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C L I M AT O L O G Y

Coral Sr/Ca-SST reconstruction from Fiji extending to 
~1370 CE reveals insights into the Interdecadal 
Pacific Oscillation
Juan P. D’Olivo1,2,3*†, Jens Zinke4,5,6†, Rishav Goyal7,8, Matthew H. England8,9, Ariaan Purich10, 
Thierry Corrège11, Eduardo Zorita12, Denis Scholz13, Michael Weber13, José D. Carriquiry3‡

The southwestern tropical Pacific is a key center for the Interdecadal Pacific Oscillation (IPO), which regu-
lates global climate. This study introduces a groundbreaking 627-year coral Sr/Ca sea surface temperature recon-
struction from Fiji, representing the IPO’s southwestern pole. Merging this record with other Fiji and central 
tropical Pacific records, we reconstruct the SST gradient between the southwestern and central Pacific (SWCP), 
providing a reliable proxy for IPO variability from 1370 to 1997. This reconstruction reveals distinct centennial-
scale temperature trends and insights into Pacific-wide climate impacts and teleconnections. Notably, the 20th 
century conditions, marked by simultaneous basin-scale warming and weak tropical Pacific zonal-meridional gra-
dients, deviate from trends observed during the past six centuries. Combined with model simulations, our find-
ings reveal that a weak SWCP gradient most markedly affects IPO-related rainfall patterns in the equatorial Pacific. 
Persistent synchronous western and central Pacific warming rates could lead to further drying climate across the 
Coral Sea region, adversely affecting Pacific Island nations.

INTRODUCTION
The Pacific Ocean is a major driver of climate variability, affecting 
human activities and natural ecosystems worldwide across times-
cales ranging from interannual to decadal and beyond (1–3). Tropi-
cal Pacific decadal variability (TPDV) plays a fundamental role in 
modulating the El Niño–Southern Oscillation (ENSO) (4–7), shifts 
in the intertropical and South Pacific convergence zones (ITCZ and 
SPCZ, respectively), and cyclogenesis in the western and southwest-
ern Pacific islands (4). These changes have a strong impact on 
marine ecosystems, droughts, flooding rains, coral bleaching, and 
food availability both locally and remotely via atmospheric telecon-
nections (8, 9).

This TPDV appears to be the result of low-frequency variations 
in ENSO and is strongly linked to the Interdecadal Pacific Oscilla-
tion (IPO) (7, 10). The IPO reflects interdecadal fluctuations between 
warm and cold phases in the tropical eastern Pacific and opposite in 
sign subtropical sea surface temperature (SST) anomalies in the 

northwest and southwest Pacific (Fig. 1) (7, 11). The IPO modulates 
Pacific and global climate patterns via its influence on the position 
and strength of the equatorial trade winds, which became clearly 
apparent during a period of relatively weak global warming between 
1998 and 2013 (12), when strong trade winds kept a large fraction of 
the Pacific at colder than average temperatures. However, given the 
interdecadal nature of fluctuations in this phenomenon, the instru-
mental IPO record is too short to distinguish the influence of an-
thropogenic warming on its mean state. Climate model simulations 
show some skill in representing the spatial SST pattern of the IPO, 
but major deficiencies remain regarding the magnitude and extent 
of warming or cooling in the western Pacific (7). This hinders skill-
ful prediction of global ENSO impacts modulated by Pacific decadal 
variability (7).

High-resolution paleoclimate records can extend the short in-
strumental record of the IPO and close the gap in our understanding 
of decadal climate variability. To date, paleoclimate reconstructions 
of the IPO over the past millennium have relied largely on records 
from far-field teleconnected regions on the fringes of the Pacific 
Ocean and other sites in the southwest Pacific (13–15). Currently, 
the oceanic IPO is limited to coral oxygen isotopes and Sr/Ca re-
cords from Fiji and the southwest Pacific starting in 1650 (16–18). 
Furthermore, current IPO reconstructions show limited agreement 
prior to the 20th century either due to nonstationary IPO relation-
ships between geographical regions that are the basis of the recon-
structions or to a lack of multicentennial oceanic IPO records or 
both. Therefore, a complete understanding of IPO variability is cur-
rently hindered by the limited availability of high-resolution con-
tinuous paleoclimate records from the southwest Pacific region, 
where SST variability is strongly linked to IPO variability. Long-
lived corals from the southwest Pacific region are prime candidates 
to fill this oceanic IPO data gap. The coral Sr/Ca ratio serves as a 
robust direct geochemical proxy for the SST, capturing coral reef-
scale and large-scale SST variability across the tropical oceans, while 
oxygen isotopes reflect a mixed signal of SST and salinity changes 
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Fig. 1. Comparison of coral Sr/Ca-SST record with instrumental and reconstructed SST records. (A) ERSSTv5 average annual SST. The edge of the WPWP is indicated 
by the annual mean SST 28°C contour (yellow). (B) Annually averaged Sr/Ca-SSTs for coral core F14 from Fiji (red) compared to SSTs from ERSSTv5 (black) (r =  0.39, 
P < 0.001; 1883 to 1997). (C) Spatial correlation for the SWCP (purple rectangles) with the ERSSTv5 mean annual data. The green rectangles represent the zonal gradient 
of the SST between the western and eastern equatorial Pacific (57). (D) Annually averaged Sr/Ca-SSTs for coral core F14 from Fiji (red) compared to the Fiji composite 
coral record from records 1F and AB (23) (green) over their common period of 1781 to 1997. (E) Annual Fiji composite coral record (red) combining the records shown in 
(D) compared to the Ocean2K SST anomaly reconstruction for the western Pacific (24) (blue) and the SST from the PHYDA close to Fiji (17°S, 117°E) (21) (green). Also shown 
is the most recent SST data for Fiji from ERSSTv5 (1998 to 2021) shown in (E) (black). SST presented as anomalies relative to the period of 1883 to 1996. It should be noted 
that records 1F and AB (23) from Fiji are also included in the PHYDA and O2KWP reconstructions. Triangles in (D) and (E) denote the timing of major volcanic events (<−3.5 W/
m2 values) (Fig. 2) (22) typically associated with a cooling response. Extended warm (cold) periods highlighted in (D) and (E) by red (blue) bars based on the change point 
analysis for the Fiji composite shown in (E) are indicated by dark red vertical lines; dark red horizontal lines indicate the mean for each period.
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(19). Consequently, the development of multicentennial coral Sr/Ca 
records is a prime target to reconstruct IPO-related SST variability, 
and this forms the primary focus of our present study.

