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Abstract

Source analysis of magnetoencephalography (MEG) data requires the computation of

the magnetic fields induced by current sources in the brain. This so-called MEG for-

ward problem includes an accurate estimation of the volume conduction effects in

the human head. Here, we introduce the Cut finite element method (CutFEM) for the

MEG forward problem. CutFEM's meshing process imposes fewer restrictions on tis-

sue anatomy than tetrahedral meshes while being able to mesh curved geometries

contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM

with a boundary element method (BEM) that distinguishes three tissue compartments

and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory

evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF compo-

nents (M20) are reconstructed using both an unregularized and a regularized inver-

sion approach. Changing the forward model resulted in reconstruction differences of

about 1 centimeter in location and considerable differences in orientation. The tested

6-compartment FEM approaches significantly increase the goodness of fit to the

measured data compared with the 3-compartment BEM. They also demonstrate

higher quasi-radial contributions for sources below the gyral crowns. Furthermore,

CutFEM improves source separability compared with both other approaches. We

conclude that head models with 6 compartments rather than 3 and the new CutFEM
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approach are valuable additions to MEG source reconstruction, in particular for

sources that are predominantly radial.

K E YWORD S

finite element method (FEM), MEG forward problem, quasi-radial sources, realistic head
modeling, somatosensory evoked fields, unfitted FEM, volume conductor modeling

1 | INTRODUCTION

A central step in the localization of neural sources using magnetoen-

cephalography (MEG) is solving the forward problem, where the mag-

netic field for a given source in the brain is simulated using the Biot-

Savart law. In doing so, one has to set up a model that captures the

volume conduction properties of the human head. That model's setup

can differ in several ways.

First, the magnetic field is influenced by the electric conductivity

of the different tissues of the head. This implies the decision about

the complexity of the model: while more compartments yield more

realistic models, the accurate modeling of an increasing number of tis-

sues is limited by the data resolution and requires methodological

comprehension of the user. Less detailed models distinguish only

between a small set of tissues, often the three compartments skin,

skull, and brain, and some even assume them to be spherical

(Eaton, 1992). More complex ones segment individual anatomical data

from magnetic resonance imaging (MRI) into three or more compart-

ments (van den Broek et al., 1998). Modern toolboxes distinguish up

to 15 or more tissues (Puonti et al., 2020) given sufficient MRI quality.

Second, the distribution of the magnetic field outside the head

induced by an electric current source in the brain can be computed

using Biot-Savart's law which splits the magnetic field into a directly

computable component and one related to the electric potential

induced by the source. The electric potential can then be computed as

the solution of a partial differential equation (PDE) that is solved using

a numerical method. For spherical models, analytic formulas

(Sarvas, 1987) exist. In 3-layer models that consist of skin, skull and

brain, the boundary element method (BEM) (Gramfort et al., 2010;

Makarov et al., 2020; Mosher et al., 1999; Stenroos et al., 2014) is

widely used to solve the PDE, whereas for models with a larger num-

ber of tissues, the BEM fast multipole method (Makarov et al., 2020),

the finite difference method (FDM) (Cuartas Morales et al., 2019), and

finite element method (FEM) (Medani et al., 2015; Vallaghé &

Papadopoulo, 2010) are typical choices. The latter two approaches

have the advantage that tissue anisotropy such as white matter fiber

bundles could be modeled (Beltrachini, 2018; Hallez et al., 2005; He

et al., 2020; Nüßing et al., 2016; Schimpf et al., 2002; van Uitert

et al., 2004; Vermaas et al., 2020; Wolters et al., 2007).

This article describes the implementation of a new FEM-based

MEG forward modeling approach, the Cut finite element method

(CutFEM) (Burman, 2010; Burman et al., 2015; Burman &

Hansbo, 2012). CutFEM was previously introduced to electroenceph-

alography (EEG) source analysis (Erdbrügger et al., 2023) where it was

validated in multi-layer sphere scenarios and evaluated in a somato-

sensory evoked potential (SEP) study. Here, for the first time, we will

describe CutFEM as a method to solve the MEG forward problem.

CutFEM is intended to simplify the way anatomical information from

MR imaging can be included in the numerical models, without modify-

ing the anatomical input. CutFEM can represent arbitrary geometric

shapes and thin or vanishing tissues such as the cerebrospinal fluid

(CSF) in occipital areas. The focus lies in creating a computational

domain as close to the segmentation result as possible, whichever

shape that segmentation input takes.

After the presentation of the CutFEM methodology for MEG, we

evaluate the new methodology in a group study on somatosensory

evoked fields (SEF). The SEF data stems from electric wrist stimula-

tion, yielding a clear and focal response in Brodmann area 3B in the

postcentral cortex, the so-called M20 component (Nakamura

et al., 1998). Somatosensory evoked responses are analyzed for exam-

ple for intraoperative neurophysiological monitoring (Sarnthein

et al., 2022), diagnostic purposes (Cruccu et al., 2008), as well as skull

conductivity calibration (Baysal & Haueisen, 2004). The well-described

neurophysiological features of the M20 component, its high signal-

to-noise ratio (SNR), and the insensitivity of MEG to additional contri-

butions of deep thalamic sources allows the use of a simple MEG

dipole scan inverse approach (Fuchs et al., 1998) that identifies a sin-

gle dipole source, that is, a location, orientation, and strength, in the

brain as the best-fitting source. The location and orientation are also

relevant for applications such as transcranial electric or magnetic stim-

ulation. Personalized stimulation montages can be created that opti-

mize both the intensity in the target region as well as the orientation

of the applied electric field (Antonakakis et al., 2024; Dmochowski

et al., 2011; Khan et al., 2022).

The MEG has a strong sensitivity bias towards tangential sources,

and is less sensitive to sources that point radially outward. Note that

the word “radial” is only well-defined in spherical head models. When

used in realistic scenarios, we refer to “quasi-radial” as the vector

pointing from the source location in the gray matter towards the inner

skull surface. If the underlying volume conductor is spherical, such

radial sources do not produce any magnetic field outside of the scalp.

