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Abstract

Sensor-based time series data can be utilized to monitor changes in human behavior as a person 

makes a significant lifestyle change, such as progress toward a fitness goal. Recently, wearable 

sensors have increased in popularity as people aspire to be more conscientious of their physical 

health. Automatically detecting and tracking behavior changes from wearable sensor-collected 

physical activity data can provide a valuable monitoring and motivating tool. In this paper, we 

formalize the problem of unsupervised physical activity change detection and address the problem 

with our Physical Activity Change Detection (PACD) approach. PACD is a framework that detects 

changes between time periods, determines significance of the detected changes, and analyzes the 

nature of the changes. We compare the abilities of three change detection algorithms from the 

literature and one proposed algorithm to capture different types of changes as part of PACD. 

We illustrate and evaluate PACD on synthetic data and using Fitbit data collected from older 

adults who participated in a health intervention study. Results indicate PACD detects several 

changes in both datasets. The proposed change algorithms and analysis methods are useful data 

mining techniques for unsupervised, window-based change detection with potential to track users’ 

physical activity and motivate progress toward their health goals.
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1. Introduction

In recent years, sensors have become ubiquitous in our everyday lives. Sensors are ambient 

in the environment, embedded in smartphones, and worn on the body. Data collected 

from sensors form a time series, where each sample of data is paired with an associated 

timestamp. This sensor-based time series data is valuable when monitoring human behavior 

to detect and analyze changes. Such analysis can be used to detect seasonal variations, new 

family or job situations, or health events. Analyzing sensor-based time series data can also 
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be used to monitor changes in human behavior as a person makes progress toward a fitness 

goal. Making a significant lifestyle change often takes weeks or months of establishing 

new behavior patterns [1], which can be challenging to sustain. Automatically detecting 

and tracking behavior changes from sensor data can provide a valuable motivating and 

monitoring tool.

Recently, wearable sensors have increased in popularity as people aspire to be more 

conscientious of their physical health. Many consumers purchase a pedometer or wearable 

fitness device in order to track their physical activity (PA), often in pursuit of a goal such 

as increasing cardiovascular strength, losing weight, or improving overall health. Physical 

activity is estimated by pedometers and fitness trackers in terms of the steps taken by 

the wearer [2]. To track different types of changes in physical activity data, two or more 

time periods, or windows, of PA data can be quantitatively and objectively compared. If 

the two time windows contain significantly different sensor data then this may indicate 

a significant behavior change. Existing off-the-shelf change point detection methods are 

available to detect change in time series data, but the methods do not provide context 

or explanation regarding the detected change. For PA data, algorithmic approaches to 

change detection require additional information about what type of change is detected 

and its magnitude to potentially report progress to users for motivation and encouragement 

purposes. Furthermore, existing approaches often do not provide a method for determining 

if a detected change is significant, meaning the magnitude of change is high enough to 

suspect it likely resulted from a lifestyle alteration. A personalized, data-driven approach to 

significance testing for fitness tracker users is a necessary feature of physical activity change 

detection.

Currently, there is no clear consensus regarding which change detection approaches are best 

for detecting and analyzing changes in PA data. Consequently, we formalize the problem of 

unsupervised physical activity change detection and address the problem with our Physical 

Activity Change Detection (PACD) approach. PACD is a framework that (1) segments time 

series data into time periods, (2) detects changes between time periods, (3) determines 

significance of the detected changes, and (4) analyzes the nature of the significant changes. 

We review recently proposed change detection methods and we evaluate the ability of 

four different change detection approaches to capture pattern changes in synthetic PA data. 

Next, we illustrate how the change approaches are used to monitor, quantify, and explain 

behavior differences in Fitbit data collected from older adults who participated in a health 

behavior intervention. Finally, we conclude with discussions about the limitations of current 

approaches and suggestions for continued research on unsupervised sensor-based change 

detection.

2. Related work

In the literature, a few studies have aimed to detect change specifically in human behavior 

patterns. These approaches have quantified change statistically [3,4], graphically [4-6], 

and algorithmically [5,7-9]. Recently, Merilahti et al. [3] extracted features derived from 

actigraphy data collected for at least one year. Each feature was individually correlated 

with a component of the Resident Assessment Instrument for insights into how longitudinal 
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changes in actigraphy and functioning are associated. While this approach provides insight 

into the relationship between wearable sensor data and clinical assessment scores, this study 

does not directly quantify sensor-based change.

Wang et al. [5] introduced another activity-based change detection approach in which 

passive infrared motion sensors were installed in apartments and utilized to estimate 

physical activity in the home and time away from home. The data were converted into 

co-occurrence matrices for computation of image-based texture features. Their case studies 

suggest the proposed texture method can detect lifestyle changes, such as knee replacement 

surgery and recovery. Though the approach does not provide explanation of the detected 

changes over time, visual inspection of the data is suggested with activity density maps. 

More recently, Tan et al. [6] applied the texture method to data from Fitbit Flex sensors 

for tracking changes in daily activity patterns for elderly participants. Another approach for 

activity monitoring is the Permutation-based Change Detection in Activity Routine (PCAR) 

algorithm [7]. PCAR researchers modeled activity distributions for time windows of size 

three months. Changes between windows were quantified with probabilities of change 

acquired via hypothesis testing.