The Fijian archipelago is located at the southern edge of the west-
ern Pacific Warm Pool (WPWP) and within the SPCZ, making it an 
ideal location to document the latitudinal expansion and contrac-
tions of the WPWP. This is important for quantifying the zonal and 
meridional SST gradients across the tropical and subtropical Pacific 
and is a crucial fingerprint of the IPO (Fig. 1). The IPO variability is 
spatially expressed as a horseshoe pattern of SST anomalies, in 
which the southwest and northwest subtropical Pacific anomalies 
show an opposite sign to the central and east Pacific anomalies 
(Fig. 1C). Average SST in these regions is used to define the strength 
of the IPO defined as the Tripole Index (11). The SST in the north-
west Pacific pole is well correlated with the southwest Pacific pole. 
On the basis of this, the gradient between the southwest tropical 
Pacific and central equatorial Pacific (SWCP) should be a skillful 
proxy index for the IPO.

Here, we present an oceanic IPO index reconstruction that near-
ly doubles the length of previous reconstructions. This is made pos-
sible by generating a 627-year, 230Th/U-dated, coral Sr/Ca record 
from Kanathea Island, a remote nearly deserted landmass situated 
within the Fijian Archipelago (17°14.93′S, 179°06.88′W), which 
represents the southwestern pole of the IPO (Fig. 1). This annually 
resolved Diploastrea heliopora record, designated F14, is the longest 
continuous coral Sr/Ca-SST reconstruction ever reported. We com-
bine this record with existing paleoreconstructions from across the 
central tropical Pacific (20–22), along with climate model simula-
tions, to develop a reconstruction of the SWCP gradient (Fig. 2). 
Our findings suggest that the latitudinal and longitudinal migra-
tions of the WPWP are closely linked to the strength of the Pacific 
zonal-meridional temperature gradients, affecting ENSO and IPO 
spatial dynamics and climate teleconnections. Moreover, we dem-
onstrate that the SST gradient between these regions in the SWCP is 
an effective tool for reconstructing the oceanic IPO variability for over 
six centuries. We show that a weak SWCP gradient or IPO has the 
most marked impacts on Pacific-wide rainfall and circulation patterns.

RESULTS
Unveiling centennial-scale southwest Pacific SST variability 
through Fiji coral records
Our SST reconstruction for Fiji is based on a composite record that 
combines our new long Sr/Ca coral record (F14; 1370 to 1997) with 
shorter, published Sr/Ca records (1781 to 1996) from the same re-
gion (23). This composite approach helps to reduce biases associated 
with using only one record and provides a more robust estimate of 
centennial-scale SST variability in the region. Our composite SST 
record is validated against instrumental data (Fig. 1A; r = 0.56, 
P < 0.001; 1883 to 1997) and demonstrates a high degree of correla-
tion with reconstructed SSTs from other sources, including the Pa-
leo Hydrodynamics Data Assimilation product (PHYDA) (21) and 
the large-scale Ocean 2K annual coral-SST reconstruction for the 
entire western Pacific and southeastern Indian Ocean (O2KWP) 
(Fig.  1E and table  S5) (24). On a centennial timescale, a change 
point analysis of our SST reconstruction reveals four distinct peri-
ods in Fijian average temperatures over the past 627 years (Fig. 1E). 
Anomalously warm SST is observed between 1370 and 1553, followed 
by a transition period from 1553 to 1703. Colder conditions prevailed 

between 1703 and 1920, which includes the timing of the Little 
Ice Age, and then lastly an almost continuous warming trend from 
1920 to 1997 at a rate of 0.46°C (±0.002°C, 95% confidence interval) 
per century. The high temperatures between 1370 and 1553 are only 
rivaled by instrumental SSTs recorded over the most recent 50 years 
(1973 to 2023), with temperatures after 2000 exceeding the 1370 to 
1553 warm period and 2022 being the warmest year ever recorded 
in the Fiji region in the past 652 years.

We compared the Fiji composite data to simulate the SST from 
the Community Earth System Model (CESM1-CAM5) Last Millen-
nium Ensemble (LME) to understand the origin of centennial vari-
ability in our reconstruction (Fig.  2A). Both our data and the 
LME show a long-term warming trend since the late 1800s, but the 
simulated SST anomalies are approximately one order of magnitude 
smaller than in our reconstruction. Over the 19th and 20th centu-
ries, our Fiji coral reconstructed SST lies within ± 1 SD of the LME 
mean. However, between 1370 and 1553, our Fiji record and PHY-
DA (Fig. 2C) suggest much warmer SST conditions than those sim-
ulated by the CESM LME simulations. This relatively warm period 
is also found in low-resolution sedimentary archives from Indonesia 
in the core of the WPWP from Newton et al. (25) and Oppo et al. 
(26) (Fig. 2B). The resampled records (binned data of 10-year over-
lapping 50-year-long bins) show statistically significant correlations 
with our Fiji composite over the common period (1395 to 1825; 
P < 0.001, 95% confidence interval; r = 0.70 Fiji composite–Oppo; 
r = 0.87 Fiji composite–Newton; r = 0.71 Oppo-Newton; n = 44), 
indicating that the expansion or contraction of the WPWP recorded 
in Fiji proxy records is consistent with the general warming or cool-
ing of the WPWP. The coherence between records from the WPWP 
and southwest tropical Pacific as well as the divergence from CESM 
LME simulations ensemble prior to 1553, suggesting that the impact 
of preindustrial external forcing (such as solar or volcanic activity) 
or the amplitude of internal Pacific variability (such as the dynamics 
of the WPWP) may not be well represented in these CESM sim-
ulations.

