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Summary

As a central hub for cognitive control, prefrontal cortex (PFC) is thought to utilize memories. 

However, unlike working or short-term memory, the neuronal representation of long-term memory 

in PFC has not been systematically investigated. Using single-unit recordings in macaques, we 

show that PFC neurons rapidly update and maintain responses to objects based on short-term 

reward history. Interestingly, after repeated object-reward association, PFC neurons continue to 

show value-biased responses to objects even in the absence of reward. This value-biased response 

is retained for several months after training and is resistant to extinction and to interference from 

new object reward learning for many complex objects (>90). Accordingly, the monkeys remember 

the values of the learned objects for several months in separate testing. These findings reveal 

that in addition to flexible short-term and low-capacity memories, primate PFC represents stable 

long-term and high-capacity memories, which could prioritize valuable objects far into the future.

In Brief:

In this article, Ghazizadeh et al, present a systematic investigation of value memory in 

ventrolateral prefrontal cortex neurons in macaque monkeys lasting from a few minutes to several 

months. This value memory is shown to be robust against forgetting and interference and allows 

animals to find many valuable objects long after reward learning.
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Introduction

Many animals including invertebrates [1] and vertebrates [2] are capable of rapidly learning 

values associated with arbitrary stimuli. Such short-term adaptability is thought to be critical 

when encountering stimuli in novel environments. In primates, PFC is thought to underlie 

various forms of visual reward association learning such as conditional visuomotor learning 

[3,4], concurrent visual discrimination[5,6] and object-reward association[7]. A popular 

concept is that PFC works flexibly so that the animal can think and behave intelligently[8,9]. 

Such flexibility is based on the comparison of recently acquired information and behavioral 

goals and therefore is based on short-term memories. In this scheme, PFC can rapidly 

learn object reward associations to meet current task demands, whereas long-term retention 

and consolidation of reward association could depend on other brain areas. Indeed, such 

a dichotomy between new learning and long-term storage of value memories is recently 

reported in basal ganglia [10,11] and resembles standard consolidation theory of episodic 

memories in that different structures are involved in initial memory formations and long-

term storage[12]. These data may suggest that PFC is specifically involved in one side of the 

dichotomy: short-term working memory.

On the other hand, there is also evidence that implicates PFC in encoding and retrieval of 

certain memories in longer time scales[13–15]. With regards to reward, long-term memory 

is critical ecologically for activities, such as foraging, when cues associated with food are 

not encountered for protracted periods due to seasonal availability. On the maladaptive side, 

reward-based long-term memory may underlie behaviors such as drug addiction. However 

direct evidence regarding the neural representation of reward-based long-term memories 

across a wide time range in primate PFC is currently lacking.

We have recently shown that PFC connects with both short and long-term value memory 

networks in basal ganglia[16]. Furthermore, using fMRI, we recently found signatures 

of reward-based long-term memory in PFC[17]. We thus hypothesize that not only PFC 

neurons should be sensitive to reward learning with new objects but should also reflect 

previously learned associations at longer memory periods. Interestingly, our results show 

that this is indeed the case. We found that PFC responses encoded both reward-based short-

term and long-term memories for several months with a high capacity for many complex 

objects.

Results

To examine the retention of learned values, we recorded the activity of single neurons in and 

ventral to the principal sulcus (ventrolateral PFC areas 8Av, 46v and 45 [vlPFC], Figure S1) 

in two monkeys (monkeys B and R with 159 and 191 neurons in left and right hemispheres, 

respectively, Table 1). Each monkey viewed fractal objects that were repeatedly paired with 
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low or high rewards in a biased reward training task (Figure 1A left), dividing the objects 

into “bad” and “good” categories, respectively. The fractals trained with reward were later 

tested in a passive viewing task to probe reward-based memory signals while recording 

neurons in vlPFC (Figure 1A, right).

To examine the retention of learned values in long-term memory, we tested the neurons’ 

responses to good and bad objects, hours, days, weeks or months after they were last 

trained with reward (Figure 1B, left). During the memory test, good and bad objects were 

intermixed and shown one at a time and without reward in the neuron’s receptive field 

(mapped prior to memory test, Figure S2, see STAR Methods). Animals were rewarded 

for maintaining fixation after random intervals independent of objects. We utilized many 

random fractals (~100) for each monkey in value memory test (Figure 1C). This was to 

ensure that neural responses could not be attributed to idiosyncratic features in each stimulus 

and also to gauge the capacity of the long-term memories.

During the memory retention period for a given set of objects, reward association was not 

repeated for that set, but reward training with other objects was performed (Figure 1B–C, 

>230 novel fractals not used in memory test as well as previously trained fractals). The 

training with novel objects was done in part to examine the stability of value memories 

in vlPFC in the presence of new object-reward learning (retroactive interference). But in 

addition, this reward training, allowed us to examine reward learning signals in individual 

vlPFC neurons for novel objects in their first day of training and for previously trained 

objects after multiple days of training (Figure 1B, right). The same strategy was used to test 

memory at multiple scales in individual neurons despite the fact that recordings were acute. 

A neuron could be tested with fractals that were trained months ago in one block and with 

fractals that were trained hours or days ago in the next block in the same session (Figure 1B, 

right).

Object value encoding emerges and persists across reward training trials in vlPFC

First, we examined the learning of object values in vlPFC neurons and their short-term 

value retention (memory across trials) during learning (Figure 2). Figure 2A shows two 

example neurons that had similar firing to good and bad objects in the beginning of training, 

but developed differential firing to good and bad objects by the end of the first training 

session (one with higher firing to good objects referred to as good-preferring neuron and one 

with higher firing to bad objects referred to as bad-preferring neuron). Value preference of 

neurons was determined at the end of the training session (with cross validation, see STAR 

Methods). Across the population, similar learning was observed when comparing the first 

five and last five reward pairings with an object in the first day of training (Day 1) and 

after >10 days of training (using previously trained objects) (Figure 2B). The difference 

in response to good and bad objects emerged rapidly within the first few trials and then 

grew with a slower rate (Figure 2C, Day 1). After multiple days of value training, the 

response difference became larger (Figure 2C, Day >10), indicating that the slower learning 

continued to enhance response differences across days. Interestingly, this differential firing 

to objects emerged mainly from a reduction of firing to the non-preferred object values 
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while the response to the preferred value remained unchanged across the population on 

average (Figure 2D).

