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Abstract

Existing vision-text contrastive learning like CLIP (Radford et al., 2021) aims to match the 

paired image and caption embeddings while pushing others apart, which improves representation 

transferability and supports zero-shot prediction. However, medical image-text datasets are orders 

of magnitude below the general images and captions from the internet. Moreover, previous 

methods encounter many false negatives, i.e., images and reports from separate patients probably 

carry the same semantics but are wrongly treated as negatives. In this paper, we decouple 

images and texts for multimodal contrastive learning thus scaling the usable training data in 

a combinatorial magnitude with low cost. We also propose to replace the InfoNCE loss with 

semantic matching loss based on medical knowledge to eliminate false negatives in contrastive 

learning. We prove that MedCLIP is a simple yet effective framework: it outperforms state-

of-the-art methods on zero-shot prediction, supervised classification, and image-text retrieval. 

Surprisingly, we observe that with only 20K pre-training data, MedCLIP wins over the state-of-the-

art method (using ≈200K data)1.

1 Introduction

Medical images such as X-rays, CTs, and MRIs are commonly used to diagnose, monitor, or 

treat medical conditions in clinical practice (FDA, 2022) With the rapid growth of medical 

images and the corresponding reports data, researchers have developed various deep learning 

models to support clinical decision making (Çall1 et al., 2021).

Recently, large-scale image-text pre-training, e.g., CLIP (Radford et al., 2021), has achieved 

considerable successes in computer vision and natural language processing domains. CLIP 

is trained to predict the correct matching of a batch of images and text training examples. 

The joint-training of image and text representations on large-scale image-text pairs generates 

transferable representations and supports flexible downstream tasks. Inspired by success of 

CLIP, we believe the knowledge jointly learned from medical images and reports should be 

helpful for downstream clinical tasks.

1Our code is available at https://github.com/RyanWangZf/MedCLIP

zifengw2@illinois.edu . 
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However, adopting vision-text pre-training on medical domain is a non-trivial task due 

to (1) CLIP’s (Radford et al., 2021) data-hungry nature: CLIP is trained on a dataset 

of 400M image-text pairs collected from the internet, while the total number of publicly 

available medical images and reports is orders of magnitude below; and (2) specificity of 

medical images and reports: compared to general domains (e.g., “cats” v.s. “dog”), the 

differences within medical domains are more subtle and fine-grained (e.g., “pneumonia” v.s. 

“consolidation”). In a nutshell, it is necessary to (1) address the data insufficiency issue; and 

(2) capture the subtle yet crucial medical meanings.

Existing works try to tackle the challenges above in different ways. ConVIRT (Zhang et 

al., 2020) jointly trains the vision and text encoders with the paired medical images and 

reports via a bidirectional contrastive objective; GLoRIA (Huang et al., 2021) further models 

both the global and local interactions between medical images and reports to capture the 

pathology meanings from specific image regions. However, both works have significant 

limitations, as illustrated in Fig. 2.

• Limited usable data. Most medical image datasets only provide the diagnostic 

labels instead of the raw reports. However, both works need paired image and 

reports, leaving a vast number of medical image-only and text-only datasets 

unused.

• False negatives in contrastive learning. Both methods try to push images and 

texts embeddings from different patients apart. However, even though some 

reports do not belong to the target patient’s study, they can still describe the same 

symptoms and findings. Simply treating the other reports as negative samples 

brings noise to the supervision and confuses the model.

To handle the above challenges, we propose a simple yet effective approach, namely 

MedCLIP. It has the following contributions:

• Decoupling images and texts for contrastive learning. We extend the pre-

training to cover the massive unpaired images and texts datasets, which scales 

the number of training data in a combinatorial manner. It opens a new 

direction to expand multi-modal learning based on medical knowledge instead 

of expensively scaling up data.