Although the two warmest periods observed in Fiji (1370 to 1553 
and after 1920) are of similar magnitude, the records from the 
central and eastern Pacific indicate contrasting basin-scale spatial 
temperature patterns during these periods (Fig. 2, D to F). These 
differences likely reflect variations in the climate forcing and feed-
back mechanisms at work. The warm period observed in Fiji from 
the late 14th to mid-16th century appears to have been caused by a 
poleward expansion and warming of the WPWP most likely result-
ing from ocean-atmosphere dynamics (27). In contrast, warm-
ing since the late 19th century has been observed across much of the 
Pacific, except for the far eastern equatorial Pacific off South Amer-
ica, and is primarily driven by anthropogenic greenhouse forcing 
and trade wind responses (28, 29).

Decoding the IPO through the SST gradient 
between the SWCP
In this study, we provide centennial information about the TPDV, and 
we test the hypothesis that the SST gradient between the SWCP can be 
used to reconstruct the oceanic IPO. To test this assumption, we first 
reconstructed the SWCP gradient between 1370 and 1995 using the Fiji 
composite record and central Pacific SST paleoclimate reconstructions 
(Fig. 2) (21, 30). The reconstruction was validated against the instru-
mental SWCP gradient based on the Extended Reconstruction SSTs 
Version 5 (ERSSTv5) from 1883 to 1995 (r = 0.71; P < 0.001; fig. S8).
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Fig. 2. Fiji coral composite annual Sr/Ca-SST record, WPWP model simulations and proxy reconstructions, and the SWCP SST gradient. Annual (light gray) and 
15-year moving average (dark gray) Fiji coral composite record compared to (A) simulated southwest tropical Pacific (10° to 22°S, 150° to 180°E) SST based on the average 
of 13 runs from the CESM LME (red) and their SD (light red); (B) Makassar Strait composite Indo-Pacific Warm Pool SST Mg/Ca reconstructions from (25) (Newton, pink) and 
(26) (Oppo, purple); (C) annual and 15-year moving average SSTs reconstructed for the southwest tropical Pacific from the PHYDA (orange); (D) annual and 15-year moving 
average SST derived from δ18O composite coral data from Palmyra (60); (E) annual and 15-year moving average SST reconstruction for the Niño 3.4 region in the central 
Pacific from (21) (PHYDA, yellow) and (56) (EG, green) based on the ERSSTv3; and (F) Mg/Ca foraminifera SST reconstruction from the Galapagos in the eastern Pacific (61) 
and inferred eastern Pacific SSTs from lake epiphytic diatom from El Junco Lake, Galápagos (62). (G) Annual and 15-year moving average SWCP gradient calculated as the 
difference between Fiji coral composite record and the Niño 3.4 SST reconstructions from the PHYDA (yellow) and EG (green) and their average (black). SST presented as 
anomalies relative to 1883 to 1996 except in (B) where values are relative to the common period between all three records (1370 to 1840). Extended warm (cold) periods 
in the Fiji composite highlighted in red (blue) based on the change point analysis from Fig. 1. Also shown in (G) is the change point analysis for the average SWCP gradient 
(dark red lines).
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We contrasted our 627-year SWCP gradient reconstruction 
with the SWCP gradient inferred from the multivariate PHYDA da-
taset, which does not contain our coral record, and found an excel-
lent agreement between the two (r = 0.90; P < 0.001; fig. S11). We 
also found that, between 1370 and 1553, the SST in Fiji diverged 
from the central Pacific, corresponding to the period of maximum 
strength in the SWCP gradient (Fig. 2, D to G, and fig. S12). From 
the 1700s, the SST in Fiji and the central Pacific converged and cul-
minated in a near-synchronous warming trend in the SST in both 
regions observed over the most recent 120 years. The periods of 
basin-wide convergence between the southwestern and central 
Pacific records translated into a general weakening SWCP gradient, 
while the periods of divergence resulted in an enhanced SWCP 
gradient.

Despite synchronous warming across the tropical Pacific since 
the mid-19th century, we observe a moderate SWCP gradient strength-
ening compared with the early 19th century when the gradient was 
at its minimum (Fig. 2G). While this strengthening is not statisti-
cally significant, it agrees with a reported strengthening of the zonal 
gradient and Pacific Walker Circulation in recent decades (28, 31). 
Our findings, based on reconstructions and observations, contrast 
Coupled Model Intercomparison Project Phase 6 (CMIP6)–based 
multimodel mean (MMM) simulations and some other observa-
tional estimates of zonal gradient trends during the current warm 
period, which suggest a general weakening of the zonal gradient and 
Walker Circulation with increasing greenhouse gas forcing (32, 33). 
This mismatch between observations and the simulations suggests 
that either a considerable footprint of internal long-term Pacific cli-
mate variability is present in the observations or the simulations do 
not accurately reflect the forced climate response to increasing 
greenhouse gases (34). Nevertheless, our reconstruction reveals 
that, despite a weak recent upturn in the SWCP gradient, the gradi-
ent is far weaker than between the 14th and 16th centuries.

