
112 and 2 genomes, respectively), which provided 1,314 genomes in total. In addition 
to SARS-CoV-2, eukaryotic viral genomes retrieved from NCBI using the search explained 
above were also analyzed (Table S1).

ANI values between viral genomes were calculated using FastANI v1.33 (16) “Many to 
Many” mode with a fragment length of 1 kbp to account for the shorter viral genomes 
(relative to the default 3 kbp for microbial genomes). Viral genomes were assigned to 
the same species when sharing more than 95% ANI, a previously proposed threshold 
(14) that we also corroborated within our data set (Fig. S10). Finally, self-matches were 
removed, and plots were drawn in R using ggplot2 v3.4.2 (54).

To challenge the robustness of the gap, we performed a subsampling analysis to 
get the same number of pairwise comparisons per species (150). The data were then 
smoothed using the smooth_data function (sm_method=“gam”) from the gcplyr R 
package v1.9.0 (55), and peaks and valleys were automatically identified using find-
peaks from the pracma R package v2.4.4 (https://cran.r-project.org/package=pracma). 
This process was repeated 1,000 times, and the results were pooled and finally plotted 
using ggplot2 (we used the Bootstrap_analysis.R script available in https://github.com/
baldeguer-riquelme/Viral-ANI-gap/).

To classify the observed ANI patterns, we defined four groups based on the detection 
of valleys and peaks using the approach outlined above, the average ANI value of the 
collection of genomes analyzed (of the specific species of interest), and the average 
smoothed counts. Briefly, the data (ANI values) were first smoothed, and peaks and 
valleys were automatically detected, as explained above. Then, areas of low frequency 
of pairs were defined as those ANI bins with a number of smoothed counts below the 
smoothed mean × 0.5. To validate a valley, it had to be detected by the findpeaks 
function and be in an area of low frequency of pairs. This approach ensures that 
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validated valleys are at the bottom of the ANI distribution. Group 1 included species 
displaying a validated valley between 99.2% and 99.8% ANI, and an average ANI below 
99.8%. Species with an average ANI above 99.8% were classified into group 2 and 
represented highly clonal species. Both group 1 and group 2 species provide support to 
the existence of the gap since the area between 99.2% and 99.8% displays a low number 
of pairs. Species on group 2 and group 1 are then composed by one or several clusters, 
respectively. Group 3 included species that did not show a peak or a valley between 
99.2% and 99.8% ANI and thus, does not provide strong evidence against—or in favor 
of—the existence of the gap (undetermined distributions). Finally, there was a group of 
species that showed a peak rather than a valley between 99.2% and 99.8% ANI, which 
is inconsistent with the existence of the gap. These species were classified in group 4. 
Selected examples of these groups are shown in Fig. S3; and all plots are available on 
https://github.com/baldeguer-riquelme/Viral-ANI-gap/. We manually reviewed all 1,016 
species plots and moved 56 species (9 prokaryotic, 6 fosmids, and 41 long read) to a 
different group than the species was automatically assigned to using the methodology 
described above.

The frequency of recombination was calculated based on the fraction of shared 
identical reciprocal best-match genes between genome pairs (F100) relative to those 
expected based on the ANI value of the genome and assuming no recombination, which 
can be considered a proxy for recent recombination events. For this, genes were first 
predicted using Prodigal v2.6.3, and then reciprocal best-match genes for each pairwise 
comparison were identified using BLASTn (v2.14.0). We assumed that genes sharing 
more than 99.8% identity represent recently recombined genes and labeled them 
accordingly. Finally, we defined the F100 value as the fraction of recombinant genes from 
the total number of reciprocal best-match genes for each pairwise comparison. To build 
the simulated model that only considers random mutations and no recombination, we 
employed the script Simulate_population_genomes.py, available at https://github.com/
rotheconrad/Population-Genome-Simulator. To resemble the available Salinibacter ruber 
phage genomes as much as possible, the simulated population was created with the 
following parameters: -n 100 g 70 c 1 -cr 90 -mu 690 -sd 150. Cumulative recombi
nant gene curves were built using the 03 g_Recombinant_group_analysis.py script 
of the F100_Prok_Recombination pipeline. For each pairwise comparison, genes were 
classified into three groups: recombinant genes (>99.8% identity, proxy for cohesion 
force), recombinant genes with a third partner (<99.8% identity but >100% identity with 
a third genome, proxy for diversification force), and non-recombinant genes (<99.8% 
identity, proxy for mutation force), as described in the main text. Note that the genes 
are labeled separately for each pairwise comparison, and thus, the same gene might 
be classified into different categories depending on the genome pair analyzed. For 
example, a gene of genome A can be classified as “recombinant” with genome B and 
as “recombinant with a third partner” when compared to genome C. In addition, note 
that non-recombinant genes might actually be recombinant with a partner not included 
in the data set. Classification and plots were carried out using the 03 g_Recombi
nant_group_extra_code.py script available at https://github.com/baldeguer-riquelme/
Viral-ANI-gap/. We used the F100 approach to detect evidence of recent recombination 
of SARS-CoV-2 genomes. Specifically, we compared the SARS-CoV-2 F100 values against 
a model with no recombination (Simulate_population_genomes.py script, parameters: -n 
10 g 12 c 1 -cr 90 -mu 1180 -sd 2200).
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