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Abstract 

Background  Fine-grained classification deals with data with a large degree of similarity, such as cat or bird species, 
and similarly, knee osteoarthritis severity classification [Kellgren–Lawrence (KL) grading] is one such fine-grained 
classification task. Recently, a plug-in module (PIM) that can be integrated into convolutional neural-network-based 
or transformer-based networks has been shown to provide strong discriminative regions for fine-grained clas‑
sification, with results that outperformed the previous deep learning models. PIM utilizes each pixel of an image 
as an independent feature and can subsequently better classify images with minor differences. It was hypothesized 
that, as a fine-grained classification task, knee osteoarthritis severity may be classified well using PIMs. The aim 
of the study was to develop this automated knee osteoarthritis classification model.

Methods  A deep learning model that classifies knee osteoarthritis severity of a radiograph was developed utilizing 
PIMs. A retrospective analysis on prospectively collected data was performed. The model was trained and developed 
using the Osteoarthritis Initiative dataset and was subsequently tested on an independent dataset, the Multicenter 
Osteoarthritis Study (test set size: 17,040). The final deep learning model was designed through an ensemble of four 
different PIMs.

Results  The accuracy of the model was 84%, 43%, 70%, 81%, and 96% for KL grade 0, 1, 2, 3, and 4, respectively, 
with an overall accuracy of 75.7%.

Conclusions  The ensemble of PIMs could classify knee osteoarthritis severity using simple radiographs with a fine 
accuracy. Although improvements will be needed in the future, the model has been proven to have the potential 
to be clinically useful.

Keywords  Knee osteoarthritis, Deep learning, Classification

*Correspondence:
Du Hyun Ro
duhyunro@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43019-024-00228-3&domain=pdf
http://orcid.org/0000-0001-6199-908X


Page 2 of 11Lee et al. Knee Surgery & Related Research           (2024) 36:24 

Background
Kellgren–Lawrence grade (KLG) is one of the most com-
monly used criteria in classifying the severity of knee 
osteoarthritis (KOA) on a simple radiograph [1]. It cate-
gorizes KOA severity from grade 0–4 on the basis of joint 
space narrowing, osteophyte formation, subchondral 
sclerosis, and bony deformity observed in a simple radio-
graph of the knee. Despite its apparent simplicity, KLG 
varies even between expert surgeons or radiologists [2]. 
This is because the classification system is not a quantita-
tive system and thus is often confusing, especially when 
diagnosed by clinicians with less experience in the field. 
For this reason, it would be useful to develop an accurate, 
automated prediction model of KLG.

During the past few years, there have been several 
efforts [3–10] to automatically classify radiographic 
severity of a knee with the aid of convolutional neu-
ral network (CNN), and the results have been promis-
ing. Deep learning (DL) methods are commonly used in 
this automatic KLG grading task since large scale data 
are utilized to improve model accuracy. However, these 
models are not flawless, including utilization of data with 
relatively low accuracy and low quality or volume. The 
accuracy levels were especially low when it came to dis-
cerning lower grades such as Kellgren–Lawrence grade 
[1] (KLG) 0 or 1. The accuracy of KLG 1 was only 11%, 
although the overall accuracy was 67% in a recent study 
[6]. This may be due to the fact that KLG 1 has less dis-
tinctive features than other higher grades because of the 
definition of “doubtful joint space narrowing and possible 
osteophytic lipping.” Therefore, the authors felt the need 
to design a new model that better predicts the KLG of a 
knee image using a more robust and objective dataset.

Recently, a plug-in module (PIM) [11] that can be inte-
grated to CNN-based or transformer-based networks has 
been proposed to provide strongly discriminative regions 
for fine-grained classification, and the results have out-
performed those of previous DL methods. Fine-grained 
classification deals with data with a large degree of simi-
larity, such as cat species or bird species, and similarly, 
KLG image classification is one such fine-grained clas-
sification task. PIM utilizes each pixel of an image as an 
independent feature and can subsequently better classify 
images with minor differences. Therefore, the authors 
hypothesized that applying PIM in this task (KLG clas-
sification) might outperform the previous CNN-based 
models, especially in discerning lower grades of KLG that 
have less distinctive features.