• Eliminating false negatives via medical knowledge. We observe that images 

and reports from separate patients’ studies may carry the same semantics but 

are falsely treated as negatives by previous methods. Hence, we design a soft 

semantic matching loss that uses the medical semantic similarity between each 

image and report as the supervision signal. This approach equips the model with 

the ability to capture the subtle yet crucial medical meanings.

We make comprehensive evaluation on MedCLIP across four public datasets. Results show 

that MedCLIP reaches extremely high data efficiency, as shown in Fig. 1. Our method 

obtains better performances than the state-of-the-art GLoRIA (Huang et al., 2021) using 

only 10% pre-training data. Extensive experiments verify MedCLIP’s transferability to 

various downstream tasks. It wins over baselines by a large margin: over 10% improvement 
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of prediction ACC for zero-shot prediction and supervised image classification tasks on 

average; over 2% improvement of retrieval precision. Details are in §4.

2 Related Works

Vision-text representation learning was shown to learn good visual representations (Joulin 

et al., 2016; Li et al., 2017; Sariyildiz et al., 2020; Desai and Johnson, 2021; Kim et al., 

2021; Wang et al., 2021a). But all of them work on paired image and captions from general 

domain, e.g., Flickr (Joulin et al., 2016) and COCO Captions (Desai and Johnson, 2021). 

Likewise, these methods do not support cross-modal retrieval hence do not support zero-shot 

predictions either.

Many propose to learn visual-semantic embedding for vision-text retrieval (Liu et al., 2019; 

Wu et al., 2019; Lu et al., 2019; Huang et al., 2020; Chen et al., 2021) by attention or 

objection detection models; and by vision-text contrastive learning (Zhang et al., 2020; Jia et 

al., 2021; Yuan et al., 2021; Yu et al., 2022) or multiple vision and text supervision (Singh 

et al., 2021; Li et al., 2022). They all work on general domain where near infinite web 

images and captions are available, which dwarfs the scale of medical image-text data. This 

challenge hurdles the execution of self-supervised CL for large vision-text transformers. 

Though remedies like data augmentation (Li et al., 2021) and knowledge graph (Shen et al., 

2022) were proposed, the magnitude of used data is still far larger than medical data.

Medical image-text representation learning was investigated based on contrastive learning 

as well (Zhang et al., 2020; Huang et al., 2021; Wang et al., 2021b). Nonetheless, they 

all work on paired medical images and texts so still encounter the lacking data challenge. 

Moreover, they all suffer from the false negative noises when adopting noise contrastive 

estimation (NCE) (Van den Oord et al., 2018) to perform instance discrimination (Wu et al., 

2018), which undermines the representation quality (Arora et al., 2019; Zheng et al., 2021). 

Our work bridges the gap by making the full use of all available medical data to support 

medical image-text pre-training. And we harness medical knowledge tailored to eliminate 

false negatives in contrastive learning to improve the pre-training data efficiency.

3 Method

In this section, we present the technical details of MedCLIP following the flow in Fig. 

3. MedCLIP consists of components (1) knowledge extraction that builds the semantic 
similarity matrix, (2) vision and text encoders that extracts embeddings, and (3) semantic 
matching loss that trains the whole model.

3.1 Vision and Text Encoder

MedCLIP consists of one visual encoder and one text encoder.

Vision Encoder.—We encode images into embeddings v ∈ ℝD using a vision encoder Eimg. 

A projection head then maps raw embeddings to vp ∈ ℝP .

v = Eimg ximg
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(1a)

vp = fv v

(1b)

where fv is the projection head of the vision encoder.

Text Encoder.—We create clinically meaningful text embeddings t ∈ ℝM by a text 

encoder. We project them to tp ∈ ℝP  as

t = Etxt xtxt

(2a)

tp = ft t

(2b)

where ft is the projection head and Etxt denotes the text encoder. This gives the same 

embedding dimension P  as the vision encoder, suitable for contrastive learning.