To assess if the TPDV obtained from our SWCP gradient recon-
struction accurately captures the IPO variability, we compare it with 
instrumental SST data (Fig. 3A). This comparison reveals a notable 
spatial correlation between the reconstructed SWCP gradient and 
SST across the Pacific, closely mirroring the IPO pattern. Our IPO 
reconstruction exhibits highly significant agreement with instru-
mental IPO data from 1880 onward (r = 0.85, P ≤ 0.0001; 1880 to 
1995). Notably, this correlation is stronger than for other recent 
long-term IPO reconstructions (r = 0.54, P ≤ 0.0001; 1880 to 1995) 
based on far-field ice core reconstructions (1450 to 1996) (14), un-
derscoring the uncertainty in reconstructing the IPO based on re-
mote land-based teleconnections.

The reconstruction of the SWCP gradient reveals a centennial 
component in the expression of the IPO, frequency, and magnitude 
over 1370 to 1995 (Fig. 3C). During the Little Ice Age (LIA), a pro-
longed positive expression of the IPO is observed, coinciding with a 
minimum in the centennial variability of the gradient. The magni-
tude of the wavelet power spectrum highlights the 1400s as a period 
with the strongest expression of multidecadal (10 to 50 years) vari-
ability within the six-century span covered by our reconstruction. 
This period aligns with the time when the SWCP gradient reached 
its maximum strength between 1370 and 1995, hinting at a possible 
relationship between the gradient’s magnitude and the expression of 
the IPO. Ideally, this relationship should be confirmed based on lon-
ger reconstructions covering periods with different strengths of the 
SWCP gradient.

We next investigate the impacts of the strength of the SWCP gra-
dient, a footprint for the IPO, on the spatial patterns of the SST and 
precipitation and sea level pressure anomalies related to the SPCZ 
over centennial scales. To do this, we calculated the gradient using 
preindustrial control simulations obtained from multiple CMIP6 
models to obtain composites that show the strength and sign of the 
gradient corresponding to distinct spatial patterns for the SST, rain-
fall, and sea level pressure for the Indo-Pacific region (Fig. 4 and 
fig. S13). While coupled climate models have deficiencies in their 
representation of some features of tropical climate (7), they remain 
important tools to analyze covarying spatial patterns of climate vari-
ables over timescales beyond the recent observational period. The 
CMIP6 MMM composites demonstrate that the strength, sign, and 
spatial patterns of the IPO can be defined by SST variability in the 
SWCP (Fig. 4), highlighting the importance of our reconstruction as 
the longest continuous record of SST variability in the southwest 
Pacific. This enables us to understand local and remote teleconnec-
tions resulting from past IPO variability.

This spatial analysis shows that the magnitude of the SWCP gra-
dient is an important factor for the mean state and teleconnections 
in the Indo-Pacific region. A weaker gradient is associated with larger 
SST anomalies and precipitation changes across the equatorial Pa-
cific (Fig. 4, C and D). In addition, these conditions correspond to 
weak extratropical anomalies as well as stronger mean sea level pres-
sure (MSLP) changes in the extratropical region of both hemispheres 
(Fig. 4, C and D, and fig. S13). The expression of the SPCZ appears 
to be particularly sensitive to the state of the SWCP in both its ori-
entation and magnitude (Fig. 4), with the diagonal orientation and 
variability of the SPCZ being the result of tropical and extratropical 
atmospheric interactions and the SST conditions. In the CMIP6 MMM 
composites, when the SWCP gradient is strong and has a positive 
(negative) sign as observed prior to the 1700s in our reconstruction, 
this translates to enhanced (reduced) rainfall in the southwestern 
Pacific including the Fiji region and Coral Sea with drying (wetting) 
to the east of Fiji (Fig. 4, A and B). When the SCWP is weak and 
either positive or negative (<0.1 SD), the expression of the SPCZ 
becomes displaced zonally and eastward with pronounced drying 
over the Fiji region stretching across the Coral Sea. The latter are the 
conditions observed during the most recent period of anthropogen-
ic warming since the late 19th century (weakly positive SWCP).