Average discriminability of good and bad objects (value AUC, see STAR Methods) among 

vlPFC neurons was already significant within the first 5 trials and continued to grow across 

trials and days (Figure 2E). These results confirm previous findings about rapid value 

learning in vlPFC, but also reveal a second slower time course that can take many days 

to fully develop. The differential response to good and bad objects did not change within 

a training session after 10 days of training (Figure 2C, main effect of trials after 10 days 

F4,165=0.3, P> 0.8, 1st compared to 2–5th trials t33=1.7 P=0.09). Animal behavior measured 

by sporadically added choice trials also showed rapid learning within a few trials in the first 

day followed by a slower phase of improvement afterwards (Figure S3A–B).

To examine the retention of learned values during training, the discriminability of good and 

bad objects for objects seen 1–4 trials ago was compared to objects seen 5–8 trials ago. 

During the intervening trials for a given object, other objects in a set of 8 were trained 

with reward. Population average showed retention of learned values despite the intervening 

trials (Figure 2F–I). This was true even on the first day of training despite overall smaller 

AUC values (Figure 2F–G) compared to the AUC values after multiple days (Figure 2H–I). 

Accordingly, animal’s choice of good objects was not affected by the number of intervening 

trials for objects seen 1–4 trials ago compared to 5–8 trials ago in both the first and after >10 

days of training (Figure S3C–D).

Encoding of object values persists in vlPFC from minutes to months

Next, we tested the reward-based long-term memory after >10 days of training when the 

differential response to good and bad objects seemed to be fully developed (Figure 2C). 

Value memory was tested by examining neuronal activity during passive viewing of objects 

that were trained in the same day (minutes to hours ago) or days, weeks and months before 

(Table 1). Some neurons were tested in more than one memory period by exposing the 

neuron in the same recording session to objects with different time lapses after that last 

training. Figure 3A shows two such example neurons each tested with objects trained days 

before and months before. Both neurons were excited more strongly by good compared 

to bad objects (good-preferring neurons), showing reward-based long-term memory days 

after training (Figure 3A days-later). Importantly, this reward-based long-term memory 

was also observed for other objects that were seen more than 3 months ago (Figure 3A 

months-later). Similarly, neurons with higher firing to bad compared to good objects (bad-

preferring neurons) retained value memories for objects trained days and months before 

(Figure S4). The population average using the neurons’ value preference (cross validated, 

see STAR Methods) showed a remarkably similar pattern of activity and significant value 

discrimination across the four memory periods tested (Figure 3B). The firing difference to 

good and bad objects, its rise time and duration was virtually unchanged by passage of time 

(Figure 3C).

To quantify the effect of value memory on object responses in vlPFC, we calculated 

AUCs for discrimination of good and bad objects (value AUCs) for each neuron during 

passive viewing. The overall distribution of value AUCs across all neurons showed a 

Ghazizadeh et al. Page 4

Curr Biol. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant shift toward preference for good objects (higher firing to good compared to 

bad) (Figure 4A). A large percentage of neurons showed significantly positive AUC values 

(46% good-preferring), but some neurons showed significantly negative AUC values (13% 

bad-preferring). Notably, except for differences in average firing pattern to good and bad 

objects (Figure 4B), good- and bad-preferring neurons were not distinguishable based on 

various physiological criteria including spike shape, basal firing rate, visual and value 

differentiation onsets and response variability across objects (Figure S5).

Across the vlPFC population, the value memory significantly increased the pairwise 

discriminability between good and bad objects compared to discriminability of objects 

within good and bad categories (Figure 4C). However, no relationship between within 

and between value category discrimination among neurons was observed beyond what 

is expected from chance (see STAR Methods). This suggests that the degree of object 

selectivity in a neuron was not predictive of its sensitivity to value memory.

Finally, and consistent with data shown in Figure 3B–C, the average value AUC was stable 

across memory periods for many months across the vlPFC population (Figure 4D, left). The 

stability of value memory was also observed separately in good- and bad-preferring neurons 

(i.e. similar AUCs across memory periods). The percentages of good- and bad-preferring 

neurons in the population were also stable across the memory periods (Figure 4D, right). 

Similar results were observed separately for each monkey (Figure S6A–D). Across the 

population, object selectivity was relatively low and overall did not change across memory 

periods, regardless of neuron value preference (good- or bad-preferring) or object categories 

(good or bad). This suggests that value discrimination across memory periods did not 

become sparsely focused on a few objects (i.e. no significant increase in sparsity).

Importantly, retention of value discrimination was also observed within neurons tested 

with multiple memory periods (Figure S7A–B). For this population, the value AUCs in 

earlier and later memory periods were not significantly different and had the same sign 

(i.e. good- or bad-preferring in both periods) for the majority of neurons (>89%; 69 out 

of 79 neurons, Figure S7B). Such sustained value memory was also observed in neurons 

that were additionally tested in value learning task (Figure S7C–D). For this group of 

neurons, the average value AUC during passive viewing task tended to be somewhat lower 

(not significant) than AUC during the training task (Figure 2E vs Figure S6C: training 

AUC=0.77 vs passive viewing AUC=0.71 n=34, difference t33=1.8 P=0.07). Nevertheless, 

the value discriminability during passive viewing was not sensitive to passage of time for 

several months after training (Figure S7C). The majority of the neurons tested in value 

learning (67%; 23 out of 34 neurons) showed significant value learning in training task 

and significant value memory during passive viewing. This suggests that the same group of 

neurons in vlPFC encode reward-based short-term (across training trials) memory as well as 

long-term memory. Furthermore, the fact that the population value AUC was well-sustained 

across the memory periods, despite monkeys being engaged in reward training with many 

other objects (>230 objects), reveals the formation of stable long-term memories that were 

resistant to retroactive interference.
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Value encoding of objects in vlPFC is resistant to extinction

Repeated exposure of reward-predicting cues without reward can result in the extinction 

of value signals[18]. Since the passive viewing task consisted of repeated presentation of 

a given object without contingent reward, the stability of value signals in vlPFC neurons 

against extinction could be tested as well. Consistent with reports on repetition suppression 

[19] , there was a reduction in overall firing as a function of number of exposures for a 

given object. However, the differential firing to good and bad objects remained stable across 

trials and there was no decrease in average value AUC (Figure 4F). This was the case 

separately for bad- and good-preferring neurons averaged across monkeys (Figure 4G) and 

also separately for each monkey (Figure S6E–F). Such resistance to extinction is previously 

seen in over-trained habitual behaviors [20] and is consistent with the development of object 

skills created by long-term training with reward[21,22].