3.2 Decouple Image-Text Pairs with Medical Knowledge Extractor

Paired medical image text datasets are orders of magnitude less than the general paired 

image text (e.g., from the internet) due to the significant expense of supplying high-quality 

annotations by medical specialists as well as privacy and legal concerns. To enhance medical 

multi-modal learning, we want to make the full use of all existing medical image-text, 

image-only, and text-only datasets. The challenge is that for image-only, and text-only 

datasets, CLIP-like contrastive learning is infeasible. Also, we want to dig out all positive 

pairs to eliminate false negatives.

Suppose we have n paired image-text samples, m labeled images, and ℎ medical sentences. 

Previous methods are only able to use n paired samples. By contrast, we decouple the n
paired samples into n images and n sentences, respectively. Ultimately, we are able to obtain 

n + m × n + ℎ  image-text pairs by traversing all possible combinations, which results in 
n + m × n + ℎ

n × more supervision For instance, in Fig. 2, previous method pretrains on 2 

image-text pairs while MedCLIP is capable of exploiting (2 + 3) × (2 + 3) = 25 samples in 

total.

To fulfill the additional supervision, we propose to leverage external medical knowledge to 

build the knowledge-driven semantic similarity. Unlike previous works that treat all positive 

samples equally (Khosla et al., 2020; Zheng et al., 2021; Wang and Sun, 2022), here we 

propose to differentiate samples via their semantic similarities.
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In particular, we split raw reports into sentences xtxt. MetaMap (Aronson and Lang, 2010) 

is used to extract entities defined in Unified Medical Language System (Bodenreider, 2004) 

from raw sentences. Follow the practice of Peng et al. (2018), we focus on 14 main entity 

types shown by Table 5. Likewise, for images with diagnosis labels, we leverage MetaMap 

to map the raw classes to UMLS conceptions thus being aligned with entities from texts, 

e.g., “Normal” maps to “No Findings”. We build multi-hot vectors from the extracted 

entities for images and texts, as limg and ltxt, respectively Therefore, we unify the semantics of 

images and texts. For any sampled ximg and xtxt, we can measure their semantic similarity by 

comparing the corresponding limg and ltxt.

3.3 Semantic Matching Loss

We bridge the images and texts through the built semantic labels limg and ltxt. During each 

iteration, we sample Nbatcℎ input images ximage  and text xtext  separately. Instead of defining 

positive pairing by searching equivalent labels, we propose to build soft targets s by

s = limg
⊤ ⋅ ltxt

limg ⋅ ltxt
.

(3)

s thus indicates the medical semantic similarity.

For an image i, we obtain a set of sij where j = 1…Nbatcℎ corresponds to the batch of texts. 

The soft target is computed by normalizing across j by softmax.

yij
v t = exp sij

∑j = 1

Nbatcℎ

exp sij

.

(4)

Similarily, the reversed text-to-image soft targets are obtained by

yji
t v = exp sji

∑
i = 1

Nbatcℎ

exp sji

.

(5)

The logits are obtained by cosine similarities between image and text embeddings:

s ij = vi
⊤ ⋅ tj,

(6)

where vi and tj are normalized vp, and tp, respectively. The predicted similarity is also 

obtained by softmax function
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yij = exp s ij/τ

∑
i = 1

Nbatcℎ

exp s ij/τ
.

(7)

τ is the temperature initialized at 0.07. The semantic matching loss is hence the cross 

entropy between the logits and soft targets as

ℒv l = − 1
Nbatcℎ

∑
i = 1

Nbatcℎ

∑
j = 1

Nbatcℎ
yij log yij .

(8)

Likewise, we can compute ℒl v and then reach to

ℒ = ℒv l + ℒl v
2

(9)

as the final training objective.

4 Experiments

We conduct extensive experiments on four X-ray datasets to answer the following questions:

• Q1. Does the proposed pre-training method yield better zero-shot image 

recognition performances?