To validate our predictions, we compared the gradient recon-
struction with seawater δ18O for the WPWP (26), a hydrological 
proxy (fig. S14). On the basis of the CMIP6 MMM composites in 
Fig. 4 (E to H), when the gradient is weak (regardless of the sign), 
rainfall is high, indicated by more negative seawater δ18O in the 
western Pacific. A strongly positive gradient (>1) corresponds to 
weakly positive rainfall, while a strongly negative gradient (<−1) 
corresponds to negative rainfall. The wettest period in the hydro-
logical reconstructions, spanning the 1600s to 1700s, coincides with 
an extended weak gradient and the overall lowest mean SST in the 
western and southwestern Pacific. During the mid-1800s, when the 
gradient turns weakly negative, rainfall remains positive. Converse-
ly, rainfall appears to weaken during the late 1300s to early 1400s, 
corresponding to a stronger gradient and higher mean SSTs in the 
western and southwestern Pacific. This comparison lends confi-
dence to the predictions from the CMIP6 MMM composites. How-
ever, further work is needed. Specifically, expanding the number 
and length of current paleohydrological reconstructions in the trop-
ical oceans is crucial.
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Fig. 3. IPO reconstruction. (A) Spatial correlation for the reconstructed annual SWCP SST gradient with the ERSSTv5 mean annual data. Red asterisks highlight the loca-
tion of the ice core records used in previous reconstructions (14), the purple rectangles denote the area used to define the SWCP gradient, and the black star denotes the 
location of Fiji. (B) Porter’s IPO reconstruction based on the ice core records (14) and (C) this study’s IPO reconstruction based on the TPDV obtained from the SWCP SST 
gradient (colored area plot). In (B) and (C), IPO reconstructions are compared to the instrumental IPO data (black line) [IPO data available at the National Oceanic and At-
mospheric Administration (NOAA)] (11). The period prior to 1880 is shown by a discontinuous line to highlight the decrease in confidence in instrumental data (see Mate-
rials and Methods). (D) Wavelet power spectrum for the SWCP SST gradient (63). The shaded contours are the normalized variance where warm colors indicate a higher 
power. The thin line is the “cone of influence” highlighting potential edge effects, and the bold line contours are the >95% confidence interval for a lag −1 of 0.72 for a red 
noise background (bold line). (E) Long-term (centennial) variability for the SWCP gradient based on a fourth-degree (orange) and sixth-degree (green) polynomial fit.
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Fig. 4. Composite maps of simulated SST (left) and precipitation (right). (A to H) In each case, four different regimes are included based on the magnitude of the 
SWCP gradient calculated using data from 16,062 years of the CMIP6 preindustrial control simulation. (A) and (B) represent composites obtained when there is a strong 
positive SWCP gradient (i.e., warmer temperature over Fiji compared to central Pacific and the magnitude of the gradient is >1 SD), and (C) and (D) represent a strong in-
verse SWCP gradient (i.e., warmer temperature in the central Pacific than in Fiji and the SWCP gradient is <−1 SD). The bottom two rows represent composites when the 
SWCP gradient is weaker (less than 0.1 SD), with (E) and (F) showing composite maps when the gradient is weak and positive and (G) and (H) representing composites 
when the gradient is weak and negative. Stripling on the plots represents significant values at 95% significance level using a two-tailed t test. Composites from each 
model are computed first before calculating the MMM composite to provide equal weightage to each CMIP6 model used in the study.
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DISCUSSION
Our study unveils an unprecedented 627-year independently dated 
coral record from Fiji and develops a reconstruction of the SWCP 
temperature gradient, providing valuable insights into the multi-
decadal to century-scale variability in the Pacific. The reconstruc-
tion of the SWCP gradient indicates that the 20th century conditions 
of concurrent Pacific basin-scale warming, and weak tropical Pacific 
temperature gradients are atypical for the past six centuries. Fur-
thermore, the TPDV derived from our reconstructed SWCP gradi-
ent is shown to reflect the IPO SST pattern, allowing us to extend the 
oceanic IPO index to an unprecedented 627 years. When coupled 
with simulation data, our reconstruction shows that, during the 
transition periods when the SWCP gradient is weak, there is a less 
regular expression of the IPO, and it is during these periods that the 
SST and precipitation in the western tropical Pacific show some of 
the strongest anomalies. The Pacific-wide impacts of the IPO on the 
SST and rainfall, as well as the resulting far-reaching teleconnec-
tions, appear to depend on the centennial mean state of the SWCP 
gradient. Our six-century-long reconstruction revealed that the 
similarly paced current anthropogenic warming in the central and 
southwestern Pacific since the late 19th century has reversed the 
SWCP gradient reconstructed for previous centuries, albeit weakly. 
This is associated with stronger interdecadal IPO and SPCZ swings. 
There is evidence that the SWCP strengthened from a strongly nega-
tive state in the 1800s to a weakly negative state in the 1900s in line 
with the shift toward positive IPO. This translated to marked damp-
ening at the heart of the WPWP and drying toward the central and 
eastern Pacific. The question remains as to how ongoing global 
warming and predicted Pacific Walker Circulation weakening may 
reinforce those IPO swings toward further drying during the re-
mainder of the 21st century with potentially adverse effects for the 
inhabitants of vulnerable Pacific Islands and their ecosystems.

MATERIALS AND METHODS
Coral core collection and sampling
During the Paleofiji cruise in July 1998 by the IRD (France), a 2.6-m 
continuous coral core (F14) was collected at 17°14.93′S, 179°06.88′W 
near Kanathea, in the Fijian archipelago. The 2.6-m core was collected 
with a hydraulic drill from the top of a living D. heliopora massive 
coral growing at a 3-m depth below the surface. The coral colony was 
found on an exterior reef plain, with sand substrate and surrounded by 
coral patches dominated by tubular and branched acroporides, and 
some favides. Core sections were cut into ~1.1-cm-thick slabs along 
the major axis of growth. Slabs were rinsed in deionized water, cleaned 
with an ultrasonic probe, and oven-dried at 45°C. X-ray radiography 
images of the slabs revealed clear regular annual density bands (fig. S1). 
A Delta 8″ drill press with a 2.4-mm bit was used to recover coral pow-
der for geochemical analysis. This coral species presents large (~1 cm 
in diameter) corallites with distinctive columella and septa structures 
(35). This gives the opportunity to select the coral structure during the 
milling of powder samples used in geochemical analyses. Damassa 
et al. (35) and Watanabe et al. (36) suggested the use of a columella 
material, while Bagnato et al. (37) argued that robust results could be 
obtained from either columella or septal structures. In this study, the 
columella skeletal material was sampled continuously along the axis of 
maximum growth at 1-mm intervals, generating 2250 samples.

Despite careful sampling of the coral core, it is possible that some 
samples included small contributions from other skeletal structures 

due to the complexity of the skeleton. These contributions are, 
however, likely to be small and random in nature and therefore 
add no systematic long-term variability to the data, which is the 
focus of this study. Potential sampling issues are described in more 
detail in the Supplementary Materials. X-ray diffraction (XRD) analy-
sis (X’Pert, Phillips) was performed on skeletal samples at selected 
intervals; no evidence of diagenetic alteration of the coral skeleton 
was identified in the core.