The change detection algorithms described previously are intended for monitoring human 

activity behavior. There are several additional approaches that are not specific to activity 

data, but instead represent generic statistical approaches to detecting changes in time 

series data. Change point detection, the problem of identifying abrupt changes in time 

series data [10], constitutes an extensive body of research as there are many applications 

requiring efficient, effective algorithms for reliably detecting variation. There are many 

families of change detection algorithms that are suitable for different applications [11]. 

Algorithms appropriately handling two sample, unlabeled data are most relevant to the 

current study due to their data-driven change score computation and no need for ground 

truth information. Unsupervised change detection approaches include subspace models 

and likelihood ratio methods [8]. One particular subgroup of likelihood ratio methods, 

direct density ratio estimator methods, is used in various applications [12,13]. Relative 

Unconstrained Least-Squares Importance Fitting (RuLSIF) [8] is one such approach used to 

measure the difference between two samples of data surrounding a candidate change point. 

Other recent change point detection research includes work on multidimensional [14,15] and 

streaming time series data [11].

The above approaches are effective methods for detecting change between two samples 

of data; however, they are not explanatory methods as they only identify if two samples 

are different and do not provide information on how the samples are different. Once a 

change is detected and determined significant, additional analyses are required to explain 

the change that occurred. Hido et al. [9] formalized this problem as change analysis, a 

method of examination beyond change detection to explain the nature of discrepancy. Hido’s 

solution to change analysis utilizes supervised machine learning algorithms, specifically 

virtual binary classifiers (VCs), to identify and describe changes in unsupervised data. 

Research by Ng and Dash [16] and Yamada et al. [10] have also explored methods for 

detecting and explaining change in time series data.
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The aforementioned methods provide several options for change detection and analysis, each 

with their own suitability for various applications. In this paper, we evaluate the following 

methods for use in our PACD method: (1) RuLSIF [8], (2) texture-based dissimilarity [5,6], 

(3) our proposed adaptation of PCAR [7] to handle small window sizes (sw-PCAR), and (4) 

VC-based change analysis [9].

3. Methods

Physical activity is often defined as any bodily movement by skeletal muscles that results 

in caloric energy expenditure [17]. Physical activity consists of bouts of movement that are 

separated by periods of rest. Physical activity bouts are composed of four dimensions [17]:

1. Frequency: the number of bouts of physical activity within a time period, such as 

a day.

2. Duration: the length of time an individual participates in a single bout.

3. Intensity: the physiological effort associated with a particular type of physical 

activity bout.

4. Activity type: the kind of exercise performed during the bout.

To add exercise throughout the day, individuals can increase their number of bouts 

(frequency), increase the length of bouts (duration), increase the intensity of bouts, and 

vary the type of physical activity performed during the bouts. These four components of 

PA represent four distinct types of changes that can reflect progress toward many different 

health goals, such as increasing physical activity or consistency in one’s daily routine.

We study the problem of detecting and analyzing change in physical activity patterns. More 

specifically, we introduce methods to determine if a significant change exists between two 

windows of time series step data sampled from a physical activity sensor. Algorithm 1, 

PACD, outlines this process. Let X denote a sample of time series step data segmented into 

days, D = {x1, x2, …, xt, …, xm}, where xt is a scalar number of steps taken at time interval 

t = 1, 2, …, m and m is the number of equal-sized time intervals in a day. Let tmins denote the 

number of minutes per time interval, t. For example, if the sampling rate of the wearable 

sensor device is one reading per minute, tmins = 1 min and m = 1440 min ∕ tmins = 1400 intervals. 

Now, let W  be a window of n days such that W ⊆ X. Furthermore, an aggregate window, W , 

represents the average of all days within the window W :

W = 1
n ∑

i = 1

n
Di, Di ∈ W

(1)

We can compare windows of data within time series data X. These windows may represent 

consecutive times (e.g., days, weeks, months), a baseline window (e.g., the first week) with 

each subsequent time window, or overlapping windows. Let W i denote a window starting 

at day number i of X (i ⩾ 1) such that W i = X[i : i + n − 1] = {Di, Di + 1, …, Di + n − 1}. Suppose we 
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have two windows of data, W i and W j (i ⩽ j). Windows W i and W j can be formed as subsets 

of X based on the initial value of i and a parameter offset that determines the initial value of 

j (j = i + offset). For change detection and analysis, a function F  computes a change score, 

CS = F (W i, W j) between W i and W j. Iteration advancements advi and advj move windows 

W i and W j respectively for the next comparison. Two windows can be compared in either 

baseline or sliding window mode. For a baseline window comparison, the first window is 

a reference window that occurs at the beginning of the time series (i is initialized to 1) 

and is used in each comparison, so adji = 0. All subsequent windows are compared to the 

baseline window. Thus j is initialized to 1 + offset and is subsequently advanced by advj. In 

the case of a sliding window comparison, both windows used for comparison are advanced 

through the time series data. Typically advi = advj for consistently spaced comparisons. In 

Algorithm 1, PACD, i is initialized to 1 and j is initialized to 1 + offset. In steps 17 and 18, i
is advanced to i + advi and j is advanced to j + advj.