The authors hypothesized that, as a fine-grained clas-
sification tasks, knee osteoarthritis severity may be 
classified well through the application of PIMs. There-
fore, the purpose of this study was to develop a predic-
tion model that automatically assesses the KLG of a 

knee image applying PIM. The authors tried to develop 
a model with better accuracy and better generalization 
in classifying the KLG of a knee than the models pro-
vided in the previous literature [3–10].

Materials and methods
Data composition
A retrospective analysis on prospectively collected 
data was performed. The dataset used for the study 
was a combination of two different open source data-
sets, the Osteoarthritis Initiative (OAI) [12] and Mul-
ticenter Osteoarthritis Study (MOST) [13]. OAI, which 
is funded by the National Institutes of Health, National 
Institute on Aging, and National Institute of Arthritis 
and Musculoskeletal and Skin Diseases, holds clinical 
data and X-ray images from 4796 individuals (41.5% 
men and 58.5% women) aged between 45 and 79 years. 
MOST is a similar project on osteoarthritis and holds 
data from 3026 individuals (60% men and 40% women) 
aged between 50 and 79 years old, although it has been 
recently closed to the public due to financial reasons. 
The details about the acquisition and protocols in the 
OAI and MOST studies are available online at https://​
nda.​nih.​gov/​oai and http://​most.​ucsf.​edu, respectively.

The authors included all available knee radiographs 
from these two projects except for the images that did 
not have KLG labels. Subsequently, all images were 
cropped by range of interest (ROI) to include only 
one knee per image using a detection model (DAMO-
YOLO [14]; Fig.  1). During the training process, 1439 
images were used as training data, and the images 
were annotated either as a ROI of a knee image or of 
a metal implant in YOLO format. A single DAMO-
YOLO model was developed to detect knee images 
while simultaneously ruling out the knees with metal 
implants. This detection model failed in only about 30 
cases in which image contrast was significantly poor 
due to morbid obesity or inadequate radiograph film-
ing. Finally, 63,688 images were selected, of which 
46,648 images were used for training (37,462 images) 
and validation (9186 images) sets, and the remain-
ing 17,040 images were used for the test set. The pro-
portion of the training set:validation set was 8:2. The 
images from the MOST dataset were used as the test 
set, while training and validation sets were randomly 
assigned from the OAI dataset. Training and validation 
sets were divided so that the images of each set were 
from different patients, meaning that images of an indi-
vidual patient are either in the training or validation set 
and not divided into both sets. This method was used to 

https://nda.nih.gov/oai
https://nda.nih.gov/oai
http://most.ucsf.edu
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minimize the individual information unrelated to KLG 
that can be incorporated during model development.

Image preprocessing and augmentation
Image resizing was initially performed to 384 × 384 pix-
els and 448 × 448 pixels each for two different backbone 
models of PIM [11], Swin [15] and EfficientNet [16], 
respectively. Horizontal flipping was utilized, and two 
images were provided per test image: the original test 
image and horizontally flipped test image. Then, image 
quality augmentation [17] was performed using random 
brightness, sharpening, image compression, Gaussian 
noise, histogram equalization and contrast limited adap-
tive histogram equalization [18]. Lastly, grayscale values 
of each pixel of an image were normalized according to 
the average and standard deviation value of the whole 
pixels of all images used in the study (mean = 0.543, 
standard deviation = 0.203) [19].