Spherically symmetric head models are thus completely blind to radial

sources (Sarvas, 1987). However, in non-spherical volume conductors,

the signal strength depending on the source orientation can be calcu-

lated to estimate the EEG/MEG sensitivity to different cortical regions

(Ahlfors et al., 2010; Piastra et al., 2021; Vorwerk et al., 2014).

In the methods section, we introduce CutFEM for the MEG for-

ward problem. We then compute lead field matrices based on
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6-compartment CutFEM (6C-CutFEM) as well as a 3-layer BEM (3C-

BEM) (Gramfort et al., 2010) and a 6-compartment hexahedral FEM

method (6C-HexFEM) (Wolters et al., 2007) for comparison. We

quantify the impact of the forward modeling method on the loca-

tion, orientation, and strength of reconstructed SEF sources. Fur-

thermore, we investigate how well the reconstructions match the

measured data by assessing how the amount of unexplained data,

measured as residual variance, changes when using the different

forward models. We also measure the source separability by quanti-

fying the rise in residual variance with increasing distance from the

optimal dipole fit. In other words, we investigate if two spatially

proximate source candidates for our localization can be better dis-

tinguished with CutFEM. We hypothesize that more complex ana-

tomical models lead to a better separability.

Finally, following Goldenholz et al. (2009) and Piastra et al.

(2021), we compute SNR-maps to investigate whether a change in the

forward model leads to a different sensitivity profile for quasi-radial

sources. We assume that since the 6-compartment models deviate

more strongly from sphere models they also feature higher quasi-

radial contributions.

We conclude with the main contributions of 6C-CutFEM model-

ing for the MEG forward problem.

2 | METHODS

2.1 | CutFEM for the MEG forward problem

Magnetometers measure the magnetic flux

ð
S
B �ndS, ð1Þ

the integral of the magnetic Field B through a sensor surface S. When

performing numerical integration to approximate this integral we need

the magnetic field B xið Þ at one or several quadrature points xi. Follow-

ing Biot-Savart, the electric current density j in the head volume con-

ductor Ω creates a magnetic field

B xð Þ¼ μ0
4π

ð
Ω
j yð Þ� x�y

x�yk k3
dy ð2Þ

at an MEG sensor position x outside Ω (Sarvas, 1987). μ0 is the mag-

netic permeability of the vacuum. Separating the current j¼ jp�σru

into a primary current jp from neural activity and the secondary vol-

ume currents throughout the volume conductor, σru, allows us to

split the Equation (2) into the calculation of a primary and a secondary

magnetic field. Here, u is the electric potential induced by jp, and σ is

the electric conductivity of the different head tissues. The primary

field can be calculated analytically while the secondary, stated as

ð
Ω
σ yð Þru yð Þ� x�y

x�yk k3
dy, ð3Þ

is calculated numerically from the solution to the EEG forward prob-

lem which yields u (Sarvas, 1987). As CutFEM has already been

introduced for EEG, where it was validated in multi-layer sphere sce-

narios and evaluated in a somatosensory evoked potential (SEP) study

(Erdbrügger et al., 2023), we make use of this implementation.

In FEM, u is approximated using so-called trial functions. These

functions are defined on a computational domain, the mesh. It con-

sists of a set of polygons, usually tetrahedra or hexahedra, that must

resemble the segmentation from the MRI as closely as possible. Both

options have certain advantages and limitations. While hexahedral

meshes are easy to create from voxel-based MRIs, they cannot prop-

erly represent curved geometries (Wolters et al., 2007). Tetrahedra

are well suited to model smooth complex geometries but they require

surface triangulations that may impose restrictions such as nested

compartments, meaning that for example the gray matter must be sur-

rounded by CSF and may not be in contact with the skull (Nielsen

et al., 2018; Windhoff et al., 2013). The goal of CutFEM is to integrate

the strengths of tetrahedral and hexahedral mesh generation to accu-

rately resemble the anatomical data. For CutFEM, the segmentation

result is transformed to level set functions, one function per tissue

type. For each point in space, these functions define whether it lies

in- or outside the respective tissue with 0-values defining the bound-

ary. Contrary to a hexahedral or tetrahedral meshing process, CutFEM

operates on a background mesh that does not conform to the tissue

boundaries. On this background mesh, we define sets of trial func-

tions, also one set per tissue. The functions in each set are then

restricted to the inside of their respective level set function, meaning

that they are cut off at the boundary. To integrate the trial functions

inside the tissue we use a topology-preserving marching cubes algo-

rithm (TPMC) (Engwer & Nüßing, 2017). The discontinuities that arise

from the cut-offs are alleviated by introducing penalty terms based on

Nitsche coupling (Nitsche, 1971). The Nitsche penalty is defined on

F IGURE 1 Schematic overview of the Cut finite element method.
Left: Fundamental mesh and level sets for two spherical
compartments. Center: Submeshes and trial functions for each
compartment. Black dots represent trial functions of the respective
submeshes. Right: Cut mesh representation created by TPMC. The
green and orange colors represent the areas that the trial functions
from the previous step are restricted to.
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the boundary Γ that separates the compartments. Cuts over small vol-

umes can lead to a deterioration of the condition number, leading to

high computation times. This is resolved through the use of a ghost-

penalty term (Burman, 2010) which acts on the internal skeleton bΓ of

the fundamental mesh. See Figure 1 for a schematic overview.

