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Abstract

Single-cell ATAC-seq sequencing data (scATAC-seq) has been widely used to investigate

chromatin accessibility on the single-cell level. One important application of scATAC-seq

data analysis is differential chromatin accessibility (DA) analysis. However, the data charac-

teristics of scATAC-seq such as excessive zeros and large variability of chromatin accessi-

bility across cells impose a unique challenge for DA analysis. Existing statistical methods

focus on detecting the mean difference of the chromatin accessible regions while overlook-

ing the distribution difference. Motivated by real data exploration that distribution difference

exists among cell types, we introduce a novel composite statistical test named “scaDA”,

which is based on zero-inflated negative binomial model (ZINB), for performing differential

distribution analysis of chromatin accessibility by jointly testing the abundance, prevalence

and dispersion simultaneously. Benefiting from both dispersion shrinkage and iterative

refinement of mean and prevalence parameter estimates, scaDA demonstrates its superior-

ity to both ZINB-based likelihood ratio tests and published methods by achieving the highest

power and best FDR control in a comprehensive simulation study. In addition to demonstrat-

ing the highest power in three real sc-multiome data analyses, scaDA successfully identifies

differentially accessible regions in microglia from sc-multiome data for an Alzheimer’s dis-

ease (AD) study that are most enriched in GO terms related to neurogenesis and the clinical

phenotype of AD, and AD-associated GWAS SNPs.

Author summary

Understanding the cis-regulatory elements that control the fundamental gene regulatory

process is important to basic biology. scATAC-seq data offers an unprecedented opportu-

nity to investigate chromatin accessibility on the single-cell level and explore cell heteroge-

neity to reveal the dynamic changes of cis-regulatory elements among different cell types.

To understand the dynamic change of gene regulation using scATAC-seq data, differen-

tial chromatin accessibility (DA) analysis, which is one of the most fundamental analyses

for scATAC-seq data, can enable the identification of differentially accessible regions

between cell types or between multiple conditions. Subsequently, DA analysis has many
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applications such as identifying cell type-specific chromatin accessible regions to reveal

the cell type-specific gene regulatory program, assessing disease-associated changes in

chromatin accessibility to detect potential biomarkers, and linking differentially accessible

regions to differentially expressed genes for building a comprehensive gene regulatory

map. This paper proposes a novel statistical method named “scaDA” to improve the detec-

tion of differentially accessible regions by performing differential distribution analysis.

scaDA is believed to benefit the research community of single-cell genomics.

Introduction

Open chromatin offers permissible physical interactions to transcription factors and cis-regu-

latory DNA elements (CREs) for cooperatively regulating gene expression in a complex inter-

play between them [1, 2]. With the advent of next-generation sequencing (NGS) techniques,

ATAC-seq has become one of the most popular NGS technologies to profile genome-wide

open chromatin regions. Compared to its predecessors such as DNase-seq, ATAC-seq requires

much fewer cells and is less laborious in the experimental preparation [2]. However, bulk

ATAC-seq cannot determine chromatin accessibility on the single-cell level, which limits its

application for identifying cell subpopulations. To overcome these limitations, single-cell

ATAC-seq (scATAC-seq) has been developed to measure chromatin accessibility on the sin-

gle-cell level benefiting from the advantage of ATAC-seq protocol such as obtaining sufficient

biological signals while requiring fewer cells. With the advent of scATAC-seq technology, the

data richness of single-cell genomics has been significantly expanded. It is straightforward to

profile separate scATAC-seq and scRNA-seq data for the same sample to learn the gene regula-

tory relationship [3]. Nevertheless, the “unmatched” data, where RNA and ATAC are not

jointly profiled in the same cells, impose challenges such as batch effect in the data analysis.

Recent 10x sc-multiome protocol enables the simultaneous profiling of the two modalities in

the same cell, which provides an opportunity to integrate two data modalities for a joint unbi-

ased definition of cellular state.