Data labeling
Data labeling was performed using a vector for each KL 
(Kellgren–Lawrence) grade. The vector was designed 
also to either include one upper (or lower) grade to the 
initial KL grade to design a model that overestimates (or 

underestimates) the KL grade. This method, which has 
been first introduced as “label smoothing” in a previous 
literature [20], was attempted because prior KL grade 
models [3–6, 8, 9] and our trials showed that the models 
tend to confuse grade 1 and grade 2. Moreover, in a real 
clinical situation, even experts in this field sometimes 
overestimate or underestimate KLGs, and the authors 
tried to calibrate this. Several values were tried from 0.5 
to 1 for the upper (or lower) grade labeling, and the vec-
tor that used 0.95 for the upper (or lower) grade labe-
ling showed the most consistent accuracy for all grades. 
Therefore, each KL grade was labeled as shown below 
using this method.

Upper-grade labeling Lower-grade labeling

Grade 0 → [1, 0.95, 0, 0, 0] Grade 0 → [1, 0, 0, 0, 0]

Grade 1 → [0, 1, 0.95, 0, 0] Grade 1 → [0.95, 1, 0, 
0, 0]

Grade 2 → [0, 0, 1, 0.95, 0] Grade 2 → [0, 0.95, 1, 
0, 0]

Grade 3 → [0, 0, 0, 1, 0.95] Grade 3 → [0, 0, 0.95, 
1, 0]

Grade 4 → [0, 0, 0, 0, 1] Grade 4 → [0, 0, 0, 
0.95, 1]

Fig. 1  Knee localization process of an image in this study
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Final modeling
The final DL model was an ensemble of four different 
PIMs that used Swin [15] and EfficientNet [16] as the 
backbone models (two each). Soft voting [21], which 
uses the probabilities of each model to infer the value, 
was chosen as the ensemble method. Two of the models 
applied the upper-grade labeling method, one of which 
used Swin and the other EfficientNet as the backbone 
model. The other two models applied the lower-grade-
labeling method instead, one of which used Swin and 
the other EfficientNet as the backbone model. PIM uti-
lizes each pixel of an image as an independent feature, 
and these pixels are used as the inputs of the backbone 
blocks. The detailed structure of PIM is described in 
the original article [11]. The output of each model was 
a 1 × 5 vector that comprised weighted values per each 
class in which a higher value implies higher probability 
of a specific class. After training each of the four differ-
ent PIMs, a Softmax function was additionally utilized to 
normalize the vector so that the sum of the values of the 
vector was 1. The Softmax function was not applied dur-
ing each model (PIM) training but just afterwards. This 
additional process was performed before ensembling 
so that each PIM model could have equal contribution. 

Subsequently, weighted averages of the four models 
were used because the simple arithmetic sum of the four 
models seemed to overestimate the KLG in the valida-
tion set. After several trials, 2 was assigned for the two 
lower-grade-labeled models, while 1 was assigned for 
the two upper-grade-labeled models. Then, an arithme-
tic weighted sum average of four different vectors from 
the models was calculated as the final output. The class 
with the highest value in this average vector was selected 
as the class and compared with the ground-truth KLG, 
ranging from grade 0 to 4. The overall architecture of this 
model is depicted in Fig. 2, and the results of the model 
were augmented with Eigen-CAM [22] for visual expla-
nations. Additionally, the computational complexity of 
the model was calculated using floating point operations 
(FLOPs) [23].

Results
The distribution of KL grades for training, validation, and 
test sets is presented in Table 1.

The confusion matrices of four different models that 
were used are shown in Fig.  3, and the accuracy was 
62.0%, 71.7%, 63.6%, and 72.8%, respectively. Figures  4 
and 5 present the confusion matrix and the receiver 

Fig. 2  The overall architecture of model development in this study; OAI, Osteoarthritis Initiative; MOST, Multicenter Osteoarthritis Study; PIM, 
plug-in module; UGL, upper-grade labeling; LGL, lower-grade labeling; KL, Kellgren–Lawrence
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operating characteristic (ROC) curve of the ensemble DL 
model, respectively. The overall accuracy of the model 
was 75.7%, and the sensitivity and specificity for each KL 
grade are shown in Table  2. The accuracy was the low-
est for KL grade 1 (46%) and the highest for KL grade 4 
(93%). The FLOPs of the ensemble model were 565.34 G.