In summary, the weak form of the MEG forward problem using

CutFEM is stated as finding the electric potential uh �Vh such that

a uh ,vhð ÞþaNn=s uh,vhð ÞþaG uh,vhð Þ¼ l vhð Þ 8vh �Vh, ð4Þ

with

a uh,vhð Þ¼
X
i

ð
Ωi

σruihrvihdx,

l vhð Þ¼
X
i

ð
Ωi

r� jpvihdx,

aNn=s uh,vhð Þ≔ �
ð
Γ
σruhf g〚vh〛�

ð
Γ
σrvhf g〚uh〛dS

þγνk

ð
Γ

bσbh〚uh〛〚vh〛dS

and

aG uh,vhð Þ¼ γG

ð
bΓbh〚σruh〛〚rvh〛dS: ð5Þ

The primary current jp is typically modeled as a point dipole

(Sarvas, 1987). Vh is the direct sum of the vector spaces of each com-

partment,〚 �〛measures the jump at an interface, νk ,bσ and bh are scal-

ing parameters depending on the polynomial degree of the finite

element functions, the conductivity ratio at an interface and the size

of the TPMC snippets respectively (Di Pietro & Ern, 2012; Erdbrügger

et al., 2023; Nüßing et al., 2016). The free penalty parameters γ¼100,

γG ¼0:05 have to be chosen large enough to ensure coercivity and a

fast computation time but small enough not to distort the numerical

accuracy. Their size was determined based on a sphere model analy-

sis. From the uh that has been computed in Equation (4), we then pro-

ceed to evaluate the secondary magnetic field from (3). For more

information on CutFEM in general, see Burman et al. (2015) and

Burman and Hansbo (2012). For a more thorough explanation in the

context of bioelectromagnetism, see Erdbruegger et al. (2023). In

practice, the potential uh has to be calculated for several thousand of

sources, making the process computationally expensive. Instead we

make use of a transfer matrix approach (Wolters et al., 2004) that

reduces the number of required solutions to the forward problem

from one per source point to one per sensor.

2.2 | Data acquisition

2.2.1 | MEG data

Nineteen participants (aged 19–49, mean age 26.15 � 7.76 SD,

8 male, 11 female) were included in this study. They gave written

informed consent according to the declaration of Helsinki prior to the

experiment and the study was approved by the ethics committees of

the Universities of Münster and Lübeck (#2015-263-f-S and

#20-459). Magnetoencephalography (MEG; 275 axial gradiometers;

VSM MedTech Ltd., Vancouver, Canada; 600Hz sampling rate) data

was recorded during median nerve stimulation (1932 monophasic

electrical square-wave pulses of length 0.5ms; the inter-stimulus

interval was uniformly jittered between 350 and 450ms). Preproces-

sing the MEG data included a band-pass filter between 20 to 250Hz

and a 50Hz notch filter (considering harmonics) to account for the

power line artifact (Buchner et al., 1994). Data was epoched between

�50 and 150ms relative to the onset of electrical pulses and bad trials

were removed semi-automatically. After averaging the data across tri-

als, the individual component 20ms post-stimulus, that is, the so-

called M20 component (Nakamura et al., 1998), was determined

(Figure 2). The M20 response is generated in the primary somatosen-

sory cortex (Allison et al., 1991).

2.2.2 | MRI data

Using a 3 T Siemens Magnetom Skyra scanner (Siemens, Erlangen,

Germany; 64-channel head coil), structural T1 and T2 images were

acquired (1 � 1 � 1 mm resolution; 192 � 256 � 256 mm FoV; T1:

3D MP-RAGE sequence, TR = 2300 ms, TE = 3.6 ms, TI = 1100 ms,

FA = 8�; T2: spin echo (SE) pulse sequence, TR = 3200 ms;

TE = 408 ms, FA = 120�).

2.3 | Segmentation and head modeling

2.3.1 | 6-Compartment HexFEM

We used T1- and T2-weighted MRI data for the generation of indi-

vidual 6-compartment head models that include scalp, skull com-

pacta, skull spongiosa, cerebrospinal fluid (CSF), gray matter, and

white matter tissues. After registering the T2 onto the T1 using FSL

FLIRT (Jenkinson et al., 2002), tissue probability maps (TPM) were

segmented and thresholded using CAT12 (Gaser et al., 2022). The

T1 image was used for the segmentation of gray matter, white mat-

ter, and scalp, whereas the CSF and skull compacta were segmented

from the T2. The spongiosa compartment was created by Otsu

thresholding (Otsu, 1979) of the 2 mm eroded skull mask. We used

custom MATLAB scripts including Boolean and morphological opera-

tions (Antonakakis et al., 2020) to remove possible overlap of brain

tissues and skull/CSF and to fill unrealistic holes within the masks.

The model was cut using an axial plane 4 cm below the skull, fol-

lowing the recommendations of Lanfer et al. (2012). Geometry-

adapted hexahedral meshes with a node shift of 0.33 were created

(Wolters et al., 2007) from the segmentation masks. Lead field

matrices and results generated by this process will be referred to as

6C-HexFEM from now on.
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2.3.2 | 6-Compartment CutFEM

For 6C-CutFEM, we need to transform the segmentation results

into level-set functions. This transformation depends on the seg-

mentation input. Tissue probability maps range between 0 and

1, we can thus simply subtract a threshold between 0 and 1 and

multiply the result by �1, yielding a level set between �1 and

1 with negative values on the inside and the subtracted threshold

marking the boundary. Binary segmentations are transformed into

signed distance functions using Matlab's bwdist function, each point

then states the distance to the boundary of the segmentation. Sur-

face triangulations can also directly be transformed into signed dis-

tance functions, however, we did not create any surface

triangulations for this study. For the models in this study, gray and

white matter level sets are created based on the tissue probability

maps from the T1 image as the contrast for these tissues is best in

the T1. TPMs are not used for skull or skin level sets. Skull TPMs

often have holes near thin areas such as temples while the ones for

the skin suffer strongly from noise. Rather, the binary maps created

for the hexahedral models are transformed into level sets. Finally,

the CSF level set is defined to fill any remaining holes within the

union of skull compacta, spongiosa, gray, and white matter.

All level sets are then smoothed using diffusion anisotropy filter-

ing based on Perona & Malik (1990) as implemented into the Matlab

function imdiffusefilt.

2.3.3 | 3-Compartment BEM

The three 3C-BEM surfaces are based on the binary segmentations

used for the hexahedral models as well. The brain is defined as the

union of gray and white matter plus CSF. The compacta and spon-

giosa are defined as skull and the skin represents the outermost layer.