• Q2. Does the knowledge-driven supervision, i.e., semantic matching task, 

facilitate the contrastive image-text pre-training?

• Q3. Does MedCLIP bring better performance and label efficiency for 

downstream classification tasks with fine-tuning?

• Q4. Are the learned embeddings good at cross-modal retrieval tasks?

• Q5. How do the learned embeddings look like?

4.1 Datasets

CheXpert (Irvin et al., 2019) is a large dataset of chest X-rays with 14 observation labels 

collected from Stanford Hospital. Note that this dataset does not provide the corresponding 

medical reports to the public. We use the training split of this dataset for pre-training. 

For evaluation, we follow (Huang et al., 2021) and sample a multi-class classification 

dataset from the testing split, namely CheXpert-5x200. This multi-class classification dataset 

has 200 exclusively positive images for the five CheXpert competition tasks: Atelectasis, 

Cardiomegaly, Edema, Pleural, Effsion.
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MIMIC-CXR (Johnson et al., 2019) is a large chest X-ray database with free-text radiology 

reports collected from the Beth Israel Deaconess Medical Center in Boston, MA. We use the 

training split of this dataset for pre-training. For evaluation, we also sample a MIMIC-5x200 

dataset for the same five tasks above.

COVID (Rahman et al., 2021) is a publicly available x-ray dataset with COVID v.s. non-

COVID labels. The positive and negative ratio is roughly 1:1. We use this dataset for 

evaluation.

RSNA Pneumonia (Shih et al., 2019) is a collection of pneumonia cases found in the 

database of chest x-rays made public by the National Institutes of Health. This is a binary 

classification dataset: pneumonia v.s. normal. We sample a balanced subset (i.e., 1:1 positive 

and negative ratio) and use it for evaluation.

4.2 Baselines

Random is a ResNet-50 (He et al., 2015) model with its default random initialization.

ImageNet is a ResNet-50 (He et al., 2015) model with weights pretrained on the standard 

ImageNet ILSVRC-2012 task (Deng et al., 2009).

CLIP (Radford et al., 2021) is a vision-text contrastive learning framework pre-trained on a 

dataset of 400M image-texts pairs collected from the internet.

ConVIRT works on vision-text contrastive learning in medicine. It employs a plain 

InfoNCE loss (Van den Oord et al., 2018) on paired X-rays and reports. We reproduce it 

based on their paper based on BioClinicalBERT text encoder and ResNet50 (He et al., 2016) 

vision encoder.

GLoRIA (Huang et al., 2021) entangles image subregions and words in inference by 

cross-attention which was argued to better capture key characteristics in images and reports. 

We implement it based on the official code and the provided pretrained weights2.

4.3 Implementation Details

We use the BioClinicalBERT3 as the backbone text encoder and Swin Transformer (Liu 

et al., 2021) with ImageNet (Deng et al., 2009) pre-trained weight as the backbone vision 

encoder. Both transformer-based models are drawn from the transformers library (Wolf et 

al., 2019). We also provide ablation study with ResNet-50 (He et al., 2015) as the vision 

encoder, which is in-line with previous works (Zhang et al., 2020; Huang et al., 2021).

MIMIC-CXR and CheXpert are used for pretraining where we held 5000 samples out 

out for evaluation. All images are padded to square then scaled to 224 × 224. For MIMIC-

CXR, we combine the “Findings” and “Impression” sections of reports then split them into 

sentences. We remove sentences with less than 3 words. We take a linear projection head 

with output dimension 512, a learnable temperature τ initialized on 0.07. We utilize image 

2 https://github.com/marshuang80/gloria 
3 https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT 
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augmentations to first scale to raw images to 256 × 256 then apply random crop with 

size 224 × 224; horizontal flipping with 0.5 probability; color jittering with brightness and 

contrast ratios from [0.8, 1.2]; random affine transformation with degree sampled from [−10, 

10], max translation rate 0.0625, and scale factor in [0.8, 1.1]. Other hyperparameters are: 

learning rate 5e-5, batch size 100, weight decay 1e-4, number of epochs 10, learning rate 

warmup ratio 0.1. We employ mixed-precision training such that the pretraining finishes in 8 

hours on a single RTX-3090 GPU.