Algorithm 1. PACD(X, n, offset, advi, advj)

1: Input: X = time series data
2: Input: n = window length in days
3: Input: offset = number of days separating windows
4: Input: advi = number of days to advance the first window
5:Input: advj = number of days to advance the second

window
6:Output: V = vector of change scores
7: Initialize: i = 1 and j = 1 + offset
8: for each pair of windows to compare, W i and W j of time

sries X:
9: W i = X[i : i + n − 1]

10: W j = X[j : j + n − 1]
11: Compute CS = F (W i, W j)
12: Determine if CS is significant
13: Identify the type of change that is exhibited
14: Manual inspection of change
15: Unsupervised inspection (change analysis)
16: Append CS to change score vector V
17: i = i + advi

18: j = j + advj

end for
19:return Change score vector V

The choice of window size, n, limits the algorithms that can be applied to the data. For 

example, the PCAR algorithm [7] is designed for longitudinal data comprising several 

months; consequently sensitivity decreases with small window sizes. For PACD, we 

categorize choices for window size n into the following descriptors:
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1. Small window (n = 1 day). Suitable for performing day-to-day comparisons (e.g. 

Di(Monday) compared to Dj(Monday), Di(Tuesday) compared to Dj(Tuesday), …) or aggregate day 

comparisons (e.g. W i compared to W j, W i + advi compared to W j + advj, …).

2. Medium window (2 days ⩽ n ⩽ 5 days). Suitable for 

performing weekday-to-weekday comparisons (e.g. W i compared 

to W j where W i = {Di(Monday), Di(Tuesday), Di(W ednesday), Di(Tℎursday), Di(Friday)} and 

W j = {Dj(Monday), Dj(Tuesday), Dj(W ednesday), Dj(Tℎursda), Dj(Friday)}) or weekend-to-weekend 

comparisons.

3. Large window (n > 5 days). Suitable for performing week-to-week or month-to-

month comparisons.

3.1. Change detection algorithms

In the following sections, we describe algorithmic options for the window-based change 

score function, F . A summary and comparison of the algorithms is listed in Table 1.

3.1.1. RuLSIF—Non-parametric approaches to change point detection include a family 

of methods comparing the probability distributions of two time series samples to determine 

the corresponding dissimilarity. A greater difference between the two distributions implies 

a higher likelihood that a change occurred between the two samples. Instead of estimating 

the probability distributions, their ratio can be estimated and used to detect changes in the 

underlying probability distributions. Direct density ratio estimation between two windows of 

time series data is substantially simpler to solve than computing the windows’ probability 

densities independently and then using these to compute the ratio. Unconstrained Least-

Squares Importance Fitting (uLSIF) [8] is one such ratio estimation approach that measures 

the difference between two samples of data surrounding a candidate change point. For 

this approach, the density ratio between two probability distributions is estimated directly 

with the Pearson divergence dissimilarity measure. Depending upon the data, the Pearson 

divergence can be unbounded. Consequently, a modification to uLSIF, relative uLSIF 

(RuLSIF), utilizes an alpha-relative Pearson divergence to bound the change score above 

by 1/α for α > 0 [8].

3.1.2. Texture-based dissimilarity—For the texture-based approach, two windows of 

PA data, W i and W j, are considered 2-dimensional matrices with rows corresponding to time 

intervals, columns corresponding to days, and cells containing step values measured from a 

PA device (see Section 4.1 for visualizations of PA matrices in Figs. 2-5). In order to extract 

texture features from the data, each matrix is converted into a grey-level co-occurrence 

matrix, a histogram of co-occurring grey scale values of an image [18]. Next, texture 

features are computed from each co-occurrence matrix, including contrast, homogeneity, 

angular second moment, energy, density, and correlation features [5,6,18]. The features from 

each window produce feature vectors T i and T j. Finally, to compare two windows W i and W j

for changes, a weighted normalized Euclidean distance measure is used as a change score 

to quantify the differences between the corresponding feature vectors T i and T j. The smaller 

the Euclidean distance between these two vectors, the more similar the two windows of data 
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are. The texture-based approach can operate on small or large window sizes; however, the 

method lends itself more appropriately to large window sizes (Wang et al. [5] used window 

size of one month).

3.1.3. sw-PCAR—We propose an enhancement of PCAR to allow permutation-based 

change detection for any window size. Before introducing sw-PCAR, we will provide an 

overview of the PCAR approach. PCAR utilizes smart home sensor data to detect changes 

in behavioral routines with an activity curve model [7]. The PCAR approach assumes that 

an activity recognition algorithm [19] is available to label the sensor data with corresponding 

activity names. Using PCAR, each day within a window is broken into m time intervals. 

The activities occurring within each time interval are modeled by a probability distribution, 

which form an activity curve for the corresponding window. To compute a change score CS 

between two windows W i, and W j, the two corresponding activity curves are first maximally 

aligned with dynamic time warping (DTW). Next, the symmetric Kullback-Leibler (KL) 

divergence is used to compute the distance between each pair of DTW-aligned activity 

distributions [7]. To test significance of the distance values, W i and W j are concatenated 

to form a window W  of length 2n days. Next, all days within W  are shuffled. The first 

half of the shuffled days form a new first window, W i
∗, while the second half form a new 

second window, W j
∗. KL distances for each time interval pair in W i

∗ and W j
∗ form a vector 

that is inserted into a matrix. This shuffling procedure is repeated N times, producing a 

N × m permutation matrix, M. If N is large enough, M forms an empirical distribution of 

the possible permutations of activity data within the two windows of time. Next, for each 

time interval, the number of permuted KL distances that exceed the original DTW-aligned 

distance is divided by N to form a p-value. After computing a p-value for each time interval, 

the Benjamini-Hochberg correction [20] is applied for a given α (α < 0.05). Finally, the 

remaining significant p-values are counted to produce the change score, CS.