vlPFC can encode and retain values of a large number of objects

In order to ensure that the value signals present in vlPFC population were not driven 

by only a few objects that were well-remembered, we examined the average response to 

all the objects in each monkey (52/52 and 48/48 good/bad fractals in monkeys B and R 

respectively). In both monkeys, the vlPFC population response (combined across memory 

periods) to good objects was larger than bad objects consistent with a high capacity 

mechanism (Figure 5A). Across all the objects used, the population response in vlPFC 

could be used with high fidelity to discriminate good and bad objects (Figure 5A inset, 

0.99 and 0.95 AUC in monkeys B and R, respectively p<1e-10). The number of objects 

that were correctly classified at the optimal threshold by the ideal observer was 100 out 

of 104 in monkey B and 85 out of 96 in monkey R (see STAR Methods). This suggests 

that representation of value memory in vlPFC has high capacity for a large number of 

objects (high-capacity memory). This memory capacity can also be verified by looking at 

the average AUC of a given good object vs other bad objects and vise versa across the 

population separately for neurons with positive and negative AUCs (determined from Figure 

4A G>B or B>G). This analysis further confirmed that value memory in both good- and bad- 

preferring neurons is not driven by a few objects rather a clear separation of AUCs between 

good and bad objects is observed for a large number of objects (Figure 5B).

Intact behavioral memory of object values from days to months

Given the retention of learned object values in vlPFC for months, we predicted that monkeys 

should remember learned values long after last reward learning. To test this behaviorally, 

free viewing gaze bias toward good objects [23,24] was used as an index of memory 

strength[25]. The persistence of gaze bias was tested across memory periods while reward-

learning with other objects was underway (Figure 6A–B). Consistent with neural retention 

of learned value, behavioral results showed a significant gaze bias toward good objects that 

was unchanged from days to months in both monkeys (Figure 6C).

Discussion

We asked whether and how long-term memory of object values is represented in the 

ventrolateral prefrontal neurons. Prefrontal cortex is often associated with working memory 

Ghazizadeh et al. Page 6

Curr Biol. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that has a short-term and low-capacity storage[26,27]. Despite evidence for a role in 

encoding and retrieval of certain long-term memories[14,15,28], the neuronal representation 

of value memory in the vlPFC across a wide time range from a few trials to several months 

was not systematically investigated. Our results showed that vlPFC neurons not only rapidly 

learn and maintain values in short-term memory across the training trials (Figure 2) but also 

retain them for long periods of up to a few months and for a surprisingly large number for 

visual objects (Figure 1, 3–5). Value memories were found to be resistant to interference 

from reward learning with other objects and to extinction from repeated exposures of learned 

objects without reward (Figure 4). Such resistance to extinction following long-term reward 

training suggests that the memory signals in vlPFC are related to habits and skills rather than 

mediating a goal-directed function [20–22]

Notably while short-term and long-term memories of object values are encoded by distinct 

regions in basal ganglia [29–31], they are found in the same region and within the same 

neurons in the vlPFC (Figure 2, Figure S7). It is possible that the value learning and 

memory signals in vlPFC are mediated by basal ganglia circuitry. Specifically, recent studies 

in our lab have shown that posterior basal ganglia (pBG), which includes caudate tail 

(CDt) and caudal-lateral substantia nigra reticulata and compacta (clSNr and clSNc), encode 

long-term value memories of objects days after training [10,32,33]. Interestingly, the vlPFC 

region investigated in this study is shown to be targeted by clSNr (the pBG output) via 

thalamus[34] . This puts vlPFC within the network that processes and stores reward-based 

long-term memories. On the other hand, vlPFC also projects heavily to caudate head (CDh)

[16] which is known to be sensitive to recent reward histories[10] and receives feedback 

from CDh via basal ganglia thalamocortical loops[34]. This puts vlPFC in a prime position 

to be informed of both recent and old reward histories for objects. Encoding both reward-

based short and long-term memories, enables vlPFC to play a key executive role in real 

life when both recent and old memories should be taken into account for optimal decision 

making.

vlPFC is also reciprocally connected with the inferior temporal cortex (IT) [35,36] and 

these connections contribute to object discrimination learning and memory [13,37,38]. Since 

IT cortex is the main input source to CDt [39], it is possible that reward-based long-term 

memories may also be found in responses of IT neurons. However, it is likely that due to 

higher object selectivity in IT compared to PFC [40–42](and see Figure S5), the responses 

in the latter is better suited for discrimination of objects based on learned values. Indeed, 

our results showed that the value discriminability in vlPFC was independent of the modest 

object selectivity present in this region (Figure 4C). Nevertheless, our results are consistent 

with our recent findings using fMRI that implicated both vlPFC and IT cortex and their 

connectivity in discrimination of valuable objects in long-term memory[17].

The fact that single vlPFC neurons were responding similarly within bad and good object 

categories after long memory periods, may be related to previous findings that implicated 

PFC in learning object categories[43,44]. Indeed , it is possible that the act of associating 

high reward with some objects and not others resulted in implicit categorization of object 

into two categories[45]. If so the sustained responses in vlPFC may be better interpreted as 

category memory rather than value memory. However, the fact that good-preferring neurons 
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largely outnumbered bad-preferring neurons in the current experiment argues against such 

interpretation (Figure 4A–B). This is because in a pure category learning there is no a-priori 

reason for one category to be over-represented as a preferred response among the neuronal 

population as often observed in perceptual categorization[43]. A higher proportion of reward 

preferring neurons in PFC is also reported previously[45]. Thus, we believe that a simple 

categorization framework does not capture the biased preference for valuable objects in 

vlPFC.

We also note that while behavioral and neural value learning both showed a rapid rise within 

the first five trials in the first day of learning (Figure 2 and Figure S3), behavioral learning 

seemed to almost plateau in the first day while vlPFC value discrimination continued to 

improve across days. One possibility is that the mapping of value discrimination in vlPFC 

to choice behavior is non-linear. This is likely to be true since neural discrimination of good 

and bad objects (value AUC) can be combined across many neurons for highly accurate 

choice of good objects even when value AUC per neuron is modest. In this case increasing 

the AUC per neuron beyond a certain point will have diminishing effects in choice rate 

that is already close to 100%. Alternatively, the improvement in value discriminability in 

vlPFC across days may be used for processes that go beyond simply knowing which object 

to choose. For instance, we recently showed that biased object-reward association can create 

a value pop-out for efficient visual search but only after training is repeated for many 

days and long after choice plateaued at 100%[22]. Given the prominent vlPFC projections 

to superior colliculus (SC)[46], the gradual increase in AUC after multiple days could 

lead to development of value pop-out and rapid gaze orientation toward good among bad 

objects. Notably, discrimination of objects by values in long-term memory happened rapidly 

(~100ms) in vlPFC (Figure S5A). Such rapid detection of valuable objects not only helps the 

animal to obtain rewards but to obtain them more frequently (i.e. maximizing rewards per 

unit time), an “object skill” that is important for competitive fitness[21]. The strong value 

memory developed across days in vlPFC can also interact with the short-term feature based 

attention[42] for rapid detection and prioritization of good objects[22]. One mechanism for 

such interaction could be via a top-down modulation to bias sensory processing in the early 

parts of ventral stream[47].