4.4 Q1. Zero-Shot Classification

We conduct zero-shot image classification evaluation on four datasets: CheXpert-5x200, 

MIMIC-5x200, COVID, and RSNA. The learned image-text encoders are used to support 

zero-shot prediction by matching the encoded image embeddings and the embeddings of 

created prompts for each disease class. We illustrate the results in Table 1.

It can be found that our method outperforms all the other baselines by a great margin. 

MedCLIP is capable of benefiting from prompt ensemble to yield better performance. By 

contrast, the ensemble does not always lead to positive effect to the other two, especially that 

GLoRIA is usually harmed by ensemble. One reason might be that ConVIRT and GLoRIA 

cannot differentiate false negatives in contrastive pre-training, and those false negatives are 

incoporated with prompt ensemble which confuses the model. Besides, we observe that the 

original CLIP model yields bad predictions that are basically identical to random guess on 

all datasets. It demonstrates the discrepancy between the general internet image-text and the 

ones in medical domain.

Interestingly, MedCLIP yields over 0.8 ACC on COVID data while there is no COVID-19 

positive image available during the course of pre-training. To endow the model to detect 

COVID-19 infection, we refer to the descriptions proposed in (Smith et al., 2020): the 
presence of patchy or confluent, bandlike ground-glass opacity or consolidation in a 
peripheral and mid to lower lung zone distribution, to build the prompts. This result 

demonstrates that contrastive pre-training of MedCLIP provides it with the transferability 

to out-of-domain classes.

4.5 Q2. Pre-training Data Efficiency

Data efficiency is a key challenge in CLIP based methods. As evident, CLIP uses 400M 

image-text pairs in the training phase, which is not just computationally expensive but 

also infeasible in medical domain due to limited data. To evaluate the data efficiency 

of MedCLIP, we subsample the pretraining data to 20K, 50K, and 200K, then pre-train 

MedCLIP and record the yielded model zero-shot prediction on CheXpert-5x200 data. 

Results show in Fig. 1.

We surprisingly find that with 20K data MedCLIP yields superior performance over GLoRIA 

that learns from the whole CheXpert dataset (around 200K image-text pairs). Likewise, 

MedCLIP beats ConVIRT that uses 369K data. When we include more training data, 

MedCLIP obtains a lift on its accuracy as well. We do not observe the saturation of zero-shot 
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ACC at 570K samples (MIMIC-CXR plus CheXpert). It signifies the great capacity of 

MedCLIP on learning from multi-sourced data.

4.6 Q3. Fine-tune for Classification

We aim to evaluate the learned model transferability to downstream supervised tasks. We 

draw and froze the image encoder and fine-tune a randomly initialized linear classification 

head on the training data with cross-entropy loss. Results are in Table 2. We show that 

MedCLIP still achieves the best performances across all three methods. What is more, we 

surprisingly find that MedCLIP makes zero-shot prediction comparable with supervised 

learning models when contrasting Table 2 to Table 1.

On all datasets, the zero-shot MedCLIP performs better than the other supervised models. 

Specifically, we find on COVID, zero-shot MedCLIP performs better than its supervised 

counterpart, which demonstrates the supremacy of MedCLIP on lowresource scenarios. 

On the contrary, without pretraining on medical domain data, the ResNet baselines reach 

inferior performances.