While the PCAR algorithm is intended for activity distribution data available from activity 

recognition algorithms, in this paper we adapt PCAR to analyze physical activity data 

as part of our PACD method. Instead of activity distribution vectors, we use scalar step 

counts. Additionally, PCAR is suitable for only large window sizes due to the requirement 

of permuting daily time series data. We propose a version of PCAR that is more suitable 

for small to medium-sized windows (sw-PCAR) as required by PACD. Finally, PCAR was 

originally proposed for correlating change scores with standardized clinical assessments to 

determine if ambient smart home sensor-based algorithms can detect cognitive decline [7]. 

Consequently, there is not a test for significance of PCAR change scores. In Section 3.2 we 

propose an accompanying significance test for sw-PCAR.

Algorithm 2 outlines the sw-PCAR approach. For sw-PCAR, two windows W i and W j are 

averaged to yield aggregate windows W i, and W j (see Eq. (1)). A change score CS is derived 

by computing the KL distance between the average number of steps taken in W i and the 

average number of steps taken in W j. Next, W i and W j are concatenated to form a window 

W  of length two days. All time intervals within W  are shuffled. The first half of the shuffled 

intervals form a new first window, W i
∗, while the second half form a new second window, 

W j
∗. W i

∗ and W j
∗ are each averaged to produce two step values. The KL distance between 
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the two values is computed and inserted into a vector. This is repeated N times to produce 

a N-length vector V  of KL distances. Vector V  is later used for change score significance 

testing (see Section 3.2).

Algorithm 2. sw-PCAR(W i, W j, N)

1: Input: W i, W j = two windows of time series data
2: Input: N = number of permutaions
3:Output: CS = change score
4:Output: sig = (Boolean) significance of CS
5: Initialize: k = 0
6:Initialize: V as a vector of length N
7:Compute W i, W j aggregate window
8:Compute CS, the KL distance between W i and W j

9:while k < N :
10: Shuffle the time intervals of W i and W j

11: Generate new aggregate windows W i
∗ and W j

∗

12: Compute the KL distance between W i
∗ and W j

∗

13: Store resulting distance in V
14: k = k + 1

end while
15:sig = BoxplotOutlierDetection(CS, V ) (see Algorithm 3)
16:return CS, sig

3.1.4. Virtual classifier—Change analysis, as proposed by Hido et al. [9], utilizes a 

virtual binary classifier to detect and investigate change. We apply the VC approach as part 

of PACD for large window sizes. First, a feature extraction step reduces two windows W i

and W j into two n × z feature matrices, Mi and Mj, where n is the window size (in days) 

and z is the number of features that are extracted (see Section 3.3 for feature descriptions). 

Next, each daily feature vector of Mi is labeled with a positive class and each daily feature 

vector of Mj is labeled with a negative class. VC trains a decision tree to learn the decision 

boundary between the virtual positive and negative classes. The resulting average prediction 

accuracy based on k-fold cross validation is represented as pV C. If a significant change 

exists between W i and W j, the average classification accuracy pV C of the learner should be 

significantly higher than the accuracy expected from random noise, prand = 0.5, the binomial 

maximum likelihood of two equal length windows [9].

3.2. Change significance testing

Significance testing of change score CS is necessary to interpret change score values. For 

the VC approach, Hido et al. [9] proposed a test of significance to determine if pV C is 

significantly greater than prand. For this test, the inverse survival function of a binomial 

distribution is used to determine a critical value, pcritical, at which n Bernoulli trials are 
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expected to exceed prand at α significance. If pV C ⩾ pcritical, a significant change exists between 

the two windows, W i and W j.

The PCAR approach does not have an accompanying test of significance. We address 

this with our proposed sw-PCAR technique. sw-PCAR computes change significance 

by comparing CS to the permutation vector V  with boxplot-based outlier detection (see 

Algorithm 3). An outlier can be defined as an observation which appears to be inconsistent 

with other observations in the dataset [21]. For this method, the interquartile range (75th 

percentile–25th percentile) of V  is computed. Values outside of the 75th percentile + 1.5 

· interquartile range are considered outliers [22]. If CS is determined to be an outlier of 

V , then the change score is considered significant. There are alternative approaches to test 

membership of an observation (i.e. CS) to a sample distribution (i.e. V ) other than boxplot 

outlier detection. If the sample is normal, statistical tests such as Grubb’s test for outliers 

[23] can be applied. However, the assumption of normality does not hold for all samples of 

human behavior data. More advanced alternatives include data mining techniques relevant to 

outlier detection [21,24]. Exploration and testing of such data mining techniques are outside 

the scope of this paper.

Algorithm 3. BoxplotOutlierDetection(CS, V )

1: Input: CS = change score between two windows
2: Input: V = sample distribution vector
3:Output: sig = (Boolean) significance of CS
4:Arrange V in ascending order
5:Compute Q1, the 25th percentile of V
6:Compute Q3, the 75th percentile of V
7:Compute the interquartile range of V , IQR = Q3 − Q1

8: if CS > Q3 + 1.5 ⋅ IQR:
9: sig = True

10:else:
11: sig = False
12:return sig

RuLSIF does not explicitly provide a method to determine a cut-off threshold for values of 

the Pearson divergence function that are considered significant change scores. In supervised 

applications where ground truth change labels are available, a threshold parameter is 

typically learned by repeated training and testing with different parameter values. For 

unsupervised applications, domain knowledge and/or alternative data-driven approaches are 

necessary. Like RuLSIF, the texture-based method also does not provide a test of change 

significance. For the RulSIF and texture-based approaches, we propose a large window 

change significance test based on intra-window variability and outlier detection.