While there is accumulating evidence on the role of vlPFC [48–50] and more generally 

frontal cortexes[51–53] in value-based learning and decision making across monkeys and 

humans[54], such involvement may generalize to other motivationally salient but non 

rewarding situations. Indeed, previous studies have shown that many vlPFC neurons encode 

short-term memory for motivationally salient outcomes[52,55]. Notably, Kobayashi et al[55] 

found that short-term memories for appetitive and aversive outcomes are encoded by 

partially non-overlapping populations in lateral PFC. This suggests that short-term memory 

of value and salience could independently co-exist in vlPFC. We have recently shown 

that days-long memory arising from distinct experiences such as reward, aversiveness, 

uncertainty and novelty, can similarly modify object salience and division of attention 

between multiple objects[24]. These results predict the existence of a long-term memory 

mechanism for non-rewarding dimensions of learned salience. This may turn-out to be 

encoded by single vlPFC neurons or by different group of neurons or regions that also 

influence downstream areas such as SC to guide gaze and attention toward important 
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objects. Indeed, the activations seen in vlPFC could mediate or be mediated by attention 

or emotional responses to good objects. Examination of the long-term memory signals 

across such different dimensions in vlPFC can also help determine the degree to which 

the activations seen here are related to attentional processes rather than value per se [56]. 

Nevertheless, we note that even in that case the attentional processes will be contingent on 

the long-term retention of learned stimulus value, which is a form of associative memory.

Finally, while recent findings point to PFC as a likely candidate for storage of long-term 

memories[57], our results do not rule out the possibility that the observed reward-based 

long-term memory signals in vlPFC may be partially or fully routed to it by other structures. 

Previous findings suggest that such object-outcome memories are likely to be independent of 

areas mediating episodic memories such as hippocampus[58,59] pointing to non-declarative 

origins for value memory. However, apart from the discussed connections between vlPFC, 

basal ganglia and IT cortex, vlPFC also connects with other regions such as orbitofrontal 

cortex (OFC), anterior cingulate cortex (ACC) and amygdala all of which are known to 

mediate reward-based decision making [60–62] and could be involved in formation of stable 

object values. While there is some evidence about the precedence of basal ganglia relative to 

PFC in associative learning and formation of reward-based short-term memory[3], whether 

reward-based long-term memory formation emerges in a single area or separately across 

various components of this interconnected network is an open question.

In summary, our results revealed a long-term high capacity memory mechanism in the 

primate prefrontal cortex for discrimination of objects based on their old values. Repeated 

reward association created differential object selectivity in vlPFC (Figure 4C). The stability 

of object discrimination for many months in vlPFC is consistent with the stability of 

behavioral memory of object values reported here and in our previous studies. Maintaining 

memory of an object’s old value is important in real life where many objects are experienced 

and must be efficiently detected in future encounters. This system allows animals and 

humans to robustly adapt to their environments to find previously rewarding objects, 

accurately and quickly. On the other hand, this long-term high capacity memory could 

also be relevant for mal-adaptive behaviors where rewarding drug cues persistently activate 

cortical areas to drive drug seeking behavior. This may explain why disruption of such 

prefrontal activations can be an effective therapeutic approach[63].

STAR*Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, data and code should be directed to and will 

be fulfilled by the Lead Contact, Dr. Ali Ghazizadeh (alieghazizadeh@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and surgery—Two adult male rhesus monkeys (Macaca mulatta) were used in 

all tasks (monkeys B and R ages 7 and 10, respectively). All animal care and experimental 

procedures were approved by the National Eye Institute Animal Care and Use Committee 

and complied with the Public Health Service Policy on the humane care and use of 
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laboratory animals. Both animals underwent surgery under general anesthesia during which 

a head holder and a recording chamber were implanted on the head and scleral search coils 

for eye tracking were inserted in the eyes. The chamber was tilted laterally and was place 

over the left and right prefrontal cortex (PFC) for monkeys B and R, respectively (25° tilt for 

B and 35° tilt for R, Figure S1A). After confirming the position of recording chamber using 

MRI, a craniotomy over PFC was performed during a second surgery.

METHOD DETAILS

Sample size—To calculate the sample size needed, we wanted to be able to detect changes 

of at least 0.05 (i.e. AUC>0.55 or <0.45) in mean population AUC (Figure 4A) with power 

80% and significance level of 0.05. Our initial recording in each monkey showed a standard 

deviation of about 0.2 in AUC histogram across the population. Given these values and 

assuming a normal distribution for AUC, the total number of neurons to have significant 

results separately in each monkey, was found to be 126 neurons per animal (http://

powerandsamplesize.com/Calculators/Test-1-Mean/1-Sample-Equality). Given the fact that 

we had further division of neurons among memory periods as well as a reward learning task, 

we collected more than this minimum sample size in each monkey (159 and 191 neurons in 

monkeys B and R, respectively).

Stimuli—Visual stimuli with fractal geometry were used as objects [64]. One fractal was 

composed of four point-symmetrical polygons that were overlaid around a common center 

such that smaller polygons were positioned more toward the front. The parameters that 

determined each polygon (size, edges, color, etc.) were chosen randomly. Fractal diameters 

were on average ~7° (ranging from 5°-10°). Monkeys saw many (>300) fractals (B: 104, R: 

96 fractals used to test value memory and B: 234, R: 308 additional fractals for continuous 

reward learning during the memory periods) half of which were randomly selected to be 

associated with large reward (good objects) and the other half with small reward (bad 

objects).

Task control and Neural recording—All behavioral tasks and recordings were 

controlled by custom written visual C++ based software (Blip; wwww.robilis.com/blip). 

Data acquisition and output control was performed using National Instruments NI-PCIe 

6353. During the experiment, head-fixed monkeys sat in a primate chair and viewed stimuli 

rear-projected on a screen in front of them (~30cm) by an active-matrix liquid crystal display 

projector (PJ550, ViewSonic). Eye position was sampled at 1 kHz using a scleral search 

coils. Diluted apple juice (33% and 66% for monkey B and R respectively) was used as 

reward. Reward amounts could be either small (0.08ml and 0.1ml for monkey B and R, 

respectively) or large (0.21ml and 0.35ml for monkey B and R, respectively).