Any holes in the skull were closed to ensure nested compartments

and smooth surfaces are extracted using the fieldtrip (Oostenveld

et al., 2011) function ft_prepare_mesh.

2.4 | Source spaces

The different models impose different restrictions on the feasibility of

source positions. For the 3C-BEM model, any point within CSF, gray

or white matter can be considered. However, too close proximity to

the skull surface may lead to numerical inaccuracies (Gramfort

et al., 2010). In a six compartment model, the sources are in the gray

matter compartment. To maintain comparability, we used a regular

grid with 2 mm spacing. Each grid node outside the gray matter was

removed and the remaining nodes moved such that they conform to

the Venant condition (see section 2.5). The source space is created

individually for each subject and then used for all 3 methods. They

have an average of 33,940 � 14,088 SD nodes.

2.5 | Lead field matrix generation

The finite element lead field matrices are created using the DUNEuro

toolbox (https://www.medizin.uni-muenster.de/duneuro [Schrader

et al., 2021]) where we now also implemented the MEG CutFEM

approach. Based on the principle of St. Venant, the divergence of the

source term jp is approximated by a set of monopoles (Buchner

et al., 1997; Medani et al., 2015; Nüßing, 2018; Vorwerk et al., 2019).

For fitted meshes, these monopoles are placed on mesh vertices. The

closest vertex thus has to be enclosed by gray matter to ensure

numerical stability. For CutFEM, the monopole locations are based on

a second order Gauss-Legendre quadrature rule (Johansson &

Mezzarobba, 2018) within cut cells that contain gray matter. We use

the mixed moments venant (Nüßing, 2018). The 3C-BEM lead field

matrices are created using the fieldtrip integration of OpenMEEG

(Gramfort et al., 2010).

Computation times depend strongly on the chosen method, rang-

ing from less than 30 min for 3C-BEM, about 90 min for 6C-HexFEM

to currently still 9–12 h for CutFEM. CutFEMs computation times are

expected to drop with the integration of better preconditioning and

smoothing. For EEG, it is already on par with the 6C-HexFEM

F IGURE 2 Left: Butterfly Plot and topography of one subject's preprocessed and averaged somatosensory evoked field (SEF) data. Right:
Averaged M20 reconstructions of 6C-CutFEM (red), 6C-HexFEM (blue) and 3C-BEM (yellow) mapped on MNI white matter surface. Lighter
shades indicate TSVD-regularized reconstructions. Ellipsoid radii correspond to one standard deviation in each spatial direction and are based on
the unregularized reconstructions.
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(Erdbrügger et al., 2023). DUNEuro is integrated into brainstorm

(Medani et al., 2023) and fieldtrip (Schrader et al., 2021) and CutFEM

will be part of future updates into those pipelines.

2.6 | Source reconstruction

In its simplest form, the MEG dipole scan is the least squares solu-

tion of

min
x,η

y�L xð Þηk k22 ð6Þ

where y�ℝs is the measured data of the M20 component at s differ-

ent sensors, L xð Þ�ℝs�3 is the lead field matrix at position x�Ω and

η�ℝ3 characterizes the direction and magnitude of the dipolar

source. The MEG has a strong sensitivity bias towards quasi-

tangential sources (Ahlfors et al., 2010). This is problematic as noise in

the data could be amplified by the ill-conditioned MEG lead field

matrix into high quasi-radial source orientation components in our

reconstructions.

To alleviate this issue, a common approach is to truncate the lead

field matrix. Quasi-radial and quasi-tangential source orientations can

be identified by singular value decomposition (SVD). Let L¼UΣVt be a

SVD of the lead field matrix at an arbitrary source location. Σ is then

a diagonal matrix with 3 non-zero entries containing the singular

values of L, two large ones for the quasi-tangential directions, and a

small one for the quasi-radial. Setting the small one to zero cuts out

any quasi-radial contribution. The truncation is performed for each

point in the source space. This prevents a noise-related blow-up of η

but also cuts out any possible quasi-radial contribution that originates

from the actual neural source. In software toolboxes such as fieldtrip

(Oostenveld et al., 2011), the default is to eliminate the smallest singu-

lar value. Alternatively, the truncation can be based on both the size

of the smallest singular value and the noise level of the data (Wolters

et al., 1999). If the measurement noise exceeds the signal strength of

a quasi-radial source at point x, the lead field matrix truncation is per-

formed. Following Goldenholz et al. (2009) and Piastra et al., 2021 we

define the signal-to-noise-ratio (SNR) at a point x in the source

space as

SNR xð Þ¼10log10
1
N

XN
s¼1

aLxνxð Þ2s
σ2s

: ð7Þ

N is the number of MEG sensors, a the amplitude of the quasi-radial

source, Lx the Nx3 lead field matrix at position x, νx the singular vector

corresponding to the smallest singular value and σs the noise level at

sensor s. Lx can be based on either 3C-BEM, 6C-CutFEM or 6C-Hex-

FEM, leading to three different SNR-values for each position in the

source space. The noise amplitude σs is calculated for each of the N

channels separately based on the standard deviation of the pre-

stimulus interval, i.e. the period from �50 to 0ms in the left panel

Figure 2. In Antonakakis et al. (2020), we find 21 nAm source strength

for the M20 source. If we expect M20 sources to be about 10� out of

the quasi-tangential plane, then we could expect a quasi-radial source

strength a of about 4 nAm (cos 90�10ð Þ�21 nAm≈4 nAm), which we

will use here. This is considerably lower than the 10 nAm used in

Goldenholz et al. (2009) and Piastra et al., 2021. The 10nAm were for

realistic source orientations normal to the cortical surface. Our intent

here is to model only the quasi-radial contributions of a source that

consists of both quasi-radial and quasi-tangential parts. Due to the

logarithmic scaling of the SNR, a value larger than 3 implies that

the average signal power across all channels is at least twice the

power of the noise. We therefore choose to truncate the smallest sin-

gular value at all positions where the SNR is smaller than 3.