Prediction visual explanations
The visual explanations of the ensemble DL model for 
different grades of KL are shown in Fig. 6. We could iden-
tify different patterns across different class levels of KOA 
and the relevant features (represented as brighter uptake 
in the image) matched the expected KOA features (joint 
space narrowing and osteophytes) in the joint margins.

Discussion
The ensemble DL model of this study could predict KL 
grades with higher accuracy than most of the models that 
had been published previously (Table 3). Models with a 
minimum test set size of 500 were exclusively selected 
for appropriate comparison. Although the model still 
showed relatively lower accuracy on KLGs 1 and 2, this 
was superior to most of the previously proposed models. 
It is also noteworthy that the visual explanations of the 
ensemble model were in accordance with the relevant 
features of the model, further reinforcing the validity of 
the model.

There are several reasons why our model was success-
ful in classifying the severity of KOA in a knee image. The 
most important basis of our model development was that 
classifying KOA severity using KLG is a fine-grained clas-
sification tasks. The previous 14 models [3–10, 24–29] 
were all CNN-based and have been successful in discern-
ing KLGs 3 or 4 since these grades have distinct features: 
joint space narrowing. However, these previous models 
showed relatively low accuracy in lower grades (KLGs 0, 
1, and 2). Therefore, in the current study, the ensemble of 
the PIM method was applied for this fine-grained classifi-
cation task, and it improved accuracy in the lower grades, 
although discerning between KLGs 1 and 2 still has some 
room for improvement. The overall accuracy of KLG pre-
diction in a recent model by Thomas et al. [4] was 71.0%. 
However, the accuracy for KLGs 1 and 2 was 27% and 
66.8%, respectively, whereas in our study, the accuracy 
was significantly higher in comparison, with an accuracy 
of 43% and 70%, respectively. Applying vectors in KLG 
labeling is another unique feature that has not been pro-
posed in the previous literature, in which scalar values 
were assigned for each KL grade. The authors believe that 
applying a vector instead of simple numbers may also 
have contributed to the improved accuracy since KLG is 
not a simple classification task but rather a classification 
system that becomes higher with increased KOA severity.

Swin and EfficientNet were each used as the backbones 
because the former transformer-based model learns using 
the general aspect of an image, while the latter CNN-
based model learns using the local aspect of an image. The 
authors hypothesized that the combination or an ensem-
ble of these two different characteristic models could lead 
to better predictive outcomes. In addition, by applying the 
upper- and lower-grade-labeling methods, the model was 
able to calibrate minor differences in KL grading because, 
in a real clinical situation, even experts in this field some-
times overestimate or underestimate KLGs. The original 
label smoothing method normalizes the probability of the 
labels to 1. However, instead of normalizing the probabil-
ities so that the sum of the values of the vector becomes 
1, the authors maintained the original KLG as 1 in the 
label. By utilizing this method, because a regression-type 
loss function was used for our model training, when the 
model correctly predicts the KLG, the value of the loss 
function becomes 0. On the contrary, if a normalized label 
is used (e.g., [0, 0.8, 0.2, 0, 0]), the value of the loss func-
tion is not 0, even when the model correctly predicts the 
KLG. Therefore, since every DL model tries to minimize 
the loss function, the model tends to deviate from the cor-
rectly predicted label when a normalized label is utilized. 
For this reason, the authors maintained the label of the 

Table 1  Data labeling method for each Kellgren-Lawrence grade 
in the study

KL, Kellgren–Lawrence

Dataset
(total number of images)

KL grade Number of images 
(proportion, %)

Training set
(37,462)

0 14,906 (39.8)

1 7022 (18.7)

2 9149 (24.4)

3 4920 (13.1)

4 1465 (3.9)

Validation set
(9186)

0 3483 (37.9)

1 1785 (19.4)

2 2257 (24.6)