Our proposed change significance test utilizes the existence of day-to-day variability in 

human behavior patterns [25]. In order to consider a change between two windows as 

significant, the magnitude of change should exceed the day-to-day variability within each 
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window. To illustrate, consider two adjacent, non-overlapping windows W 1 and W 7, each 

of length n = 6 days. Now run a pairwise sliding window change algorithm over W 1

concatenated with W 7. If there is a significant change between the windows, the magnitude 

of change should be higher for the inter-window comparison (between days 6 and 7) than 

any other intra-window comparison. Fig. 1 shows an example plot of sw-PCAR change 

scores for real Fitbit data illustrating this phenomenon. There are small, noisy day-to-day 

changes for all comparisons except the largest maximum occurring for the inter-window 

comparison (6th change score).

Based on the assumption that a significant inter-window change should exceed intra-window 

change, we propose an intra-window change significance test (see Algorithm 4). Given 

a change score CS between two windows, the task is to determine if CS is significant. 

To do this, first compute a list of all possible daily change scores, DCS, within each 

window. DCS contains 2 · Combination (n, 2) change scores (see Algorithm 5). For example, 

a week-to-week comparison (n = 7) would generate an intra-window daily change score 

sample of 42 day-to-day variations. Next, apply the outlier detection method (see Algorithm 

3) from sw-PCAR to test if CS is an outlier score when compared to the distribution 

of intra-window daily change scores DCS. Advantages of the proposed test include it is 

non-parametric and can be coupled with any small window change detection function, F. 

Furthermore, the candidate change score, CS, can be computed based on any window size 

(e.g. Monday-to-Monday, aggregate-to-aggregate, week-to-week, etc.).

Algorithm 4. IntraWindowSignificance(W i, W j, n, CS, F )

1: Input: W i, W j = two windows of time series data
2: Input: n = window size
3: Input: CS = change score between W i and W j

4: Input: F = change score function
5:Output: sig = (Boolean) significance of CS
6: Initialize: DCS = vector of daily change scores
7:Append IntraWindowChange(W i, n, F ) to DCS (see

Algorithm 5)
8:Append IntraWindwoChange(W j, n, F ) to DCS (see

Algorithm 5)
9:Compute sig = BoxplotOutlierDetection(CS, DCS) (see

Algorithm 3)
10:return sig
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Algorithm 5. IntraWindowChange(W , n, F )

1: Input: W = window of time series data
2: Input: n = window size
3: Input: F = change score function
4:Output: DCS = vector of daily change scores
5: Initialize: i = 1, j = 1
6:while i ⩽ n − 1:
7: j = i + 1
8: while j ⩽ n:
9: CS = F [W [i], W [j])

10: Append CS to DCS
11: j = j + 1
12: end while
13: i = i + 1

end while
14:return DCS

3.3. Change analysis

If a change significance test concludes a change score is significant, the next step is to 

determine the source of change (see Algorithm 1 for an overview of the PACD process). 

Often this step requires the computation of features that summarize the data and provide 

a meaningful context for change. For example, the number of daily steps taken is an 

example of a simple PA feature. The change between daily steps from one window of time 

to the next can be quantified and used for an explanation of change. Several approaches 

exist to capture change across time in individual metrics. A straightforward method is to 

compute the percent change for a feature f from a previous window W i to a current window 

W j :Δ % = (fW j − fW i) ∕ fW i. Statistical approaches such as two sample tests or effect size 

analyses can also be applied to quantify change; however, in applying repeated statistical 

tests, the multiple testing problem should be accounted for with a method such as the 

Bonferroni or Benjamini-Hochberg correction [20].

One of the advantages of the VC approach over other change point detection algorithms is 

it includes an explanation of the source of change without reliance on statistical tests. Upon 

significant change detection, retraining a decision tree on the entire dataset and inspecting 

the tree reveals which features are most discriminatory in learning the differences between 

two windows. Naturally, this approach requires a pre-processing step to extract relevant 

features from the windowed PA time series data.

Features extracted from the PA data (see Table 2) serve two purposes: (1) as features for 

the VC approach (RulSIF, texture-based dissimilarity, and sw-PCAR do not make use of 

features for change detection) and (2) for explanation of changes discovered by change 

detection algorithms (see Section 3.1). Features are grouped together based on the number 

of days required for computation: (1) one day, (2) at least one day, or (3) two or more 
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days. Daily features include PA summaries based on intensity, frequency, duration, and 

variability of PA bouts. Sequences of time series data with steps greater than a threshold, 

S, are considered a bout of PA. If ground truth activity labels, such as walking, biking, and 

chores, are available from the device user and/or an activity recognition algorithm [19], PA 

type can be inferred and S can be updated dynamically for different activities. For this study, 

we assume such labeled information is not available and set S = tmins, assuming physical 

activity is characterized by at least one step per minute. Features requiring at least two days 

of data summarize activity across or between days or quantify the user’s circadian rhythm 

(the periodicity from day-to-day [25]). Poincare-plot analysis [4] provides an additional set 

of useful PA features.

4. Results

To demonstrate the PACD approach, two datasets are presented, Hybrid-synthetic (HS) 

and B-Fit (BF). The HS dataset comprises synthetic data and the BF dataset comprises 

real-world Fitbit data collected from a health intervention study. HS and BF data are subject 

to pre-processing prior to serving as input to PACD. Pre-processing includes down sampling 

the data for a given time interval length, tmins, by summing the steps every tmins minutes. For 

the case of sw-PCAR, add one smoothing is applied to avoid division by zero during KL 

divergence computations. Furthermore, missing data are identified and handled for BF data. 