Note that the truncation we perform here is heavily adapted to

the SEF-data we analyze. It may require strong modifications in the

definition of noise level and signal strength for other applications.

2.7 | Location and orientation differences

We perform two kinds of dipole scans. The first will be referred to

as unregularized and is based on the full lead field matrices, without

considering the SNR and thus without any truncation. The second,

where Lx is truncated if the SNR is smaller than 3 will be referred to

as regularized by truncated singular value decomposition

(TSVD-regularized). We examine differences in location, orientation,

and amplitude of the reconstructed dipole. Boxplots are shown

depicting the pairwise Euclidean distances and orientation differences

between forward models. This is done for each dipole scan approach

separately.

Furthermore, the fieldtrip function ft_warp_apply is used to nor-

malize each subject's MRI to MNI (Montreal Neurological institute)

(Collins et al., 1994) coordinates to visualize the reconstructed dipoles

using Paraview (https://www.paraview.org/). As the transformation is

non-linear, it is not immediately clear how to transform the orienta-

tions sensibly. For each orientation η0 at position x0 we opted to warp

both the points x0 and x0þεη0 with a small ε>0. The orientation in

MNI space is then the difference vector between the two transformed

points. For each forward model and dipole scan approach an averaged

position and orientation are calculated. Ellipsoids mark for each spatial

direction the standard deviation of the reconstructed dipoles across

the n=19 subjects from the study.

2.8 | Residual variance and source separability

The central measure for the dipole scan is the residual variance

rv xð Þ¼ y�L xð Þηxk k22= yk k22 that characterizes the proportion of data

that remains unexplained by a dipolar source at location x with opti-

mal orientation and strength ηx. First, we examine whether one of the

forward methods is better able to explain the measured data than

the others. To do so, we perform a repeated measures ANOVA in R

(R Core Team, 2013) using the rstatix toolbox. Therein, the main effect

of the factor forward method (6C-HexFEM, 6C-CutFEM, 3C-BEM) on

the residual variance is evaluated. In case of a significant main effect,

paired t-tests are calculated and corrected for multiple comparisons.
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Test values, Holm-corrected p-values (Holm, 1979) and effect size

estimates (Cohen's d) are reported.

Secondly, the source separability of the different lead field matri-

ces is examined. We think of the residual variance as a function over

the source space. That function may have an arbitrary shape but will

have one global minimum. The source separability now states how

clear this minimum is, meaning how quickly the residual variance

increases as we move away from the minimum. A steeper increase

means that the reconstructed sources can be better distinguished

from the sources surrounding them. For each subject, we first look at

the 6C-CutFEM MEG dipole scan results. We extract all possible

source locations that are within 20 mm distance. At each of these

points x, the ratio of the residual variance rv xð Þ=rv xCutð Þ is calculated

from the 6C-CutFEM lead field matrix. xCut refers to the 6C-CutFEM

solution to (6). This ratio indicates the source separability. The same

process is performed for the 6C-HexFEM and 3C-BEM lead field

matrices as well, yielding three sets of ratios and spatial distances

(30,702 total) to the optimal source. We perform an ANCOVA to ana-

lyze the main effect of forward method (6C-HexFEM, 6C-CutFEM,

3C-BEM), distance to the minimum, and their interaction on rv-ratio.

The rv-ratio is expected to increase with increasing distance. The R

function estimate_contrasts from the modelbased toolbox is used to

estimate pairwise contrasts (6C-CutFEM – 3C-BEM, 6C-CutFEM –

6C-HexFEM, 6C-HexFEM – 3C-BEM) at 4 bins of source distance

levels (5, 10, 15, 20mm) and Holm adjusted p-values are calculated at

each level while ggplot is used for visualization.

Note that source separability states, given one active source, how

confident we are in choosing one location over another in close vicin-

ity. It does not tell us how well we can distinguish two proximate

active sources.

2.9 | Sensitivity to quasi-radial sources

Finally, we investigate how the sensitivity to quasi-radial

sources depends on the forward model. We calculate the SNR defined

in section 2.6 for the entire source space of each subject for each of

the 3 forward modeling approaches. Similar to the source reconstruc-

tions before, each subject's source space is then normalized to MNI

space and interpolated on the same MNI cortical surface where the

average SNR across all 19 subjects is calculated and visualized. The

cortical sheet and its inflated representation are taken from the Free-

surfer surfrend toolbox (Fischl, 2012).

3 | RESULTS

First, we look at the dipole source averages in MNI space depicted in

Figure 2. On average, all three methods reconstructed the M20

source well within Brodmann area 3B. The descriptive differences in

location and orientation estimates are small across the three methods.

On average, 6C-CutFEM and 6C-HexFEM localize to nearly the same

position and orientation, whereas 3C-BEM localizes the M20 source

about 3 mm more lateral. All methods except the unregularized 3C-

BEM feature a similar average orientation, pointing anterior from the

somatosensory to the motor cortex.

Single-subject differences between the forward models in orien-

tation and location are found in Figure 3. The differences between

the 6-compartment FEM methods are smaller than the differences

between any FEM method and 3C-BEM. Truncation has a limited

effect on localization differences but strongly affects the angle differ-

ences in 3C-BEM, corresponding to the averaged reconstructions in

MNI space. 6C-CutFEM and 6C-HexFEM have a median distance of

0 mm but differ in outlier cases by up to 10 mm. Median differences

between 3C-BEM and 6C-CutFEM are at 3.5 mm and can reach up to

13 mm. 3-compartment versus 6-compartment angles without TSVD-

regularization exceed 45� on average for both 6C-CutFEM – 3C-BEM

and 6C-HexFEM – 3C-BEM, whereas the angles between 6C-CutFEM

and 6C-HexFEM only average 16�. TSVD-regularization reduces these

angles to an average of 8.1, 13.9, and 13.5� for 6C-CutFEM –

6C-HexFEM, 6C-CutFEM – 3C-BEM, and 6C-HexFEM – 3C-BEM

respectively. In outlier cases, the angle between 6C-CutFEM and 6C-

HexFEM can exceed 23� even when TSVD-regularization is per-

formed. The average SNR of the quasi-radial contribution from for-

mula (7) at the reconstructed location was 4.53 for 6C-HexFEM, 5.12

for 6C-CutFEM, and 1.32 for 3C-BEM. Hence, the lead field matrix at

the reconstructed location was truncated in only 4 cases for 6C-Hex-

FEM, 3 for 6C-CutFEM, whereas the 3C-BEM lead field matrix was

truncated in 12 of the 19 cases.