Geochemical analysis of Sr/Ca
Analysis of Sr/Ca was carried on all samples to generate records of 
the past SST. To eliminate possible contamination from organic 
matter and metal adsorption, each sample underwent a rigorous 
cleaning procedure modified from (38). This cleaning process con-
sisted of three sequential-cumulative steps. First, 1 ml of ultrapure 
H2O (18.2 microhms) was added to the sample and left in an ultra-
sonic bath for 15 min at ambient temperature. Then, 0.25 ml of 30% 
ultrapure H2O2 was added to the sample and left in an ultrasonic 
bath for 15 min at 60°C. Last, 1 ml of ultrapure 4 mM HNO3 was 
added to the samples and put in the ultrasonic bath for 15 min at 
atmospheric temperature. Samples were centrifuged for 4 min be-
tween each step, and the supernatant liquid was carefully removed 
by siphoning with a micropipette.

Before analysis, 1 mg of cleaned coral powder from each sample 
was dissolved in 5 ml of 2 M ultrapure HNO3. Strontium and calci-
um were simultaneously measured in all samples using a Thermo 
Jarrell Ash, model Iris AP, inductively coupled plasma optical 
emission spectrometer (ICP-OES) at the Instituto de Investigacio-
nes Oceanológicas of the Universidad Autónoma de Baja California, 
in Ensenada, Mexico. The sample analysis was performed following 
the intensity ratio calibration method described by de Villiers et al. 
(39). A set of calibration solutions (SPEX) with constant Ca values 
and variable Sr was gravimetrically prepared with concentrations 
covering ranges typical of coral skeletal material. For every five 
samples, a calibration standard was analyzed to correct for drift, 
and for every nine samples, a laboratory-prepared coral standard 
was analyzed to estimate the precision. The overall external pre-
cision obtained for the Sr/Ca from the coral standard was 0.028 
mmol/mol (1 σ). Following this methodology, Villaescusa and Car-
riquiry (40) obtained a precision of ±0.28% (1 σ) for Sr/Ca in Porites sp. 
and Pavona sp. corals. The precision for Sr/Ca of this study was 
±0.31% (1 σ).

Core chronology
The chronology for the core was based on multiple counting of the 
annual density bands from positive and negative x-ray radiograph 
images by two people (fig. S1) supported by skeletal Sr/Ca annual 
cycles. Chronology peak matching of the geochemical signal was 
performed with the AnalySeries software (41). For the geochemical 
data, the Sr/Ca most recent value was tied with its corresponding 
SST value, then extremes of each annual cycle between series were 
tied using “peak to peak” matching. Both chronology methods yield 
similar results with an overall age of 627 years and a linear extension 
rate of ~3.6 mm/year. This age model was confirmed by 230Th/U 
dating (next section), yielding undistinguishable age differences 
between methods when considering ±2 years uncertainties in 
each method.

The 1-mm sample resolution generated approximately four sam-
ples per year, in general, sufficient to identify annual cycles in the 
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series (fig. S2). This resolution does not, however, allow us to resolve 
the full resolution of the seasonal variability particularly in the years 
when skeletal growth was reduced; in such cases, the information 
was obtained solely from the growth bands. The coral Sr/Ca record 
was resampled to annual resolution using the built-in linear inter-
polation function in the AnalySeries software (41). The annual 
record spanned from 1370 to 1997 as the 1998 band was still in for-
mation at the time when the core was collected and thus excluded. 
The chronology was cross-checked with volcanic events (42) (Fig. 1D) 
and with known El Niño events (43) recompilation. These events 
were used as an initial guide for tie points, but the final chronology 
was adjusted in AnalySeries based on the seasonal information from 
the Sr/Ca and not constricted by these reference points.

U-Th dating
A small piece from the bottom of the offcut adjacent to the slab 
used for the geochemical analyses was cut and dated using the 230Th/U 
method at the Institute for Geosciences, Johannes Gutenberg-
University Mainz, Germany (table  S1). The coral subsample of 
~250 mg was prepared by column chemistry and analyzed by mul-
ticollector ICP mass spectrometry (MC-ICPMS; Neptune Plus). The 
weighed sample was briefly leached in 7 N HNO3 to remove poten-
tial surface contamination and dissolved in 7 N HNO3, and a mixed 
229Th-​233U-​236U spike was added [see (44) for details on spike cali-
bration]. Potential organic material was removed by adding a mix-
ture of concentrated HNO3, HCl, and H2O2. The dried sample was 
then dissolved in 6 N HCl, and U and Th were separated using 
ion-exchange column chemistry (45). Details about the MC-ICPMS 
procedures are described in (46). All activity ratios were calculated 
using the decay constants as shown in (47) and corrected for detrital 
contamination assuming a 232Th/238U weight ratio of 3.8 for the de-
tritus and 230Th, 234U, and 238U in secular equilibrium. The correc-
tion is not significant within error.

On the basis of the x-ray data, this piece is estimated to have been 
located ~14 years below the last sample collected for geochemical 
analysis, which corresponds to approximately AD 1356. The 230Th/U 
method yielded a date of AD 1359.5 ± 2.0 years, which aligns excel-
lently with an uncertainty of ±2 years for the age model based on 
band counting and geochemical data.

SST calculations from Sr/Ca
The instrumental annual (January to December) SST from the 
ERSSTv5 (48) database for the 2° × 2° grid centered at 18°S, 180°W 
(the region that includes Fiji) was used to convert the coral Sr/Ca 
record to temperature values. The ERSSTv5 product was used in-
stead of HADISST as it showed a slightly better agreement (higher 
correlations) with the coral data (fig. S3 and table S2). The ERSSTv5 
record shows a good agreement with the higher resolution but 
shorter (1982 onward) OISSTv2 1° × 1° SST product grid centered at 
17.5°S, 179.5°W (r = 0.946, P < 0.001) (49).