The recording sites were determined with the aid of gadolinium-filled chamber and 

grid using MR images (4.7T, Bruker, Figure S1). Activity of single isolated neurons 

were recorded with acute penetrations of glass coated tungsten electrodes (AlphaOmega, 

250μ total thickness). The dura was punctured with a sharpened stainless-steel guide 

tube and the electrode was inserted into the brain through the guide tube by an oil-

driven micromanipulator (MO-972, Narishige) until neural background or multiunit was 
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encountered. The electrode would then be retracted and adjusted slowly until the surface of 

the brain was determined. Recording depth of encountered neurons were measured from this 

surface depth (Figure S1). The electric signal from the electrode was amplified and filtered 

(2 Hz-10 kHz; BAK amplifier and pre-amps) and was digitized at 1kHz. Neural spikes were 

isolated online using voltage-time discrimination windows. Spike shapes were digitized at 

40kHz and recorded for 4.5ms for at least 300 spikes per neuron. An attempt was made to 

record all well-isolated and visually responsive neurons (visually response to neutral familiar 

fractals using receptive field mapper or passive viewing tasks or to flashing white dots in 

various locations). This was done to ensure that results were unbiased and representative of 

the population activity of visually responsive neurons in PFC. This resulted in a total of 350 

PFC neurons in both monkeys (Table 1). In a few sessions, recording was done to confirm 

the location of frontal eye field (FEF) in both monkeys. Neurons with pre-saccadic discharge 

were found in FEF locations shown in both monkeys as reported previously [65](Figure 

S1B). In monkey B, the FEF location was confirmed by low-intensity electrical stimulation 

(~35μA) which evoked downward saccades reliably.

Receptive field mapping task—In this task, the animal had to keep fixating a central 

white dot (2°) while fractal objects were shown in one of 33 locations spanning eight radial 

directions and eccentricities from 0 to 20 degrees in 5 degree steps. Fractals covered fixation 

when shown on center. To measure visual responses unaffected by value and to reduce 

effects of object selectivity, multiple (at least 8) neutral familiar objects not used in value 

training were used in this task. Objects were shown sequentially with 400ms on and 200ms 

off schedule. Central fixation would remain on between object presentations. Animals were 

rewarded for fixating after each object with probability 0.125 after which an ITI of 1–1.5s 

with black screen would ensue. Locations were visited once orderly along radial directions, 

then orderly along the eccentricity circles and finally once randomly, resulting in 99 object 

presentations in one block of mapping. For some neurons, more than one block of mapping 

was performed. While mapping was done for all neurons in this study to determine the RF at 

experiment time, the data from mapping task itself was saved and analyzed for 221 neurons 

(Figure S2B).

Value Training: saccade task—Each session of training was performed with a set of 

eight fractals (4 good / 4 bad fractals). A trial started after central fixation on a white 

dot (2°), after which one object appeared on the screen at one of the four peripheral 

locations (10–15° eccentricity) or center (force trials, Figure 1A). In some sessions fractals 

were shown on 8 radial directions (45° divisions). After an overlap period of 400ms, the 

fixation dot disappeared and the animal was required to make a saccade to the fractal. After 

500±100ms of fixating the fractal, a large or small reward was delivered. Diluted apple juice 

(33–66%) was used as reward. The displayed fractal was then turned off followed by an 

inter-trial intervals (ITI) of 1–1.5s with a black screen. Breaking fixation or a premature 

saccade to fractal during overlap period resulted in an error tone (<7% of trials). A correct 

tone was played after a correct trial. Normally a training session consisted of 80 trials with 

each object pseudo-randomly presented 10 times. This created different intervening trials for 

reward association with a given object which are used in Figure 2F–I to examine retention 

of learned values across trials. Each object was trained in at least 10 sessions prior to test 
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of long-term value memory. When saccade task was done with neural recording (Figure 2, 

monkeys B and R with 23 and 11 neurons, respectively), first day of training consisted of 

160 trials (20 trials/ object) and after >10 days training consisted of at least 40 trials (5 trials/ 

object). To check the behavioral learning of object values, choice trials with one good and 

one bad object were included randomly in one out of five trials (20% choice trials, Figure 

S3). The location and identity of fractals were randomized across choice trials. During the 

choice the two fractals were shown in diametrically opposite locations and monkey was 

required to choose one by looking and holding gaze for 500±100ms one fractal after which 

both fractals were turned off and corresponding reward (large or small) would be delivered. 

Only a single saccade was allowed in choice trials.

Value memory: passive viewing task—Neural discrimination of good and bad objects 

was measured in the same day (minutes to hours after) or 1–6 days, 1–4 weeks (7–29 days) 

or 1–4 months (30–142 days) after last value training session using a passive viewing task. A 

trial started after central fixation on a white dot (2°). Animal was required to hold a central 

fixation while good and bad objects were displayed randomly with 400ms on and 400ms off 

schedule. Animal was rewarded for continued fixation after a random number of 2–4 objects 

were shown. Objects were shown close to the location with maximal visual response for 

each neuron as determined by receptive field mapping task (Figure S2). When this maximal 

location was close to center (<5°) passive viewing was sometimes done by showing objects 

at the center. During a block of passive viewing a set of eight fractals (4 good / 4 bad 

fractals, a column in Figure 1C) were used with 5–6 presentation per object. In many cases, 

more than one block was acquired for a given set (often 20 trials/obj) as shown in Figure 4F.

Behavioral memory: free-viewing task—Each free-viewing session consisted of 15 

trials. In any given trial, four fractals would be randomly chosen from 4 good and 4 bad 

objects. Location and identity of fractals shown in a trial would be chosen at random. 

Thus, a given trial could have anywhere between 0–4 good objects shown in any of the 

four corners of an imaginary diamond or square around center (15° from display center, 

Figure 6B). Fractals were displayed for 3 seconds during which the subjects could look 

at (or ignore) the displayed fractals. There was no behavioral outcome for free viewing 

behavior. After 3 seconds of viewing, the fractals disappeared. After a delay of 0.5–0.7s, a 

white fixation dot appeared in one of nine random locations in the screen (center or eight 

radial directions). Monkeys were rewarded for fixating the fixation dot. This reward was not 

contingent on free viewing behavior. Next display onset with 4 fractals was preceded by an 

ITI of 1–1.5s with a black screen. Monkey B did 11 and 11 and monkey R did 10 and 9 

sessions of free viewing for days- and months-old values, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural data analysis—Responses were time-locked to object-onset for analysis in all 

tasks (receptor field mapping, saccade task and passive viewing tasks). The analysis epoch 

was from 50–350ms in receptive field mapping task (Figure S2) and 100–400ms after object 

onset in saccade task and passive viewing tasks. Average firing to good and bad objects and 

their difference were calculated during the analysis epoch (e.g. Figure 2C–D, 3B–C). The 

discriminability based on learned values was measured from mean firing during analysis 
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epoch across trials using area under receiver operating characteristic curve (AUC). Wilcoxon 

rank-sum test was used for AUC significance for individual neurons (Figure 4A).