We further investigated the differences in residual variance of

the dipole scans in Figure 3. For the unregularized dipole scans, the

average rvs for 6C-HexFEM and 6C-CutFEM are identical at 3.48%

(SD: 2.00% and 3.48% � 2.03%), whereas the average for 3C-BEM is

4.17% � 2.05%, a relative increase of over 19%. The repeated mea-

sures ANOVA revealed a significant main effect of forward method (F

(1.05, 18.84)=15.102, p= .027, η2 =0.027). Post-hoc comparisons

show no significant differences between 6C-CutFEM and

6C-HexFEM. Comparing 6C-CutFEM to 3C-BEM leads to significant

differences with a p-value of .003 and a large effect size of 0.885

measured by Cohen's d. Comparing 6C-HexFEM and 3C-BEM also

yielded a p-value of .003 and an effect size of .913.

Regarding source amplitudes, we found that unregularized dipole

scans lead to an average source amplitude of 26.1, 24.8 and 25.9 nAm

for 6C-HexFEM, 6C-CutFEM and 3C-BEM respectively.

TSVD-regularization leads to the strongest amplitude reductions for

3C-BEM, on average 50%, followed by 6C-HexFEM with 32% and

6C-CutFEM with 20%.

We measure source separability as the increase in residual vari-

ance of the unregularized dipole scan with increasing distance to the

reconstruction. The ANCOVA analysis showed two significant main

and an interaction effect (Forward Model: F(2, 30696) = 132.591,

p < .0001, η2 =0.009; Distance to Minimum: F(2, 30696)=6141.538,

p< .0001, η2 =0.167; Interaction: F(2, 30696)=7.742, p=4.35e-4, η2

=0.0005). Figure 4 shows that 6C-CutFEM has a steeper rising rv

curve than 6C-HexFEM which increases more steeply than 3C-BEM.

Table 1 shows the differences and their statistical significance at
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5, 10, 15, and 20mm distance to the optimum. At 15mm, a recon-

struction using 6C-CutFEM has on average a 1.8 times higher increase

in residual variance than when using 3C-BEM and a 1.21 times higher

increase compared with 6C-HexFEM. Notably, using 6C-CutFEM

yields significant differences compared with 3C-BEM already at a

5mm distance, where the difference between 6C-HexFEM and 3C-

BEM is not yet significant.

A minimization of the MEG dipole scan using 6C-CutFEM thus

has the clearest minimum and therefore best source separability fol-

lowed by 6C-HexFEM and 3C-BEM.

Finally, we investigated the sensitivity to quasi-radially oriented

sources. In Figure 5, we see that for 6C-CutFEM the SNR increases as

we move further from the gyral crown and deeper into the sulcus.

This behavior is consistent over the cortex. For 3C-BEM, the differ-

ences between the gyral crown and sulci are also present but appear

more smeared. Additionally, the differences appear to be much more

dependent on where in the cortex the source lies, with high SNRs in

the frontal and occipital regions and low SNRs in centro-parietal areas.

This behavior is also shown by the difference map (Figure 5, lower

row), where we again see that 6C-CutFEM has lower SNRs on gyral

crowns and higher SNR in the cortical folds. The overall average SNR

for 6C-CutFEM is 3.51 dB, and the one for 3C-BEM is 2.29 dB. 6C-

HexFEM has an average SNR of 3.32 dB. The differences between

6C-CutFEM and 6C-HexFEM are small, but 6C-CutFEM features

slightly sharper transitions between gyral crown and sulci. For refer-

ence, the SNR of the M20 components is 19.54 � 3.2SD. In

Figure S1, we present maps of lead field matrix condition numbers,

that is, the ratios of largest to smallest singular value. Note that in

areas where Figure 5 shows increasing SNR with source depth, the

condition number decreases.

4 | DISCUSSION

In this work, we introduced CutFEM to MEG forward modeling and

compared it with two established forward modeling approaches, a

6-compartment geometry-adapted hexahedral FEM (6C-HexFEM)

and a 3-compartment boundary element method (3C-BEM). The data

for evaluating the new methodology and comparison with standard

methods was an n = 19 group study of somatosensory evoked fields

induced by electric wrist stimulation. We found that on average all

methods localize close to Brodmann area 3b, where the neural gener-

ators of the M20 component are located (Nakamura et al., 1998). This

F IGURE 3 Top row: Pairwise comparison of M20 dipole scan reconstruction location (mm) and orientation (�). In black is the difference
between 6C-HexFEM and 6C-CutFEM reconstructions, green is 6C-CutFEM versus 3C-BEM, and blue is 3C-BEM versus 6C-HexFEM. Bottom
row: Residual variance (%) and source amplitudes (nAm) of the M20 reconstruction using lead field matrices from different forward models.
Asterisk marks significant differences (statistical comparisons were calculated for residual variance in unregularized dipole scans only). 6C-
HexFEM in blue, 6C-CutFEM in red, and 3C-BEM in yellow. Outliers are depicted as circles, the horizontal bar inside the boxes state median
values. The x-axis is divided by the regularization schemes. Unregularized on the left and TSVD-regularization on the right.