4.7 Q4. Image-Text Retrieval

We choose CheXpert-5x200 to evaluate the semantic richness of the learned representations 

by all models through the image-text retrieval task. Since CheXpert-5x200 do not have 

report data publicly available, we used MIMIC-CXR dataset to come up with reports/

sentences. We sampled 200 sentences for each of the 5 classes as present in CheXpert-5x200 

dataset. This gives rise to 1,000 images and 1,000 sentences as the retrieval dataset. We use 

Precision@K to calculate the precision in the top K retrieved reports/sentences by checking 

if the report belongs to the same category as the query image.

We display the results by Table 4. It can be seen that MedCLIP achieves the best 

performances across all methods. This indicates that our method efficiently provide the 

required semantic information to retrieve texts. We find that there is an increase precision for 

MedCLIP with the higher K. Analysis of this phenomenon is present in the Appendix A.

4.8 Q5. Embedding Visualization

We also demonstrate the effectiveness of our representation learning framework by 

plotting t-SNE (Van der Maaten and Hinton, 2008) of image embeddings produced for 

CheXpert-5x200 images We compare its embeddings with CLIP model embeddings. As 

visible in Fig. 4, our model produces better clustered representation. Whereas, CLIP 

model t-SNE plot is homogeneous. It is because most medical X-Rays share pretty high 

overlapping while only small lesion regions are different. Nonetheless, MedCLIP still detects 

clusters by the lesion types.

5 Conclusion

In this work, we propose a decoupled medical image-text contrastive learning framework 

named MedCLIP. It significantly expands the training data size with a combinatorial 

magnitude. Meanwhile, the introduction of medical knowledge sheds light on alleviating 
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false negatives. As a result, MedCLIP yields an excellent pretraining data efficiency: it wins 

over the state-of-the-art baseline by 1% ACC with around 10 × fewer data. Moreover, we 

verify the prominence of MedCLIP on zero-shot prediction, supervised classification, and 

image-text retrieval tasks. It is expected to support a foundational model for the medical 

domain and handle medical diagnosis when facing diverse diseases with low resource 

requirements.
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A: Analysis of Image-text retrieval results

We observed that there is certain increase in MedCLIP Precison@K metric in Table 

4. This phenomenon is sort of counterintuitive. As mentioned in Section 4.7, we used 

CheXpert-5x200 dataset for images and MIMIC-CXR for text in our image-text retrieval 

task. Each of them, i.e. images and text reports/sentences, has 1000 rows. Particularly, 200 

images and sentences/reports are there for each class in CheXpert-5x200.

After running the main experiment we decided to plot some graphs to gain insight. Settings 

for the same is described as following: We pick up a class (e.g. Atelectasis) and for each 

image in that class we pick up sentences/reports, from top 10 (based on cosine distance) out 

of all the texts retrieved, that belong to the same class as that of the image in consideration. 

We also pick up their cosine similarity score. Finally, we plot a histogram (for each class) 

where x-axis is the cosine distance and the height of the bins of histogram represent the 

number of texts(retrieved in previous step) that have cosine similarity score of the bin. We 

have plotted few such plots and can be seen in Figure 5.

Intuitively, we are plotting number of texts that would appear in Precision@K of a particular 

class given a cosine similarity threshold. Now as the histogram tells, there are more text 

centered around relatively smaller cosine similarity score. Further, as the K increases in 

the Precision@K, intuitively cut-off cosine similarity(or threshold) score would decrease 

and hence more text from the same class start showing up in the result. This explains 

why Precision@ K increased. In this sense, it is beneficial to investigate to address the 

non-smooth anisotropic distribution of image and text embeddings.
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Figure 5: 
Visualization of the similarity distributions computed based on MedCLIP embeddings.
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Limitations

This work leverages medical domain knowledge to decouple contrastive learning on 

medical images and texts. Hence, it significantly expands the available training data for 

pretraining. Meanwhile, the proposed knowledge-guided semantic matching loss debugs 

the false negatives appearing in naive contrastive learning. It still encounters failure cases 

where incorrect semantic tags are detected or missing detection of negation or uncertainty 

phrases. A remedy can be introducing learning from noisy data techniques (Wang et al., 

2020, 2022) to alleviate the noises in the extracted semantic similarity matrix.