Days with zero steps taken during the day (9am–9pm) are considered missing data. First, 

to fill a missing day, Dmissing, the day in the opposite window, Dotℎer, with the same day of 

the week as Dmissing is identified. Euclidean distance-based clustering is applied to find the k 

nearest neighbor days, NNotℎer, of Dotℎer (k = 3). The days of the week for each day in NNotℎer

are then identified. These are used to select days, NNmissing in the original window containing 

Dmissing. The k days of NNmissing are aggregated (see Eq. (1)) and used to fill Dmissing.

For PACD computations, the following algorithm parameter values are used: window size n: 

6 days; window offset: 6 days; RuLSIF α: 0.1; RuLSIF cross validation folds: 5; number 

of sw-PCAR permutations N: 1000; VC cross validation folds: 4; VC prediction threshold 

pcritical: 0.75; minimum steps in a bout S : tmins. The time interval aggregation size tmins is tested 

with values of tmins = {1, 5, 10, 15, …, 60 min}. We hypothesize that PACD will find PA changes 

(bout frequency, intensity, duration, and variability), using each of the change detection 

methods. However, we anticipate that the significance of the change will vary depending on 

the algorithm used, the parameter value choices, and the level of change that is inherent in 

each dataset.

4.1. Hybrid-synthetic dataset

To generate the HS dataset, step data collected from a volunteer wearing a Fitbit Charge 

Heart Rate fitness tracker was re-sampled and modified the data to produce five different 

synthetic physical activity profiles, each exhibiting a different type of change. The length of 

HS profiles was set to 12 days, resulting in two equal size windows of 6 days for comparison 

(days 1–6 compared to days 7–12). Twelve days was chosen for similarity to the BF dataset. 

The HS profiles with their profile identification (HS0-4) and a description are as follows:
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1. HS0: No significant day-to-day or window-to-window change. Data is subject to 

small daily variation. HS0 represents a baseline for “no change”.

2. HS1: Medium day-to-day change and consequently significant window-to-

window change. Increased bout duration and intensity from day-to-day.

3. HS2: No significant day-to-day change but significant window-to-window 

change. Increased activity for days 7–12.

4. HS3: Medium day-to-day change and consequently significant window-to-

window change. Increased activity variability from day-to-day.

5. HS4: No significant day-to-day change for days 1–6. Significant day-to-day 

activity variability for days 7–12. Consequently significant window-to-window 

change.

Figs. 2-5 show the associated activity density maps for HS profiles HS1-4. An activity 

density map is a heat map proposed by Wang et al. [5] to visualize daily activity (steps for 

this study) as a function of 24 h time (Y-axis) and window time (X-axis). Table 3 shows 

RuLSIF, Texture-based, sw-PCAR, and VC significant change results for each HS profile for 

each time interval length tmins. Window one (days 1–6) and window two (days 7–12) values 

(mean ± standard deviation) for the contextual features of number of bouts, bout minutes, 

daily steps, and sedentary minutes percent are listed in Table 4. Results in Table 4 have time 

interval length tmins = 1 min in order to report the most detailed feature values. For further 

change analysis, decision trees are shown in Fig. 6 for HS profiles HS1-4.

4.2. B-Fit dataset

The BF dataset consists of data collected from 11 older adults (Male = 3, Female = 8; 

age 57.09 ± 8.79 years) participating in a 10-week health intervention. Study inclusion 

criteria consisted of older adults over the age of 55 who had risk factors for developing 

dementia. At risk individuals were defined as those who had at least one first degree relative 

with Alzheimers disease or dementia, or who had cardiovascular disease risk factors (e.g., 

diabetes, mid-life obesity, smoking, hypertension). Participants had to be able to provide 

their own informed consent. As part of this study, participants’ PA profiles were assessed 

with wrist-worn Fitbit Flex fitness trackers for one week (six full 24 h days) before and 

after the intervention. During weeks two through nine, the participants were educated in 

eight different subjects related to health (e.g., exercise, nutrition, sleep) and set personal 

goals for each subject. To track goal achievement each week, individuals rated themselves 

on each personalized goal that they set using a 0–3 rating scale (0: did not meet goal, 1: 

partly met goal, 2: completely met goal, and 3: exceeded goal). For the BF dataset, each 

participant’s change significance testing results are presented in Table 5. Four contextual 

features (number of bouts, bout minutes, daily steps, and sedentary percent) pre and post-

intervention values are listed in Table 6. Finally, decision trees are shown in Fig. 7 for select 

BF participants with a significant VC change score (P2, P7, and P10).
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5. Discussion

In this paper, we investigate the PACD approach for unsupervised change detection and 

analysis of PA time series. The abilities of four presented methods to detect change are 

evaluated on two original datasets: (1) the HS dataset, comprised of 5 synthetic profiles and 

(2) the BF dataset, comprised of 11 participants’ Fitbit data from an intervention study.

5.1. Hybrid-synthetic dataset

The HS dataset reveals several insights into the change detection algorithms. First, the 

time interval length yielding the highest number of significant changes is tmins = 5 min with 

12 changes, closely followed by tmins = 1 and tmins = 20 min with 10 changes (see Table 3). 