F IGURE 4 Source Separability: Relative increase in residual
variance ratio (rv) with increasing distance (mm) to the minimal rv.
Pairwise contrasts of the three different forward models. Purple: 6C-
CutFEM rv-ratio minus 3C-BEM ratio. green: 6C-CutFEM – 6C-
HexFEM. yellow: 6C-HexFEM – 3C-BEM. Differences are stated in

percent.
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desirable outcome states that all three methods lead to roughly similar

results. We found that the differences between the two 6C-FEM

methods, in particular the orientations of the reconstructed dipoles,

are smaller than compared with 3-C-BEM, indicating that the differ-

ence between them is a 3-compartment versus 6-compartment

difference rather than a BEM versus FEM difference, corresponding

to the EEG results in Vorwerk et al. (2012), where 3C-BEM and 3C-

FEM models were examined. However, in individual cases, the differ-

ence between the two 6-compartment-based reconstructions can

reach up to 1 cm in location and 23� in orientation in both regularized

and unregularized scenarios, highlighting that the choice of the

numerical method and the differences in volume conductors between

6C-HexFEM and 6C-CutFEM may also play an important role in

source reconstruction. The angle and orientation differences between

the 3- and 6-compartment head models we found are in line with pre-

vious investigations in Antonakakis et al. (2019), who additionally

investigated the use of three different kinds of somatosensory stimu-

lation (pneumato-tactile, Braille-tactile and electric-wrist).

Furthermore, we have gained three main insights from our study.

First, using a lead field matrix from the 6-compartment methods sig-

nificantly reduced the amount of unexplained data by more than 19%,

as measured by the residual variance (Figure 3, lower left panel). Add-

ing more anatomical information to the forward model can thus

improve the fit to the measured data. Adding TSVD-regularization had

a limited effect on the observed residual variances, giving a first indi-

cation that the better fit may not be due to an overfitting to the noise

in the data. However, the residual variance depends on multiple fac-

tors, ranging from remaining inaccuracies in our forward model, a dis-

crete source space, electrode positioning, to biological and ambient

noise. These uncertainties limit the reliability of exact statements

about the expected value of the residual variance.

Second, we investigated the source separability, that is, how

steeply the residual variance increases when moving away from the

optimal dipole estimate. Here, 6C-CutFEM outperformed the hexahe-

dral FEM which in turn yielded a steeper curve than 3C-BEM as

shown in Figure 4 and Table 1. Sources localized by 6C-CutFEM are

thus more clearly distinguishable from neighboring sources than for

the other two methods, especially 3C-BEM, increasing source separa-

bility. The source separability estimates for our given source how

quickly the lead field matrix and consequently the measured MEG

data would change if the source were to move by a small distance. If

this estimate is too low, then the lead field matrices of all sources in a

certain region look more similar than they should in reality. The parts

of the measurement corresponding to this lack of distinction may not

be explainable by the lead field matrix. This would then lead to a

higher residual variance in a dipole scan, giving us a second indication

that the better fit to the measured data may not be due to overfitting

but rather stems from a more accurate representation of the underly-

ing neural source.

Finally, we compared each method's sensitivity with quasi-radial

sources by calculating a cortical signal-to-noise-ratio (SNR) map based

on the SNR definition from Goldenholz et al. (2009) and Piastra

et al., 2021. We found that 6C-CutFEM and 6C-HexFEM are insensi-

tive to quasi-radial sources on the gyral crowns but particularly sensi-

tive to sources deeper in the cortical folds. The primary neural

generators of EEG and MEG are pyramidal cells in the cortical layer

5, which are aligned normally to the cortical surface (Murakami &

Okada, 2006). High SNR values on the crowns would pose the ques-

tion of why signals from gyral crowns are not seen in actual MEG

measurements. Our results are thus in line with the commonly held

view that purely quasi-radial sources cannot be seen in the MEG.

However, our findings indicate that sources slightly below the gyral

crowns, where the cortical normal is neither purely quasi-radial nor

purely quasi-tangential, can contribute significantly to the MEG signal.

This adds to the result in Piastra et al. (2021), where SNR-maps were

calculated using the cortical normal rather than the smallest singular

TABLE 1 Source separability: Relative increase in residual variance (rv) ratio with increasing distance (mm) to the minimal source location rv.

Contrast Distance to source (mm) Difference p CI_low CI_high

6C-CutFEM – 3C-BEM 5 32.0 0.044 0.006 0.640

6C-CutFEM – 3C-BEM 10 56.1 <0.001 0.376 0.746

6C-CutFEM – 3C-BEM 15 80.2 <0.001 0.682 0.922

6C-CutFEM – 3C-BEM 20 104.3 <0.001 0.843 1.242

6C-CutFEM – 6C-HexFEM 5 6.4 0.627 �0.253 0.382

6C-CutFEM – 6C-HexFEM 10 13.7 0.079 �0.050 0.323

6C-CutFEM – 6C-HexFEM 15 20.9 <0.001 0.088 0.330

6C-CutFEM – 6C-HexFEM 20 28.1 <0.001 0.081 0.481

6C-HexFEM – 3C-BEM 5 25.6 0.106 �0.061 0.573

6C-HexFEM – 3C-BEM 10 42.4 <0.001 0.238 0.610

6C-HexFEM – 3C-BEM 15 59.3 <0.001 0.472 0.714

6C-HexFEM – 3C-BEM 20 76.1 <0.001 0.560 0.962

Note: Pairwise contrasts of the three different forward models. Columns from left to right: Contrast formula (reads Model1 ‘minus’ Model2), distance to

the source that minimizes the rv, Difference between the methods in %, p-value, and the 95% Confidence Interval for the difference in rv-ratio. Bold p-

values indicate significant (p< .05) differences.
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vector as source orientation. The authors found that using

6-compartment FEM models rather than 3-compartment models

reduces the areas of the cortex that the MEG is insensitive to, when

compared with the complementary EEG modality. In particular, areas

near to, but not on gyral crowns are affected. We now state that this

is not purely due to quasi-tangential contributions but also due to

higher quasi-radial influences. Compared with 6C-HexFEM, 6C-

CutFEM showed slightly smoother transitions in sensitivity when

moving from gyral crowns down to the sulci.