One important analysis for scATAC-seq data is differential chromatin accessibility (DA)

analysis, which aims to identify DA regions between cell types or conditions. The standard bio-

informatics pipeline for identifying DA regions usually consists of three steps [4, 5]. First, read

mapping and peak calling to identify open chromatin regions, known as “peaks”. Read counts

for each peak and each cell are calculated to build a peak-by-cell matrix. Second, cell clustering

is performed to identify cell types after a series of data quality control, data normalization, and

dimension reduction steps. Lastly, DA analysis can be performed for each peak between two

cell types. For scATAC-seq samples from multiple conditions, a unified set of peaks across all

samples will be created. After integration and alignment of the samples, DA analysis can be

performed for each cell type across multiple conditions. The major difference of different bio-

informatics pipelines lies in the steps to create the peaks. Instead of doing one round of peak-

calling using all reads, cluster-specific peak calling can be performed [6]. Particularly, DA anal-

ysis has three important applications. First, DA regions can be linked to differentially

expressed genes for building a comprehensive gene regulatory map. As an example, DA

regions have been found localized to promoters, the majority of which are closely associated

with differentially expressed genes in the adult human kidney [7]. Second, cell type-specific

DA regions enable the identification of different cell subpopulations. For example, DA analysis

can distinguish cell types by cluster-specific DA regions associated with cell type-specific

marker genes identified from scRNA-seq [8]. Third, DA analysis can detect disease-associated
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DA regions by comparing disease and control scATAC-seq samples. For example, DA analysis

successfully identifies disease-associated DA regions from scATAC-seq data collected from

both peripheral venous blood in sporadic amyotrophic lateral sclerosis patients and health

controls [9].

Nevertheless, the distinctive characteristics of scATAC-seq data introduce specific chal-

lenges in DA analysis. First, the scATAC-seq peak-by-cell count matrix exhibits higher sparsity

(about 3% non-zero entries) compared to the scRNA-seq gene-by-cell count matrix (more

than 10% non-zeros) due to smaller dimension of genes relative to peaks and lower gene drop-

out rates [10, 11]. Second, the biological variation, which represents the heterogeneity of chro-

matin accessibility among cells in the same cell types, is non-negligible, leading to the

“overdispersion”. Third, the sample size, i.e. number of cells in rare cell types is small, which

may reduce the power of DA analysis. Various statistical methods have been developed for DA

analysis. Nonparametric methods, like the Wilcoxon rank-sum test, have been adopted by

state-of-the-art scATAC-seq analysis pipelines such as Signac [5] and scATAC-pro [12] due to

their robustness to distribution assumptions. However, the Wilcoxon test cannot adjust for

covariates, provide interpretable effect sizes, and is generally less powerful for rare cell types.

In addition, Signac adopts a logistic regression model as another option for DA analysis, treat-

ing condition membership as the covariate and the total number of counts in each cell as a

latent variable. Nevertheless, the high sparsity and overdispersion make the logistic regression

model less desirable. Moreover, methods developed for differential expression (DE) analysis

can be applied for DA analysis directly such as edgeR [13], which is based on the negative

binomial test for DE analysis of bulk RNA-seq, and MAST [14] for DE analysis of scRNA-seq,

which models log2 transformed TPM expression matrix in a two-part generalized regression

model. These methods, however, may not be optimal for scATAC-seq data due to the inherent

differences in data characteristics between scATAC-seq and scRNA-seq data.

Given the excessive zeros of scATAC-seq data, we perform a real data exploration using a

zero-inflated negative binomial (ZINB) model and find the “distribution difference”, where all

three parameters are different among cell types. Motivated by this observation, we hereby

develop an omnibus test, named “scaDA” (Single-Cell ATAC-seq Differential Chromatin Analy-

sis) based on ZINB model for scATAC-seq DA analysis. The contribution of scaDA mainly lies

in two aspects. First, to our best knowledge, scaDA is the first statistical method, which focuses

on testing distribution difference in a composite hypothesis, while most existing methods only

focus on testing mean difference. The composite hypothesis may be more powerful in the pres-

ence of distribution differences. Second, scaDA improves the parameter estimation by leverag-

ing an empirical Bayes approach for dispersion shrinkage and iterative estimation of mean and

prevalence parameters. Using a comprehensive simulation design, we demonstrate that scaDA

is superior to both ZINB-based likelihood ratio tests and published methods by achieving the

highest power and best FDR control. In addition, scaDA is more powerful than published meth-

ods in DA analysis of three real sc-multiome data. Furthermore, scaDA successfully identifies

AD-associated DA regions by both GO term analysis and GWAS enrichment analysis.