3 1292 (14.1)

4 396 (4.3)

Test set
(17,040)

0 7148 (41.9)

1 2689 (15.8)

2 3024 (17.7)

3 2922 (17.1)

4 1257 (7.4)
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original KLG as 1. As a matter of fact, our experiments 
showed that the results of our labeling method were better 
than when the normalized labels were used. Possibly as a 
result of this “upper- and lower-grade labeling,” our model 
was quite well balanced in predicting KLGs 2 and 3. For 
KLG 2, underestimation occurred in 15%, while overesti-
mation occurred in 14% (Fig. 4). For KLG 3, underestima-
tion occurred in 11%, while overestimation occurred in 
8%. This was in contrast with a previous model by Thomas 
et  al. [4] that showed similar overall accuracy in KLGs 2 
and 3 to our model. In this previous model [4], underesti-
mation occurred in 26%, while overestimation occurred in 
7% in KLG 2, and underestimation occurred in 15%, while 
overestimation occurred in 4% in KLG 3.

Three previous models [3, 7, 10] showed superior 
accuracy: 87%, 98.9%, and 78.4%, respectively; however, 

our model was unique in that robust data from two dif-
ferent large cohorts, OAI and MOST (test set size of 
17,040), were used. Although the average accuracy was 
lower than the model reported by Muhammad et al. [3], 
the training, validation, and test set size were signifi-
cantly larger, and the test set was independent from the 
training set in our model. The evaluation of model accu-
racy on an independent dataset may have caused lower 
accuracy; however, because of this independent testing, 
our model is a more generalized model for future usage. 
Furthermore, using fewer ensemble base models (four 
in our model versus six in the previous model [3]) may 
lead to faster computing and subsequently better effi-
ciency in clinical usage. A CNN-based model proposed 
by Abdullah et  al. [7] reported the highest accuracy 
(98.9%) in classifying KLG, but the model was tested 

Fig. 3  Confusion matrices of four different models (before ensemble) in the study. A PIM that applied EfficientNet and upper-grade labeling (A), 
a PIM that applied EfficientNet and lower-grade labeling (B), a PIM that applied Swin and upper-grade labeling (C), and a PIM that applied Swin 
and lower-grade labeling (D). PIM, plug-in module



Page 7 of 11Lee et al. Knee Surgery & Related Research           (2024) 36:24 	

Fig. 4  Confusion matrix of the proposed model in this study

on a relatively small dataset (634 test images). Another 
CNN-based model proposed by Norman et al. [10] was 
tested on a relatively large dataset (5941 images) with a 
high average accuracy; however, the model did not dis-
criminate between KLGs 0 and 1.

Comparing the accuracy of four individual models 
and the accuracy of the ensemble model, the ensem-
ble method significantly increased the accuracy of the 
model by more than 3 percentage points when compared 
with each base model. Although this method improved 
the accuracy of KLG prediction, due to the usage of 
four different models in classifying an image, the com-
puting time also doubled as a trade-off. Model training 
took about 4 full days with the state-of-the-art graph-
ics processing unit (GPU; GeForce RTX 3090; NVIDIA, 
CA, USA) that was utilized in the study; however, clas-
sifying a single knee image takes a much shorter time 
in our model. Considering the fact that modern cen-
tral processing unit (CPU) of a computer can perform 
around 100–200 GFLOPs (Giga FLOPs) per second, our 
model (565.34 GFLOPs) would take about 3–6 seconds to 

classify an image. Thus, our automated knee radiograph 
classification model can be useful in clinical practice by 
automatically providing the KLG of a knee image without 
any significant delay. Further investigations to lighten the 
model and reduce the computing time are needed in the 
future for better accessibility. High-temperature refine-
ment and background suppression (HERBS) [30], which 
has been recently proposed for fine-grained classification 
tasks, outperformed PIM and thus could be an alterna-
tive to lighten and improve the accuracy.