Since HS profiles are sampled from a volunteer’s real Fitbit data, these intervals suggest 

movement patterns occur in 1, 5, and 20 min chunks for this individual. For all time interval 

lengths, the algorithms correctly do not detect a significant change between first and second 

window data for the HS0 profile. HS0 is generated to exhibit small day-to-day variation in 

step intensity and is not characterized by large changes between windows.

For HS1-4 profiles, significant changes between windows are detected. For all time interval 

lengths, the VC approach picks up the most changes (43 changes), followed by RuLSIF 

(33), sw-PCAR (17), and texture-based (15). As a group, the algorithms’ are able to sense 

changes in value (HS1, HS2) and changes in variability (HS3, HS4), with 64 and 44 

changes respectively. Changes for HS2 (36) are the most frequently detected, followed by 

HS1 (28), HS4 (26), and HS3 (18). The lower number of changes detected for HS3 is 

possibly due to high intra-window daily change scores for days 7–12 (see Fig. 4) used 

for Boxplot significance testing (see Algorithm 3). Window-based change (HS2, HS4) is 

perfectly detected for all time intervals by VC (HS2, HS4: 13) and RuLSIF (HS2: 13). 

Investigating the tmins = 5 min results reveal all four algorithms determine significant changes 

for HS2 and HS4 (see Table 3). For HS1, near perfect detections are made by sw-PCAR 

(12).

Upon inspection of the associated decision trees for HS1-4 (see Fig. 6), the features 

of texture density, average daily rest minutes, number of bouts, and relative amplitude 

are discriminatory features. The explanatory power of the features is potentially useful 

for reporting to the wearable sensor user the dimensions of change in their physical 

activity. Features useful for such purposes are simple, common features that do not require 

explanation to the user. For example, texture density or relative amplitude are useful 

features for detecting changes in PA patterns, but are relatively unimportant to a user. More 

meaningful features to a user include number of bouts, minutes per bout, daily steps taken, 

and sedentary percent. Table 4 shows these features for the HS profiles. HS0 exhibits quite 

similar window one and window two values for all features. HS2 and HS4 both have small 

standard deviations due to window-based change in lieu of day-to-day change (HS1 and 

HS3).
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5.2. B-Fit dataset

Analyzing the BF participants’ data poses additional challenges that are not present with the 

HS profiles. Real-world human subject data is inherently noisy, characterized by seemingly 

random bouts of PA and rest periods. Furthermore, self-report and direct measurement of 

physical activity are often not congruent, with previous studies reporting correlations in as 

wide a range of −0.71 to 0.96 [26]. For the BF group, the participants demonstrated a wide 

spread of self-reported goal achievement ratings for the exercise category, 1.59 ± 1.05. For 

example, P6, P9, and P10 rated their exercise goal achievements as low (exercise rating: 

1, 0, 0.5 respectively). Due to heart problems, P9’s doctor instructed him not participate 

in exercise-related activities. On the other hand, P2 rated her exercise goal achievement 

the highest (exercise rating: 3). Upon inspection of P2’s data, it is evident there is a 

discrepancy between the participant’s perception of her PA and the steps recorded by the 

Fitbit. It is not uncommon for self-reported measures of physical activity to be inconsistent 

with direct measures [26]; therefore, the participants’ self-ratings are used for insights 

into individual goal achievements, not as ground truth information for changes exhibited. 

The issues with self-reported PA measures exacerbate the need for unsupervised change 

detection and analysis methods.

Depending on the algorithm, significant changes are commonly detected for 5 out of 

the 11 BF participants: P2: 35; P10: 14; P4: 13; P8: 13; P7: 12 (see Table 3). Virtual 

classifier and sw-PCAR detect the highest number of changes (51 and 42 changes each). 

The distribution of detected changes by sw-PCAR is highly influenced by time interval 

length (sw-PCAR: 3.23 ± 2.42 number of changes detected compared to VC: 3.92 ± 1.44). 

sw-PCAR is not sensitive for small time intervals (tmins = 1 min) or large time intervals 

(tmins = {45, 50, 55, 60 min}), and the number of changes detected decreases as time interval 

length increases. Virtual classifier does not appear to be as heavily influenced by the time 

interval length. The texture-based approach is the least sensitive algorithm and did not detect 

any changes in the BF data.

Performing change analysis and investigating the detected changes yields insights for 

several of the participants. P2 rated herself as completely meeting her exercise goal of 

walking more; however, the Fitbit data tells a different story. Several features in Table 4 

show decreased PA for P2: average number of bouts (pre: 81.00, post: 15.83), daily steps 

(pre: 4279.50, post: 1161.44 steps), and percentage of time sedentary (pre: 86.30%, post: 

97.44%). Additionally, P2’s decision tree (see Fig. 7a) provides evidence that she rested 

more during post-intervention testing. In summary, the features suggest the changes detected 

by the algorithms are actually changes in the opposite direction of her goal. Contrary to P2, 

P10 exhibited a significant change (as detected consistently by VC) in the direction toward 

her goal of walking more. Inspection of P10’s features shows an increase in bout minutes 

and average steps per day. Average daily steps increased from 1136.51 steps pre-intervention 

to 1210.85 steps post-intervention testing, a 6.54% increase. The remaining participants 

with significant changes (P4, P7, and P8) demonstrated a decrease in average daily steps 

taken from pre to post intervention. It should be noted that during the week of post-test 

data collection the weather conditions were adverse and this may have partially contributed 

to the decrease observed in average daily steps. Research has shown PA levels can be 
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influenced by adverse weather conditions [27]. It is also worth noting the participants 

exhibited improvements in other PA features. For example, relative amplitude has been 

reported to decrease with worsening health [28], thus P7 and P10’s increased relative 

amplitude post-intervention is healthy (see Fig. 7b and c). Also, P9 was not planning on 

increasing exercise; however, P9 increased his daily steps post-intervention by 15.18%.