Value preference cross validation:  The value preference of each neurons was determined 

using a cross validation method [66]. The sign of firing difference between good and bad 

objects in odd trials was used to determine value preference in even trials and vise-versa 

(i.e. if a neuron fired higher for good compared to bad in odd trials, this firing preference 

label was applied to even trials and similarly value preference label in odd trials came 

from even trials). The odd and even trials were then combined using their cross validated 

value preference labels. Average firing to preferred and non-preferred values (e.g. Figure 2B, 

Figure 3B) and AUC of preferred vs non preferred values (e.g. Figure 2E, Figure 4D) were 

constructed using these cross validated value preferences for each neuron. All neurons were 

used in AUC averages whether value preferences were significant or not (i.e. we did not 

select only significant neurons for population analysis).

Absolute pairwise AUC between objects (reflected around 0.5) were calculated in the 

analysis epoch (Figure 4C). Significant shift above or below diagonal was determined by 

comparing the distribution of difference between pairwise AUCs denoted by y-axis and 

x-axis for each neuron (actual data) with the same distribution made from shuffling good 

and bad labels (e.g. first 4 objects good and second 4 objects bad labels as shown in Figure 

3A, shuffled to be odd objects good and even objects bad) and using a t-test between the 

average of distribution in real data compared to averages of shuffled data distributions for 

10 such shufflings. To determine whether between value discrimination was related to the 

within value discrimination across the population a regression analysis was used. Since for 

any arbitrary grouping of objects the between and within object discrimination tend to be 

positively correlated (higher within object discrimination resulting in higher between object 

discrimination) and to account for this effect, the regression was done first for the shuffled 

data ys = asxs + bs where ys and xs were between and within value AUCs. Then for the real 

data we had yr − asxr = arxr + br where yr and xr were between and within value AUCs and 

as was the slope from the shuffled data regression. The ar shows if there is any relationship 

for between and within value AUCs beyond what can be expected from arbitrary groupings 

of data into good and bad objects (beyond chance). Using this method as = 0.8 in shuffled 

data and ar = −0.01 , P=0.81. Thus, the degree of between value category discriminability 

was not related to within value discriminability across the population.

Non-parametric test for neuron response:  To determine whether and at which time 

points the firing difference between preferred and non-preferred value was different from 

zero (Figure 3B), we used a permutation test to obtain a null distribution of differences 

by a Monte-Carlo method with 1000 iterations in which value preference of each neuron 

was randomly assigned and an F-statistic for the difference was calculated for each time 

point across the PSTH (−200 to 800ms). Since the data in adjacent time points cannot be 

considered independent and to correct for multiple comparisons, the statistics extracted from 

each iteration was the maximum F-statistic across all time points following the method 

proposed by Blair and Karniski 1993 [67]. The max F-statistic from the real data was then 

compared with the null distribution of max F-statistics to determine the significance of the 
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whole differential firing. The significant time points in each trace (black dots in Figure 3B) 

was then determined as points with F-statistic with p<0.05 compared to this null distribution 

(resulting in familywise error <0.05). For comparing the differential firing across memory 

periods (Figure 3C), we extended this permutation method to do non-parametric equivalent 

to one-way ANOVA by permuting the memory labels across differential firings and doing 

1000 iterations to obtain the null distribution. An F-statistic with four levels across time 

was calculated and its max was used to make the null distributions against which the max 

F-statistic from the real data was compared and was found not to be significant (P>0.8).

Onset detection procedure:  Custom written MATLAB functions were used to detect 

response onset (visual and value onsets in each neuron, Figure S5A). Briefly, for each 

neuron, raw firing for visual onset or firing difference for value onset was transformed to 

z-scores using -200ms to 30ms after object onset as the baseline. First response peak after 

object onset was detected using MATLAB findpeaks with a minimum peak height of 1.64 

corresponding to 95% confidence interval. The onset was determined as the first valley 

before this peak (valleys within baseline) using findpeaks on the inverted response.

Object selectivity in PFC: A common metric for measuring object selectivity in a given 

neuron is the response sparsity [40]. Sparsity of a neuron that responds equally to all objects 

is zero and for a neuron that responds only to one object and does not fire to any other 

objects is one. Using this metric, we found the average sparsity of the PFC neurons to 

be 0.095±0.11 (sd) which is lower than values reported for IT cortex (e.g. often >0.3) 

consistent with previous literature [41,42]. Sparsity of good- and bad- preferring neurons 

were like each other at 0.085 and 0.088, respectively, and were slightly lower than sparsity 

of non-significant value neurons at 0.109 (Figure S5C left). Sparsity of objects calculated 

separately among good and bad objects for the three neuron types (good- and bad-preferring 

and non-significant value), showed that the reduction of sparsity happens for bad objects in 

bad-preferring and good objects in good-preferring neurons, Figure S5C right). This may 

be taken as reduction of object selectivity in the preferred value for value selective neurons. 

However, the sparsity metric reduces if a positive shift is added to all object firings. Thus, 

the reduction of sparsity for objects in the preferred value category may have been simply 

caused by an upward shift in firing. On the other hand, if preferred value changes the object 

firing in a multiplicative fashion, sparsity metric will not change. These two possibilities can 

be examined using, coefficient of variation (CV, see STAR Methods), which behaves similar 

to sparsity in this regard. While we found some increase in the sd for firing to the preferred 

value objects (Figure S5D), the increase in the sd was less than predicted by a multiplicative 

effect such that CV showed a trend to be smaller for preferred values (Figure S5E) thus 

explaining the overall reduction of sparsity.

Another metric that is informative for object selectivity and could be used by downstream 

areas is the overall discriminability of objects. Instead of asking whether the firing of a 

given neuron is sparse to a few objects, one can ask how well any two objects can be 

discriminated from each other given the neurons response to multiple objects. Furthermore, 

a discriminability metric such as AUC is robust to addition and multiplication (i.e. does 

not change by the same constant added or multiplied for both groups). Thus, in the case of 
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value coding neurons comparison of pairwise AUC within bad and good object maybe fairer 

than sparsity which is sensitive to additive shifts. Average absolute pairwise AUC was not 

different across neuron types and no difference in pairwise discriminability of good and bad 

objects was observed within good- and bad-preferring neurons (Figure S5F). Thus, while 

value training had large effect on discriminability of good vs bad objects (Figure 4A–C) 

within good and bad object discriminabilities were not different across the population.