The noise levels described here stem from a very controlled sce-

nario with almost 2000 averaged trials per subject. While we have a

strong indication that we can analyze the small quasi-radial contribu-

tions to the MEG signal in this test scenario, further investigations will

have to show whether this generalizes to lower SNR scenarios. The

gradiometers used in this study were set up in a radial manner. Tan-

gential gradiometer positioning can be used to increase the sensitivity

of the MEG to quasi-radial sources (Haueisen et al., 2012).

The motivation behind CutFEM is to create a computational

domain as close to the segmentation result as possible. Creating the

level set functions in the manner described in the head modeling

section highlights the versatility regarding input segmentations. Tissue

probability maps, binary segmentations, surface triangulations, or any

F IGURE 5 Signal-to-noise
ratio (SNR) induced by quasi-
radial sources with 4 nAm
amplitude. Upper 3 rows: SNR
maps for 6C-HexFEM, 6C-
CutFEM, and 3C-BEM on MNI
normalized cortex and inflated
cortex. Bottom row: Difference
between 6C-CutFEM and 3C-

BEM SNR. Scaled from �10
to 10 dB.

10 of 14 ERDBRÜGGER ET AL.



combination thereof can be transformed into level sets. In particular,

it is possible to accurately model the thickness of CSF in areas where

it vanishes between the skull and brain. Rice et al. (2013) found that

the difference in CSF thickness between prone and supine subject

positioning in the MRI was up to 30%. EEG amplitudes differed by up

to 80%. However, the impact on MEG measurements is at this point

unclear.

In Beumer et al. (2022), a workflow to create personalized tran-

scranial direct current stimulation montages for epilepsy patients is

outlined. The stimulation target is based on epileptic spike data mea-

sured by EEG and a dipole-fit was used to determine the location and

orientation in the brain. The orientation of the reconstructed dipole is

important here as it determines the desired orientation of the electric

field applied by the stimulation electrodes (Antonakakis et al., 2024;

Dmochowski et al., 2011; Khan et al., 2022). The EEG has in theory

no sensitivity bias towards any source direction. In practice however,

superficial quasi-radial sources from the gyral crowns may produce

stronger signals. The forward simulated signals are also more strongly

affected by skull and scalp modeling (Antonakakis et al., 2020). The

decision which modality to chose for the definition of a stimulation

target can therefore not be generalized. Furthermore, Iwasaki et al.

(2005) and Knake et al. (2006) found that 18% and 13% of epileptic

patients showed interictal epileptiform activity in MEG but not in

EEG. For such patients an MEG-based target definition may have to

be performed, highlighting the importance of reliable orientation esti-

mation and the differences found in our investigations.

In Ahlfors et al. (2010), the average ratio of smallest to largest sin-

gular value, the inverse of the condition we describe in Figure S1, was

determined to be 0.06 for a 3C-BEM model, corresponding to the

across subject average of 0.0591 for 3C-BEM we found in this study.

The average 6C-CutFEM ratio is 21 percent higher at 0.072 and

6C-HexFEM is on average at 0.071. This implies that relative to the

dominant quasi-tangential orientation, the FEM approaches model

quasi-radial sources as slightly stronger.

Overall, our results agree with the commonly held view that the

MEG is primarily sensitive to quasi-tangential source orientations. As

only small areas of the cortex generate purely quasi-radial sources,

source depth remains the most relevant factor determining measur-

ability. However, realistic models and their higher sensitivity to

sources with quasi-radial contributions may allow us to better esti-

mate MEG activity in deeper regions towards the fundus of the sulci

and also to better define stimulation targets for non-invasive brain

stimulation (Antonakakis et al., 2024; Khan et al., 2022), especially in

the absence of EEG measurements. Also for the large number of

potential applications of personalized transcranial electric stimulation

(Radecke et al., 2023), an accurate orientation estimate using MEG

with 6C-CutFEM might add to the available methodological options

(Buschermöhle et al., 2024). In any case, location differences of

�1 cm, orientation differences of over 20� and a significantly lower

residual variance are sufficient to justify the additional computational

load of finite element approaches.

Future examinations will show whether the quasi-radial contribu-

tions can be properly reconstructed when using less restrictive

regularization methods such as Tikhonov-regularization (Tikhonov &

Arsenin, 1977). A benchmark could be the orientation reconstructed

from simultaneous EEG measurements. Additionally, our results focus

on evoked fields in the somatosensory cortex. Further evaluations of

the contribution of 6C-CutFEM to for example auditory (AEF) or

visually evoked fields (VEF) or clinical applications such as presurgical

epilepsy diagnosis could be the topic of future research. A CutFEM-

based EEG lead field matrix can already be calculated rapidly, but

additional work on the numerical solver is needed to achieve faster

computation times in the MEG case.

5 | CONCLUSION

In this article, we introduced CutFEM, an unfitted finite element

method, to MEG source analysis. After a short overview of the

method that has previously been proposed, validated and evaluated

for EEG (Erdbrügger et al., 2023), we compared it for MEG with two

established forward modeling approaches, a 6-compartment geometry

adapted hexahedral FEM and a 3-compartment boundary element

method. We compared the lead field matrices of n = 19 subjects and

analyzed their M20 somatosensory evoked response to an electric

wrist stimulation of the median nerve. We found that using CutFEM

yields source reconstructions that can differ from reconstructions cal-

culated with a 3-compartment BEM or a 6-compartment hexahedral

FEM by up to 1 cm in location and more than 20� in orientation. Cut-

FEM also improves source separability, goodness of fit to the mea-

sured data, and sensitivity to cortical sources that are (predominantly)

radial.

Our results highlight the importance of creating individualized

high-quality head models for MEG source analysis, both in integrating

realistic tissue compartments and using sophisticated numerical

schemes. All investigations were carried out over a group of 19 sub-

jects, increasing the stability of the findings.
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