One of the limitations of this study includes having only one week of pre-intervention Fitbit 

data for BF participants. With at least two weeks of pre-intervention data, change scores 

can be computed between week one and two of pre-intervention data to provide an estimate 

of inter-week variability. With a quantification of inter-week variability, we can determine 

if the measured change between pre and post-intervention weeks is due to the intervention 

or natural variability. An additional limitation includes not having a full 7 days of BF data 

during pre and post-intervention weeks. Finally, more sophisticated methods to fill missing 

data could be utilized with fitness trackers that include heart rate monitors, due to more 

reliable detection of sensor donned/doffed. Consequently, future work includes performing 

change analysis on real-world datasets from different fitness trackers, multidimensional data 

(e.g. heart rate, elevation, etc.), labeled activity data, and longer windows of time. With time 

series data longer than two years, several additional analyses could be performed including: 

daily/weekly/monthly/yearly period analysis and slicing along different dimensions (e.g. 

Mondays, weekends, holidays, or activities if labeled information is available).

6. Conclusions

We address the problem of unsupervised physical activity change detection and analysis 

with our proposed Physical Activity Change Detection approach. PACD is a framework we 

designed to detect and analyze changes in physical activity data. We compare the abilities 

of three change detection algorithms from the literature and one proposed algorithm, 

sw-PCAR, to capture different types of changes in synthetic and real-world datasets. 

Results indicate the approaches detect several changes in both datasets; particularly for 

physical activity profiles exhibiting large changes between windows instead of incremental 

day-to-day changes. Contextual features such as average number of daily steps, minutes 

per bout, and sedentary percent provide an explanation of the changes that are detected. 

The algorithms and analysis methods are useful data mining techniques for unsupervised, 

window-based change detection. Future work involves quantifying the change in accuracy 

(ability to find true positives and not false positives in synthetic data) as parameters such 

as time window length is incremented or decremented. Additional future work includes 

implementing our PACD method in an online, smartphone application to track users’ 

physical activity and motivate progress toward their health goals.
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Fig. 1. 
Pairwise sliding window sw-PCAR change scores.
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Fig. 2. 
Hybrid-synthetic (HS) step density map for HS1.
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Fig. 3. 
Hybrid-synthetic (HS) step density map for HS2.
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Fig. 4. 
Hybrid-synthetic (HS) step density map for HS3.
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Fig. 5. 
Hybrid-synthetic (HS) step density map for HS4.
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Fig. 6. 
Decision trees for Hybrid-synthetic (HS) profiles with significant virtual classifier change 

scores for tmins = 5 min.
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Fig. 7. 
Decision trees for B-Fit (BF) participants with significant virtual classifier change scores for 

tmins = 5 min.
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Table 4

Hybrid-synthetic (HS) feature results (mean ± standard deviation) with tmins = 1 min. First and second window 

values are separated by a comma.

ID Number of
bouts

Bout minutes Daily steps Sedentary
%

HS0 70.33, 70.00 5.10 ± 9.91, 5.13 ± 9.92 20601.65, 21274.32 75.65, 75.56

HS1 34.50, 14.17 19.39 ± 23.93, 46.82 ± 56.78 36409.49, 72769.11 64.57, 54.59

HS2 71.50, 62.50 5.07 ± 9.83, 7.63 ± 11.13 20755.53, 30037.48 75.62, 67.44

HS3 54.83, 102.83 18.71 ± 51.74, 6.49 ± 14.49 14395.85, 14746.43 45.22, 63.72

HS4 53.50, 81.33 8.14 ± 12.61, 4.56 ± 8.48 22048.02, 17327.00 70.66, 77.86
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Table 5

Health intervention study significant change detection as a function of time interval size tmins. Results are in the 

sparse form count: {IDs}: Boolean (significant change: 0 false, 1 true).

tmins RulSIF Texture-
based

sw-PCAR Virtual classifier Total

1 1:P2:1 0 10:P10:0 5:P2,7,10,11:1 16

5 2:P2,7:1 0 5:P1,2,3,4,8:1 6:P2,6,7,8,10,11:1 13

10 1:P2:1 0 4:P1,2,4,8:1 6:P2,3,6,7,8,10:1 11

15 1:P2:1 0 4:P1,2,4,8:1 4:P2,7,10,11:1 9

20 2:P2,7:1 0 3:P2,4,8:1 4:P2,7,10,11:1 9

25 1:P2:1 0 3:P2,4,8:1 2:P7,10:1 6

30 2:P2,8:1 0 3:P2,4,8:1 2:P6,10:1 7

35 3:P2,4,8:1 0 3:P2,4,8:1 5:P2,6,7,10,11:1 11

40 1:P2:1 0 3:P2,4,8:1 3:P2,7,10:1 7

45 4:P2,3,4,6 0 1:P2:1 2:P2,10:1 7

50 1:P2:1 0 1:P2:1 5:P2,6,7,9,10:1 7

55 1:P10:1 0 1:P2:1 3:P2,4,10:1 5

60 2:P4,9:1 0 1:P2:1 4:P2,6,10,11 7

Total 22 0 42 51 115
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