Quantifying object selectivity:  Sparsity of responses to objects (Figure S5C) was 

determined for each neuron (at least 8 objects per neuron, half good) using the 

following formula separately for good and bad objects as: S = (1 − A)/ 1 − 1
n  where 

A = ∑i
n ri/n 2/∑i

n ri
2/n . The standard deviation of response to objects (Figure S5D) was 

calculated in each value category as : SD = 1
n − 1 ∑i

n ri − r 2 0.5
. The coefficient of variation 

(Figure S5E) was calculated for each value category as: CV = SD
r . In all formuli ‘n’ is the 

number of stimuli in a category and ‘ri’ is the average firing in the analysis epoch for a given 

stimuli and r is the average of ‘ri’. To calculate sparsity, SD and CV, for a given neuron, the 

value of these metrics were first calculated within value category and then were averaged 

across the two.

For these analyses or others that were agnostic to the effect of memory (e.g. Figure 4A,C,F), 

data from multiple memory periods were collapsed (e.g. for a neuron tested with 4 good 

objects in days and 4 good objects in months, a total of 8 good objects were considered 

regardless of memory period).

Memory capacity:  To examine the memory capacity in PFC (Figure 5), responses to 

individual objects were averaged across all the neurons recorded with that object during 

passive viewing. The average population responses to the object were then normalized by 

the mean firing in 100–400ms window after object onset to all objects used in a given 

passive viewing session (4 good/4 bad objects) and then plotted together for all objects 

(Figure 5A). This normalization allowed us to compare responses of objects across the 

population where neurons recorded with different sets were different. To quantify the size 

of memory in PFC, we used the sum of true positive and true negatives at optimal criterion 

(perfcurve OPTROCPT). For Figure 5B, the AUC of a given object vs all the other objects 

from the other category was calculated based on the average firing in 100–400ms window 

after object onset. For example if a neuron was recorded with 4 good and 4 bad objects, 

AUC of each good object vs all 4 bad objects was calculated. This was repeated for all 

neurons recorded with that set and the AUCs for the same object was averaged across 

neurons with the same value preference and plotted along with the s.e.m. along the object 

number. The same process was repeated for the bad objects. Good- and bad-preferring 

neurons were determined by the results shown in Figure 4A based on whether AUC >0.5 or 

<0.5. (All neurons whether significant value coding or not are included in Figure 5)

Reconstruction of recorded locations on standard atlas: To create recording location 

on a standard brain (D99 brain[68], Figure S1B), the most anterior, posterior, lateral and 

medial recorded locations (4 recorded corners) for each monkey were determined and the 
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corresponding coronal sections in the native space and the standard atlas were matched by 

visual inspection. The 4 recorded corners were scaled and sheared (affine transformation) 

to match the corresponding corners in the lateral surface of the standard brain and the 

corresponding transformation was applied to all the recorded location in the grid (black dots, 

Figure S1B) and overlaid on the standard brain along with the anatomical demarcations 

color-coded according to standard atlas [69] .

Free-viewing analysis—Gaze locations were analyzed using custom written MATALB 

functions in an automated fashion and saccades (displacements >2.5°) vs stationary periods 

were separated in each trial [22,24]. Behavioral memory of good vs bad objects was based 

on their discriminability (AUC) using first saccade in each session after display onset. The 

overall AUC was then averaged across sessions (Figure 6C).

Statistical tests and significance levels—Chi-squared test was used to test main 

effect of memory period on proportions (e.g. Figure 4D right). One-way and two-way 

ANOVAs were used to test main effect of memory period (e.g. Figure 4D left) or trials on 

neural responses (e.g. Figure 4F–G) or behavior (e.g. Figure S3A). Error-bars in all plots 

show standard error of the mean (s.e.m). Significance threshold for all tests in this study was 

p<0.05. ns: not significant, *p<0.05, **p<0.01,***p<0.001 (two-sided).

DATA AND SOFTWARE AVAILABILITY

Requests for the reported recording data and for the custom-written MATLAB scripts that 

were used for data analysis should be directed to the lead contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ventrolateral prefrontal cortex (vlPFC) encodes learning of object values.

• Learned object values are retained in vlPFC for at least several months.

• Value memory in vlPFC has a high capacity and resists interference or 

extinction.

• Macaques remember previously high-valued objects several months after 

learning.
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Figure 1. Object value learning and memory paradigm.
(A) Reward training: Monkeys first fixated centrally and after the instruction (fixation 

off) made a saccade to a 10°-15° peripheral target (or stayed at center if target shown 

centrally) and held gaze to receive low or high reward (bad and good objects, respectively). 

Paired reward was always the same for a given object in all trials (left). Passive viewing 

test: Monkeys kept central fixation while good and bad objects were shown randomly and 

sequentially in the neuron’s receptive field (RF) without reward (right). (B) Acute neural 

recordings were performed during passive viewing (blue block) to test value memory in 

objects previously trained with reward (black block) and during reward training of new 

objects (gray block) and previously trained objects (black block >10 days). Reward-based 

long-term memory was measured hours, days, weeks or months after last object-reward 
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association, during which monkeys were still trained with many other objects (left). 

Different memory scales within individual neurons could be examined by using objects 

trained months ago in one block and objects trained days ago in another block. To test the 

effect of learning, a given neuron could be recorded using novel objects in one block and 

previously trained objects in another block (example recording session, right). (C) Fractals 

(>100) used for monkey B in value memory test. Fractals were simultaneously trained and 

tested in sets of 8 objects. See also Figures S1 and S2
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Figure 2. PFC learns and retains object values across trials during reward training.
(A) Examples of single neurons tested during reward learning. Top row shows average firing 

to 4 good and 4 bad objects in the beginning and end of training (first and last quarter 

of trial in a training session). Bottom row shows raster plot of firing to good and bad 

objects with dots indicating spike times. Y-axis is ordered by trial number from the lowest 

number at the bottom. Good and bad objects were trained in pseudo-random mixed order, 

but are displayed separately. (B) Average firing rate to the preferred and non-preferred value 

in the first and last five object presentations in the first training day and in the first five 

object presentations after >10 training days. (C) Population average of firing difference to 

preferred vs non-preferred value across reward training trials for each object in the first day 

and after >10 days of training (F24,792=2.7, P<10−4 main effect of training, paired-t>2.2, 