There are several limitations in this study. First, our 
model provided a lower performance in classifying 
KLGs 1 and 2 compared with other grades, although it 
was higher than most of the previously reported lit-
erature. Second, although the KLGs of the image data-
sets (OAI and MOST) that were used in the study were 
labeled by thorough assessment and consensus by sev-
eral radiologists, KLG itself can be variable even among 
experts due to its qualitative definition system. This may 
be the part of the reason why the automated classifica-
tion models (including ours) show low accuracy on the 
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lower grades. Third, overall accuracy of our model was 
76.0%, which may raise concerns in clinical usage. How-
ever, the accuracy was generally high except for with 
grades 1 and 2; also, discerning between grade 1 and 2 
actually does not critically alter decision-making in real 
practice. Therefore, the authors believe that the model 
can be readily used in the clinics, although there is much 
room for improvement. Last but most importantly, the 
model entirely relies on radiographs and does not synthe-
size other clinical records, such as pain or patient func-
tion. Future KOA severity grading should account for 
modalities other than simple radiographs to design an 

Fig. 5  The receiver operating characteristic (ROC) curve of the proposed model in this study

Table 2  Sensitivity and specificity of the proposed model for 
each Kellgren–Lawrence grade

KL, Kellgren–Lawrence

KL grade Sensitivity Specificity

Grade 0 0.92 0.85

Grade 1 0.90 0.46

Grade 2 0.92 0.69

Grade 3 0.96 0.82

Grade 4 0.99 0.93
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Fig. 6  Samples of the model visual explanation using Eigen-CAM for different knee osteoarthritis severity; KL, Kellgren–Lawrence

Table 3  Comparison with state-of-the-art DL-based methods (with a minimum test set size of 500) for a KOA severity assessment task

The average class accuracy was highlighted in bold

DL, deep learning; KLG, Kellgren–Lawrence grade; CNN, convolutional neural network; TL, transfer learning; PIM, plug-in module

Year Method DL algorithm Test set size Accuracy 
for KLG 0 
(%)

Accuracy 
for KLG 1 
(%)

Accuracy 
for KLG 2 
(%)

Accuracy 
for KLG 3 
(%)

Accuracy 
for KLG 4 
(%)

Average class 
accuracy (%)

2016 Reference 
[24]

CNN 2686 71 20 56 76 80 59.60

2017 Reference 
[25]

CNN 4400 86.9 6.0 60.2 73.0 78.1 62.29

2018 Reference 
[26]

Deep Siamese CNN 5960 78 45 52 70 88 66.70

2019 Reference 
[27]

CNN ensemble 1890 Not available 69.50

2019 Reference 
[28]

CNN 1495 Not available 64.3

2019 Reference 
[5]

Modified CNN 1385 89.8 55.6 82.6 36.0 100.0 74.3

2019 Reference 
[10]

CNN ensemble 5941 83.7 70.2 68.9 86.0 78.4

2020 Reference 
[29]

CNN 1175 79 52 58 59 85 66.0

2020 Reference 
[3]

CNN ensemble 7599 94 61 90 96 97 87.0

2020 Reference 
[6]

CNN ensemble 11,743 63.0 11.0 79.8 84.8 94.9 68.0

2020 Reference 
[4]

CNN 4090 86.5 27.0 66.8 80.9 85.8 71.0

2022 Reference 
[7]

ResNet-50 + AlexNet + TL 634 99.8 99.4 99.5 99.6 99.6 98.9

2024 Ours PIM ensemble 17,040 85 46 69 82 93 75.7
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end-to-end model that could reflect the future prognosis 
of KOA. This newly proposed model would be more use-
ful in the clinical settings than current radiograph-based 
models since the model directly reflects the prognosis of 
KOA, rather than inferring from radiographic severity.

Conclusions
The ensemble of PIMs classified KOA severity using sim-
ple radiographs with fine accuracy. Although improve-
ments will be needed in the future, the model has been 
proven to have the potential to be clinically useful.
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