Materials and methods

Overview of scaDA

The workflow of scaDA (Fig 1) consists of three components: (i) modeling scATAC-seq count

data using the Zero-Inflated Negative Binomial (ZINB) model; (ii) performing the bayesian

shrinkage on the dispersion parameter ϕ; and (iii) iteratively optimizing mean parameter μ
and prevalence of zeros p respectively. We will illustrate the details of each component in the

subsequent sections.
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Statistical method

Data model. Without group indicator, we denote ygi as read count in peak g in sample i
and model ygi based on ZINB model as

fZINBðygijmg ; �g ; pgÞ ¼ pgIðygi ¼ 0Þ þ ð1 � pgÞfNBðygijmg ; �gÞ ð1Þ

which is a mixture distribution of a zero-inflated component and a negative binomial distri-

bution (NB) by assigning pg to extra zeros and 1 − pg to the NB distribution fNB(ygi|μg, ϕg). pg
(0� pg� 1) is the prevalence parameter, representing the probability of excess zeros.

Under the Gamma-Poisson parameterization, we define ϕg as the dispersion parameter and

its relationship with the variance is Var(ygi) = μg + μ2ϕg. The NB distribution fNB(ygi|μg, ϕg) is

formularized as

fNBðygijmg ; �gÞ ¼
Gðygi þ �

� 1

g Þ

Gðygi þ 1ÞGð�
� 1

g Þ

mg�g

1þ mg�g

 ! ygi
1

1þ mg�g

 !�� 1
g

ð2Þ

where μg and ϕg characterize the mean and dispersion of the NB distribution.

Thus, the distribution of read counts in each peak is characterized by its own three parame-

ters pg, μg and ϕg. By inducing the zero-inflated component, scaDA benefits from modeling the

excessive zeros, which is more evident in scATAC-seq data. The excessive zeros can either be

biological excessive zeros because ATAC signals are truly not expressed in peaks and technical

excessive zeros due to dropout events in the sequencing process.

Initial estimation of p, μ and ϕ. We adopt the EM algorithm for an initial estimation of

parameters, denoted as Θ = (p, μ, ϕ). By introducing a latent variable rgi, which indicates

whether ygi is from zero point mass (rgi = 1) or the NB distribution (rgi = 0). The maximization

of the log-likelihood function is implemented by EM algorithm for a complete likelihood

Fig 1. scaDA method overview. scaDA contains three components: Data model, bayesian shrinkage of �̂, and iterative optimization

of m̂ and p̂.

https://doi.org/10.1371/journal.pcbi.1011854.g001
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function (S1 Text). In scaDA’s implementation, we estimate the parameters using the “zer-

oinfl” function from the R package pscl (Zeileis, 2008).

Dispersion shrinkage. Accurate estimation of dispersion parameter ϕ is crucial for DA

analysis to stabilize the variance estimate, especially considering either small numbers of cells

or highly sparse read counts. Though multiple previous works improve the estimation of the

dispersion parameter for each peak or gene in an empirical Bayes framework by leveraging the

estimates of dispersion parameter from all peaks or genes [13, 15, 16], most of them focus on

bulk RNA-seq data, which is usually modeled by NB distribution. It remains an unexplored

area whether borrowing information across other peaks will help improve the estimation of ϕ
for each peak for scATAC-seq data and ultimately improve the power for the DA analysis.

We perform a real data analysis to explore the empirical distribution of initial estimates of ϕ
for all peaks in Granule neuron of “Human Brain 3K” data. For each peak, we apply the above

EM algorithm to estimate the dispersion parameters. As shown in S1 Fig, the genome-wide

distribution of logarithm dispersion parameter estimates is approximately Gaussian with

mean = 0.03 and SD = 0.57, suggesting that the dispersion parameters can be well-approxi-

mated by a log-normal distribution. This observation motivates us to adopt log-normal distri-

bution as a prior for obtaining a posterior estimate of ϕ. Accordingly, the conditional posterior

distribution of ϕg given observed read counts and other parameters are shown in Eqs 3 to 5.

Assume n1 is the number of cells with read counts as 0 and n2 is the number of cells with

read counts larger than 0 for peak g. The likelihood for peak g is given by

Lðyg j mg ; �g ; pgÞ ¼
Yn

i¼1

fZINBðygijmg ; �g ; pgÞ

¼
Yn

i¼1

ðpgIðygi ¼ 0Þ þ ð1 � pgÞfNBðygijmg ; �gÞÞ

¼
Yn1

i¼1

pg þ ð1 � pgÞ
1

1þ mg�g

 !�� 1
g

0

@

1

A
Yn2

i¼1

ð1 � pgÞfNBðygijmg ; �gÞ

ð3Þ

The conditional posterior distribution of ϕg for peak g is approximated by

pð�g jyg; mg ; pg ; yg ; sgÞ / Lðyg j mg; �g ; pgÞlog-normalð�g jyg ; sgÞ ð4Þ

The logarithm of conditional posterior distribution of ϕg for peak g is expanded as

log pð�g jyg ; mg ; pg ; yg ; sgÞ / n1 log pg þ ð1 � pgÞ
1

1þ mg�g

 !�� 1
g

0

@

1

A

þ
Xn2

i¼1

log ½Gðygi þ �
� 1

g Þ� � n2 log ðGð�
� 1

g ÞÞ

þn2�
� 1

g log
1

1þ mg�g

 !