P<0.035 all post-hoc tests). (D) Same as C, but for population average firing rate to preferred 

and non-preferred value. In Day 1, the firing reduction was significant for non-preferred 

value (t84=4.2, P<1e-4), but no significant change was observed for preferred value (t84=0.5, 

P=0.6). After >10 days, the difference of preferred and non-preferred value was significant 

(F1,330=38 P<1e-8) and the response of non-preferred value showed a further reduction, 

compared to the end of learning in the first day (t144=3.2, P<1e-2 but for preferred value 

Ghazizadeh et al. Page 24

Curr Biol. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



t144=1.6, P=0.09) (E) Population average of preferred vs non-preferred value AUC across 

reward training trials in the first day and after >10 days of training (F4,158=5.9, P<10−3 main 

effect of training, paired-t>2.5, P<0.02 all post-hoc tests). (F) Average firing to preferred vs 

non-preferred values for objects not seen 1–4 vs 5–8 trials ago and (G) Population average 

retention of value AUC for objects not seen 1–4 vs 5–8 trials ago during the first day of 

training (t33=0.7, P=0.5). (H-I) Same as F-G but after >10 days of training (t29=0.6, P=0.6). 

Horizontal bar in A, B, F, H: Time from object onset to fixation offset. See also Figure S3
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Figure 3. PFC retains memory of object values in the absence of reward for several months.
(A) Examples of single neurons tested in the same session with good and bad objects that 

were trained with reward days and months before (one example from in each monkey). Top 

row shows average firing to good and bad objects in a set. Bottom row shows raster plot 

of firing to each object in the set with dots indicating spike times. Actual fractals used are 

shown to the left and grouped into good and bad fractals. (B). Population average firing 

(left y-axis) to preferred vs non-preferred values and differential firing (right y-axis) to 

preferred vs non-preferred value hours, days, weeks and months after reward association. 

The differential firing was significant in all memory periods (p<1e-2). The dots show 

significant time points in difference (corrected for multiple comparison, Family-wise error 

<0.05, see STAR Methods) (C) Differential firing shown in B overlaid for 4 memory 

periods. The differential firing was not significantly different across memory periods 

(P=0.83, 1-way permutation test, see STAR Methods). Horizontal bar: object-on duration 

in A-C and subsequent similar plots in passive viewing task. See also Figure S4
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Figure 4. Value memory creates good vs bad object discriminability in PFC neurons which is 
resistant to passage of time and to extinction.
(A) Distribution of good vs bad object discrimination (AUC) across all neurons (arrow 

marks population average good vs bad AUC: 0.58, t349=9.8, P<10−19). (B) Average firing 

of good- and bad- preferring neurons (C) Average pairwise discriminability of objects 

between good and bad category (y-axis) compared to within good and bad category (x-

axis) (correlation non-sig, P>0.8, see STAR Methods). Oblique distribution on top right 

shows deviation from the diagonal for the actual and shuffled data (t9=116, P<10−15). 

(D) Population average of preferred vs non-preferred value AUC (left, for all F3,433=0.7, 

P=0.5, for good-preferring F3,199=0.8, P=0.4 and for bad-preferring F3,47=0.5, P=0.6) and 

percentage of good- and bad-preferring neurons across 4 memory periods (right, χ3
2 < 2.2, 

P>0.5). (E) Object selectivity as measured by sparsity in good- and bad-preferring neurons 

and in neurons non-significant for value (left, F3,424=1.6, P=0.16) and for good and bad 

objects across all neurons (F3,864=3.2, P=0.02, post hoc sparsity in month lower than other 

periods P<0.03 lsd). (F) Population average firing to preferred and non-preferred values (left 

axis) and their difference (right axis) as a function of repeated exposure to objects in the 
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absence of reward during one passive viewing block. The presentations of a given object 

were not in consecutive trials and were usually intervened by other object presentations 

during passive viewing, but are plotted as consecutive trials for each object (main effects 

of value F1,13960=270, P<10−59[=] and of trials F19,13960=3.5, P<10−6[\], interaction P>0.9, 

main effect of trials on firing difference F19,6980=0.68, P>0.8). (G) Population average 

preferred vs non-preferred AUC as a function of repeated exposure to objects (F3,1396=1.46, 

P=0.2) and good vs bad AUCs averaged for good-(F3,644=4.9, P<0.01) and bad-preferring 

(F3,176=2.1, P=0.09) neurons. Data in A-C and F-G are collapsed over all memory periods. 

See also Figures S5 to S7
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Figure 5. PFC value memory has high-capacity for objects
(A) Average population response to all objects (good and bad) seen by monkey B (left) 

and R (right). The population response was normalized by mean firing in 100–400ms after 

object onset to all good and bad objects in a set shown in passive viewing. Small axes show 

histogram of response to all good and bad object (mean value in 100–400ms after object 

onset) for monkey B (left) and R (right). (B) Average AUC for each good object vs all other 

bad objects (red) and for each bad object vs all other good objects (blue) in a set across 

good-preferring (top row) and bad-preferring neurons (bottom row) in both monkeys.
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Figure 6. Behavioral discrimination of good and bad objects days and months after last reward 
association.
(A) Objects were tested in a free viewing task days or months after reward training while 

reward learning with other objects were in progress. (B) Free viewing task: good and bad 

objects were randomly selected and shown to the monkey for viewing in the absence of 

reward. (C) Behavioral discriminability (AUC) of objects based on days-old and months-

old values as measured by first saccade after display onset in both monkeys (monkey B: 

t10>4.9, P<10−3 monkey days-old and months-old AUC, t20=0.63, P=0.63 difference in 

AUC, monkey R: t9=2.8, P=0.01 days-old and t8=5.9, P<10−3 months-old AUC, t17=0.89, 

P=0.38).
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Table 1.
Number of neurons recorded in each monkey and across various memory periods.

Neurons separated by the number of memory periods in which they are tested (left side, e.g. if a neuron was 

recorded with objects from two memory periods, it would be counted under column labeled two) and total 

number of neurons recorded in each memory period (right side, e.g. if a neuron was recorded with objects in 

days and months memory periods, it would be counted once under each corresponding column)

Neurons separated by number of memory periods in which they are recorded Neurons separated by the memory period label

Monkeys Number of Memory Periods Sums Memory Period Labels Sums

One Two Three Hours Days Weeks Months

B 130 27 2 159 24 95 28 43 190

R 141 44 6 191 16 143 55 33 191

Sums 271 71 8 350 40 238 83 76 350
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