Figure S3 shows the good agreement between the annual ERSSTv5 
SST data and the annual Sr/Ca record during the period of 1883 
to 1997 (r = −0.361, P < 0.001). The congruence between the series 
improved during the past 20 years (1978 to 1997; r  =  −0.528, 
P < 0.001), like the relationship between the Sr/Ca reconstruction 
and OISSTv2 (1982 to 1997; r = −0.546, P = 0.028). This is expected 
as the quality of instrumental data markedly reduces with time. The 
latter is especially true in the southern tropical Pacific as data prior 
to the 1970s are very scarce (50, 51). Before 1883, the instrumental 

data deviated from our Sr/Ca record; this was also observed in other 
coral records in the region (23), suggesting a critical decay in the 
quality of the instrumental database. Therefore, the instrumental data 
from the ERSSTv5 before 1883 were excluded from all calculations.

The coral Sr/Ca data were converted to temperature data by scal-
ing the coral data to match the average and SD of the ERSSTv5 over 
the 1883 to 1997 period. As a first approach, different linear regres-
sion calibrations for different periods were tested; however, as indi-
cated by the root mean square error (RMSE) calculated for the 
period of 1883 to 1997 (table S3), better results were obtained when 
the Sr/Ca-SST data were scaled to match the average and variability 
of the instrumental record. Scaling annual Sr/Ca records to generate 
SST reconstructions with more realistic amplitude has been used to 
improve calibrations from annual data (23, 52). Here, the data were 
scaled in a two-step process. First, the SST and Sr/Ca records were 
normalized using standard scores to the calibration period of the 
most recent 110 years (1883 to 1997) according to

Then, we used the SD and mean from the ERSSTv5 to convert the 
standardized Sr/Ca record to temperature values

where σSST and σSr/Ca are the SD over 1883 to 1997 for the SST 
instrumental record and for the coral Sr/Ca data, respectively. mSST 
and mSr/Ca are the mean over 1883 to 1997 for the SST instrumen-
tal record and for the coral Sr/Ca record, respectively. SSTi and Sr/
Cai are the SST and Sr/Ca parameters at certain points in time, re-
spectively. Second, the Sr/Ca was converted to SST (SSTSr/Ca) val-
ues using the instrumental record’s mean and SD values over the 
selected period (1883 to 1997). The improvements from scaling the 
data compared to a traditional calibration (e.g., using a linear re-
gression between the coral and SST data) were evident in reducing 
the RMSE observed in table S3.

Selecting the appropriate calibration period/method also has im-
portant implications in the quantitative analysis of the temperature 
reconstructions (fig. S4), for example, in the estimation of the mag-
nitude of warming or cooling but not on the overall trends. This can 
be clearly observed when different calibration periods are selected 
to calibrate the F14 Sr/Ca record against the same instrumental re-
cord. In the case of our record, we observed that the best reconstruc-
tions were obtained for the 1978 to 1997 period and for the scaled 
data. All other calibration periods amplified the temperature chang-
es, which, for example, resulted in an overestimation of the warming 
over the past 113 years (1883 to 1997). We observed that scaling the 
coral data, in general, produced data that best matched the warming 
of 0.52°C recorded by the instrumental ERSSTv5 data over the pe-
riod of 1883 to 1997 (table S4). Scaling the data reduced some of the 
effects on the temperature calibrations from periods when the cor-
relation of the Sr/Ca data with the SST was reduced, which masked 
the real sensitivity of the proxy to temperature changes. In this 
sense, when the relationship between Sr/Ca and the SST is expressed 
as a linear equation of the form Sr/Ca = m * SST + c, the noise in the 
data reduces the “real” sensitivity (m) of the Sr/Ca to temperature; 
however, when solved for SST = (Sr/Ca − c)/m, this error ends up 
overestimating the temperature variability as observed in fig. S4.

nSr/Ca
i
=
(

Sr∕Ca
i
- mSr/Ca

)

∕σSr∕Ca

nSSTi =
(

SSTi - mSST
)

∕σSST

SSTSr∕Ca = nSr∕Cai × σSST +mSST
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Composite SST record
The Sr/Ca record from core F14 was significantly correlated with 
other Sr/Ca records from Fiji (cores AB and 1F) (23). Correlations 
between our core F14 with core AB (excluding anomalous data prior 
to 1725; r = 0.35, P < 0.001, n = 272) and with core 1F (r = 0.34, 
P < 0.001, n = 215) were like the correlations between cores AB and 
1F (r = 0.40, P < 0.001, n = 215). Despite the overall good agree-
ment on a longer timescale during some periods, there were differ-
ences at the interannual level between all three cores (fig. S5). 
Uncertainties in the records due to sampling, analytical errors, vital 
effects, or local variability could explain some of these differences 
(see the Supplementary Materials). We created a composite record 
including information from all three records to reduce these effects. 
The composite record included the data from our 627-year record 
(F14) and the 215 years of overlap (1781 to 1996) from cores 1F and 
AB. We limited the interpretation of this combined data to general 
assertions about long-term changes and avoided discussing specific 
brief events. Our SST reconstruction alone (core F14) showed sig-
nificant correlations with reconstructed SSTs for Fiji from the PHY-
DA (r = 0.47 F14-PHYDA, P < 0.001; 1370 to 1996) (21) and the 
O2KWP (r = 0.37, P < 0.001; 1617 to 1997) (24). Combining our 
Fiji record with the existing coral Sr/Ca data from Fiji (1781 to 1996) 
(23) into a composite record (Fiji composite) improved the correla-
tion with the ERSSTv5 (r = 0.57, P < 0.001; 1883 to 1997; Fig. 1E) 
and the PHYDA data from Fiji (r = 0.55, P < 0.001; 1370 to 1996) 
and the O2KWP (r = 0.49, P < 0.001, n = 381; 1617 to 1997), an 
improved correlation is expected, although the Fiji records in (23) 
are included in the PHYDA and O2KWP reconstructions.