þ
Xn2

i¼1

ygi logðmg�gÞ � logð1þ mg�gÞ
h i

�
ðlogð�gÞ � ygÞ

2

2s2
g

� logð�gÞ � logðsgÞ

ð5Þ
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Motivated by Wu et al. [16], instead of using a computationally intensive MCMC approach,

we compute the posterior mode by maximizing Eq 5 to obtain a point estimate of ϕg, denoted

as ~�g .
~�g is essentially the shrunken estimate of ϕg in the empirical Bayes framework. In the

conditional posterior distribution, two parameters pg and μg and two hyper-parameters θ and

σ need to be determined first before maximizing log p(ϕg, |ygi, μg, pg, θg, σg) to obtain ~�g . It is

straightforward that pg and μg can be obtained from the estimates in the EM algorithm. Two

hyper-parameters, ŷ and ŝ in the log-normal distribution can be inferred from dispersion esti-

mates �̂g in the EM algorithm across all peaks. Particularly, ŷ is estimated by the median of log

(�̂g). ŝ is estimated by using sample variance of log(�̂g) after adjusting the variation due to

estimating log(ϕg) [16]. Afterwards, by plugging in p̂g , m̂g , ŷ and ŝ, we maximize Eq 5 with

respect to ϕg using the Newton-Raphson method.

Iterative optimizing estimates of μ and p. As the initial estimate of ϕg changes from the

initial estimate from EM algorithm �̂g to the empirical Bayes shrunken estimate ~�g , the full

likelihood needs to be re-maximized, which results in the new estimates of pg and μg. The

updated estimates ~pg and ~mg , together with ~�g will be treated as the final estimates. The proce-

dure is illustrated in the iterative optimization algorithm as detailed in Algorithm 1.

Algorithm 1 Iterative optimizing the estimates of μ and p.
INPUT: Observed read counts for each peak across all samples in two

groups
1: Maximum boundary for μ and p across all peaks as set as μmax and

pmax. μmax and pmax are set as the maximum value for μ and p across
all peaks.

2: Maximum iterations n (e.g., 100) and small number for convergence
tol (e.g. 10−6)

3: for each peak do
4: Initialize:
5: μ0 = initial estimate of mean from EM
6: p0 = initial estimate of prevalence from EM
7: ~� = shrunk estimate of dispersion from empirical bayes
8: μprev = μ0

9: pprev = p0

10: for iter = 1 to n do
11: Refine μ:
12: Maximize the likelihood with respect to μ over bounds [0.01,

μmax]
13: ~m ¼ argmin

m
‘ðmjpprev; ~�;yÞ

14: Refine p:
15: Maximize the likelihood with respect to p over bounds [0.01,

pmax]
16: ~p ¼ argmin

p
‘ðpjmprev; ~�;yÞ

17: if jmprev � ~mj=mprev � tol AND jpprev � ~pj=pprev � tol then
18: Terminate
19: else
20: mprev ¼ ~m

21: pprev ¼ ~p
22: end if
23: end for
OUTPUT:
24: Obtain refined estimates of ~m and ~p for each peak
25: end for
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Composite hypothesis testing. For each peak, we adopt the likelihood ratio test (LRT) to

perform the composite hypothesis testing. We denote the number of cells for the two groups

as n1 and n2 and the corresponding parameters as Θ1 = (p1, μ1, ϕ1) and Θ2 = (p2, μ2, ϕ2).