Another concern is that though we prove MedCLIP is able to reach comparable zero-shot 

prediction accuracy to the finetuned counterpart, it is still not amenable to practical use. 

We suppose the reasons include (1) the prompt-based inference relies on the prompt 

quality and (2) more pretraining data is desired to further enhance the pretraining. 

Specifically, for the (1) point, it is promising to leverage prompt-learning methods (Zhou 

et al., 2022) to automate the model application to downstream tasks instead of executing 

manual prompt engineering.
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Figure 1: 
Zero-shot performance of MedCLIP, ConVIRT (Zhang et al., 2020), GLoRIA (Huang et al., 

2021) when using different amounts of data for pre-training. ConVIRT and GLoRIA are 

trained on MIMIC-CXR (369K) and CheXpert (191K) dataset, respectively. Our method 

yields superior ACC than GLoRIA using near 1/10 of pre-training data.
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Figure 2: 
Demonstration of challenges in medical image-text contrastive learning. (1) Pre-training 

data only includes paired images and texts. However, many more image-only and text-only 

datasets are ignored. (2) False negatives appear. For an anchor image, previous methods treat 

paired texts (i.e., reports from the same patient’s study) as positives and unpaired texts (i.e., 

reports from other patients’ studies) as negatives. However, the negative texts can describe 

the same symptoms as the anchor texts.
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Figure 3: 
The workflow of MedCLIP. The knowledge extraction module extracts medical entities 

from raw medical reports. Then, a semantic similarity matrix is built by comparing medical 

entities (from text) and raw labels (from images), which enables pairing arbitrary two 

separately sampled images and texts. The extracted image and text embeddings are paired to 

match the semantic similarity matrix.
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Figure 4: 
Embeddings visualization of CheXpert5x200 images by CLIP and MedCLIP. Dimension 

reduced by t-SNE.
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Table 2:

Results of medical image classification tasks after fine-tuning. Best scores are in bold.

ACC CheXpert-5x200 MIMIC-5x200 COVID RSNA

Random 0.2500 0.2220 0.5056 0.6421

ImageNet 0.3200 0.2830 0.6020 0.7560

CLIP 0.3020 0.2780 0.5866 0.7303

ConVIRT 0.4770 0.4040 0.6983 0.7846

GLoRIA 0.5370 0.3590 0.7623 0.7981

MedCLIP 0.5960 0.5650 0.7890 0.8075
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Table 3:

The statistics of used datasets. Pos.%: positive sample ratio.

Pretrain # Images # Reports # Classes

MIMIC-CXR 377,111 201,063 –

CheXpert 223,415 – 14

Evaluation # Train (Pos.%) # Test (Pos.%) # Classes

CheXpert-5x200 1,000 (−) 1,000 (−) 5

MIMIC-5x200 1,000 (−) 1,000 (−) 5

COVID 2,162(19%) 3,000 (49%) 2

RSNA 8,486 (50%) 3,538 (50%) 2
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Table 4:

Results of Image-Text retrieval tasks on CheXpert5x200 dataset. We take the Precision@ {1,2,5,10} to 

measure the performance of various models in this task. Best within the data are in bold.

Model P@1 P@2 P@5 P@10

CLIP 0.21 0.20 0.20 0.19

ConVIRT 0.20 0.20 0.20 0.21

GLoRIA 0.47 0.47 0.46 0.46

MedCLIP 0.45 0.49 0.48 0.50
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Table 5:

14 main finding types used in this paper.

Finding types

No Finding

Enlarged Cardiomediastinum

Cardiomegaly

Lung Opacity

Lung Lesion

Edema

Consolidation

Pneumonia

Atelectasis

Pneumothorax

Pleural Effusion

Pleural Other

Fracture

Support Devices
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