Modeled SST data
The simulations analyzed in this study were conducted with the 
state-of-the art CESM version 1.1 with Community Atmosphere 
Model version 5 (CESM1-CAM5). CESM is a coupled earth system 
model comprising atmosphere, ocean, and sea-ice modules and is 
driven by estimations of external climate forcing, including solar 
output, volcanic eruptions, greenhouse trace gases, and land-use 
changes, as described below.

The CESM LME used for this study consists of 13 “all-forcings” 
runs (three runs added at a later stage) all branched from the same 
date chosen at random from the preindustrial control run (fig. S6). 
The initial atmospheric conditions were numerically perturbed 
13 times to obtain the initial conditions for each simulation in the 
LME. These CESM simulations are not part of the CMIP; however, 
CESM is a successor of CCSM4, which participated in CMIP5.

The past millennium simulations are conducted with prescribed 
atmospheric concentrations of carbon dioxide and methane. As de-
scribed above, the initial conditions for these simulations are chosen 
at random from control preindustrial simulations—the actual initial 
conditions are unknown. This means that the timing of internal cli-
mate variability, such as ENSO and the IPO, is not synchronized with 
real-world internal climate variations. Within the simulation ensem-
ble, each individual simulation represents an a priori equally probable 
evolution of the climate conditioned by the imposed external forcing. 
A detailed description of the past millennium forcings used in the 
CESM simulations is provided elsewhere (53). We also extracted the 
SWCP gradient from past millennium simulations performed with 
CMIP5 models MPI-ESM (54) and CCSM4 (55) (fig. S6). For more 
details on the models, see the Supplementary Materials.

Gradient calculation
We defined SWCP as the difference between the box in the south-
west tropical Pacific (10° to 22°S, 150° to 180°E) including Fiji and 
the Niño 3.4 region (5°N-S, 190° to 240°E). To extend the SWCP 
prior to the instrumental record, we calculated the difference be-
tween the coral composite record from Fiji and the SST reconstruc-
tions for the Niño 3.4 region from (56) (EG-N3.4) and (21) (PHYDA) 
(fig. S7). The EG-N3.4 anomalies were calibrated back to absolute 
temperatures using the ERSSTv5 data for the area covering Niño 3.4 
over the period of 1883 to 1995. Comparisons of the mean SWCP 
paleoreconstruction with instrumental SST-derived records of the 
SWCP and zonal gradient (defined as the difference between 2.5°N-
S, 117° to 173°E and 2.5°N-S, 205° to 275°E) (57) since the late-19th 
century validate our reconstruction of the SWCP and indicate a re-
lationship to the zonal gradient (fig. S8, A and B). We find that our 
SWCP paleoreconstruction is highly correlated with estimates of the 
gradients based on instrumental ERSSTv5 (r = 0.77 zonal gradient; 
r = 0.83 SWCP; P < 0.001; 1883 to 1995). Running correlations of 
31 years attest to the stability of these relationships since the 1880s 
(fig. S8). Spatial correlations for the reconstructed SWCP SST gradi-
ent with the SST indicate an ENSO-like pattern across the Pacific 
and teleconnections to the Indian Ocean (fig.  S8C). These spatial 
SST correlations from the coral-based index (Fig. 3 and fig. S9) are a 
mirror image of those for the zonal gradient and SWCP instrumen-
tal data (Fig. 1 and fig. S10). We further validated our reconstruction 
by calculating the gradient from our Fiji composite and the coral 
annual Sr/Ca record from Palmyra (figs. S7 and S9) (58), which lies 
in the area of influence of Niño 3.4, obtaining similar results as with 
the average SWCP from EG-N3.4 and PHYDA (r = 0.59 zonal gra-
dient and r = 0.67 SWCP, P < 0.001; 1883 to 1995). The link between 
the WPWP and the eastern Pacific predicts a relationship between 
the SWCP and the zonal gradient, which is confirmed by instru-
mental reconstructions for the SWCP and zonal gradient (r = 0.97, 
P < 0.001; 1883 to 1997).

IPO reconstruction
To reconstruct the IPO, we used the TPDV derived from our recon-
structed SWCP gradient, which includes the SWCP nodes consid-
ered in the definition for the IPO proposed by Henley et al. (11). On 
the basis of this definition and the characteristic horseshoe pattern 
of the IPO, we assume that the southwest and northwest poles mir-
ror each other. To extract the TPDV component from the SWCP 
gradient and reconstruct the IPO, we detrended the SWCP using a 
second-degree polynomial and applied a Chebyshev Type I filter [as 
proposed by Henley et al. (11) with a second-order lowpass with 0.5 dB 
of peak-to-peak ripple in the passband and a passband-edge fre-
quency of 0.125].

One limitation of using the TPDV derived from the SCWP gra-
dient as a proxy for the IPO is that it only incorporates data from the 
equatorial and southern nodes of the IPO. Obtaining data from the 
northern node would help validate the findings of this study and 
further establish the prevalence of the IPO as the dominant mode of 
variability during the past centuries-millennia.

CMIP6 data
Monthly averaged MSLP, precipitation, and SST data from prein-
dustrial control simulations of 23 CMIP6 models (total 16,062 years 
of data) were used in this study to generate composite maps based 
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on the magnitude of the SWCP gradient (Fig. 4 and fig. S13). CMIP6 
models used and the number of years analyzed are shown in table S6.

Statistical analysis
Statistical significance in all running and spatial correlations were 
computed against a 1000-sample Monte Carlo (59). 95% signifi-
cance levels were calculated and illustrated for running correlations 
and colored in all spatial correlation maps. Running correlations 
and spatial correlations were calculated in KNMI Climate Explorer 
(59) and later redrawn with MATLAB. Abrupt changes in the mean 
of records were calculated using MATLAB’s change point analysis 
with the maximum number of changes limited to three. The Cheby-
shev filter was applied using the MATLAB built-in function cheby1.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S15
Tables S1 to S6
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