H0 : Y1 ¼ Y2

Ha : Y1 6¼ Y2

The likelihood ratio statistic is formulated as,

lLR ¼ � 2 log
LðH0Þ

LðHaÞ

� �

For the reduced model under H0, all cells from the two groups are pooled together to estimate

(~pg ; ~mg;
~�g) as,

LðH0Þ ¼ Lð~pg ; ~mg ;
~�g jy

1

gÞLð~pg ; ~mg ;
~�g jy

2

gÞ

For the full model under Ha, (~pg ; ~mg ;
~�g) are estimated for each group independently as,

LðH1Þ ¼ Lð~p1

g ; ~m
1

g ;
~�1

g jy
1

gÞLð~p
2

g ; ~m
2

g ;
~�2

g jy
2

gÞ

The likelihood ratio statistic λLR follows a w2
df distribution with degree freedom of 3 in this spe-

cial case and the p-value is obtained as

p-value ¼ Pðw2

df > lLRÞ

Evaluated methods. We evaluate scaDA against two sets of methods. The first set of com-

pared methods consists of ZINB(μ) testing the mean difference with one degree of freedom (1

d.f.), ZINB(p) testing the prevalence difference with one degree of freedom (1 d.f.), ZINB(μ, p)

testing on both the mean and prevalence difference with two degrees of freedom (2 d.f.), ZINB

(μ, ϕ, p) testing on the difference of three parameters simultaneously with three degrees of free-

dom (3 d.f.), which has been adopted for differential distribution analysis in the microbiome

study [17]. The first set of methods is compared to evaluate scaDA’s advantage in jointly test-

ing three parameters (μ, p, ϕ) simultaneously, incorporating the shrunk ϕ and iterative refine-

ment of μ and p estimates.

The second set of methods for comparison includes published approaches like the negative

binomial model (NegBin), edgeR [13], scATAC-pro [12], Signac [5] and MAST [14]. Specifi-

cally, NegBin is frequently used to model sequencing count data. edgeR, extending NegBin,

adopts an empirical Bayesian method for dispersion shrinkage and is widely used for differen-

tial expression (DE) analysis in bulk RNA-seq. MAST, a popular DE analysis method for

scRNA-seq data, models the log2 transformed TPM (transcripts per million) expression matrix

using a two-part generalized regression framework instead of directly modeling the count

data. scATAC-pro and Signac are two methods/pipelines specifically designed for differential

accessibility (DA) analysis for scATAC-seq data. scATAC-pro adopts the Wilcoxon rank sum

test as the default method to perform differential accessibility analysis. Signac uses a logistic

regression model as default for DA analysis with condition membership as the covariate and

the total number of counts per cell as a latent variable.

Evaluation metric. After conducting DA analysis, each method calculates a raw p-value

for qualifying the distribution difference in each peak. To control for false positives in multiple

testing, the False Discovery Rate (FDR) is calculated using the Benjamini-Hochberg (BH)
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approach [18]. Performance will be evaluated based on both power (True Positive Rate, TPR)

and FDR control. The observed FDR is defined as the expectation of false discovery proportion

(FDP). The formulas for TPR and FDP are:

True Positive Rate ðTPRÞ ¼
TP

TP þ FN

False discovery proportion ðFDPÞ ¼
FP

maxð1; FP þ TPÞ

Specifically, TPR is calculated given a nominal FDR level (i.e., 0.05) to claim differential

peaks and non-differential peaks. Subsequently, FDR control is measured by the comparison

between the nominal FDR level and observed FDP.

Data description

Human Brain 3K. The single-cell multiome data, referred to as “Human Brain 3K”, is

generated from the Single Cell Multiome ATAC + Gene Expression Sequencing protocol from

10X Genomics, which profiles gene expression and chromatin accessibility for each cell from

frozen healthy human brain cerebellum region [19]. The processed data by Cell Ranger is

available on 10X Genomics Datasets, which include 3,233 cells, and 13,629 genes linked to

88,843 peaks.

Human PBMC 10K. The single-cell multiome data, referred to as “Human PBMC 10K”,

is generated from the Single Cell Multiome ATAC + Gene Expression Sequencing protocol

from 10X Genomics, which profiles gene expression and chromatin accessibility for each cell

from human peripheral blood mononuclear cells (PBMCs) [20]. The processed data by Cell

Ranger is available on 10X Genomics Datasets, which include 12,012 cells, and 13,958 genes

linked to 79187 peaks.

Human AD. The single-cell multiome data, referred to as “Human AD”, consists of a

total of 191,890 single-cell nuclei from 20 postmortem samples of Human prefrontal cortex

from both AD and cognitively healthy controls [21]. Among the 20 samples, 12 samples are

AD, and 8 are healthy controls. Instead of co-profiling gene expression and ATAC in each cell,

the RNA and ATAC modalities are profiled in separate scRNA-seq and scATAC-seq datasets.

The data is available from the Gene Expression Omnibus (GEO) under the accession number

GSE174367. More details of the experimental design can be found at S9 Table.

Results

Illustrating differential distribution among cell types in a motivating

example

An important feature of scaDA is the composite hypothesis, which focus on testing the differ-

ential distribution among cell types. Without loss of generality, we hereby illustrate differential

distribution among cell types in a motivating example by analyzing “Human Brain 3K”, which

highlights the necessity for developing a composite hypothesis test. Specifically, we perform

clustering and cell type annotation using gene markers from a published study focused on

human cerebellar development [22]. Consequently, 14 cell types have been annotated, which

include astrocytes, bergmann glia, brainstem, cOPC, ependymal, GCP, granule neuron, iCN,

microglia, MLI, oligodendrocyte, purkinje cell, rhombic lip, UBC (Fig 2A). Gene marker

expression across the 14 cell types demonstrates the gene markers can distinguish the cell
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types clearly (Fig 2B). We further remove GCP, iCN, MLI and UBC with cell numbers less

than 100 and retain 8 cell types with more cell numbers for a robust parameter estimation.

Using the EM algorithm for initial estimation of ZINB model, we obtain the cell-type spe-

cific parameters, which include mean (μ), prevalence (p), and dispersion (ϕ) for all peaks. We

observe a large variation of mean, prevalence, and dispersion among cell types, indicating DA

analysis should be performed in a cell type-specific manner. Additionally, the distribution dif-

ference of the three parameters between two cell types varies in different patterns (Fig 2C).

Notably, we notice that the dispersion is lower in cOPC than in granule neurons and the other

two parameters are similar, which confirms the necessity to include dispersion as one parame-

ter in the composite hypothesis test. Moreover, differences in the distributions of all three

parameters are observed between multiple cell type paires such as astrocytes and bergmann

glia, or oligodendrocyte and purkinje cell. These findings highlight the importance of develop-

ing a robust composite hypothesis test, which can jointly test the three parameters simulta-

neously. However, most existing methods focus on testing only the mean difference but ignore

the distribution difference of other parameters such as prevalence and dispersion, which is fur-

ther confirmed by real data exploration. To fill the gap, we hereby develop an omnibus test,

named scaDA, to test the distribution difference of all three parameters in a composite hypoth-

esis test (more details in the Method Section). The test will be more powerful when the

Fig 2. Human Brain 3K analysis. A. Clustering analysis of “Human Brain 3K” shows 14 annotated cell types as shown in the

UMAP. B. Expression of gene markers used for cell type annotation. C. Distribution of EM initial estimates for three

parameters in ZINB model, which include mean (μ), prevalence (p), and dispersion (ϕ) across all peaks for 8 cell types with

more than 100 cells.

https://doi.org/10.1371/journal.pcbi.1011854.g002
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underlying differential distribution pattern of two cell types is unknown. Accordingly, to dem-

onstrate the robustness of scaDA, we design a comprehensive simulation strategy based on the

estimated parameter values from granule neuron cell type in “Human Brain 3K”. In the follow-

ing simulation study, we will vary each one of the three parameters individually and then

simultaneously to emphasize the importance of considering the distribution difference.

Simulation studies

Overview of simulation design. We evaluate the performance of scaDA along with other

methods in a real data-driven simulation design. Without loss of generality, we choose the

three parameters estimated in the cell type “Granule neuron” from “Human Brain 3K” (Fig

2C) as the baseline parameters. Specifically, we simulate count data semi-parametrically. In all

simulations, the mean and prevalence are randomly sampled in pairs from the estimates of

mean and prevalence. The dispersion parameters are generated from the log-normal paramet-

ric distribution. The simulation allows for a more realistic assessment of power analysis and

FDR control, and fair comparison with existing methods.

For non-differential peaks, we allow the two groups to have the same parameter values as

the baseline. For differential peaks, we fix the parameter values in Group 1 and vary the param-

eter values in Group 2 with different effect sizes of selected parameters to create power curves.

In the first three scenarios, we modify one parameter such as mean, prevalence, or dispersion

for differential peaks in Group 2 at a time, holding other parameters the same as the baseline.

In the fourth scenario, we change all three parameters simultaneously for differential peaks in

Group 2. To create parameter values in Group 2, we multiply and divide an effect size in terms

of log2 fold change from the baseline values for differential peaks in equal proportion. The

log2 fold change of selected parameters is changed from 0.5 to 3.0 with a step size of 0.5. Using

the parameter setting in the four scenarios, we assume 20% differential peaks and simulate the

read counts based on ZINB for 4000 peaks across 100 cells in each group (Eq 1).

Power analysis for scaDA and ZINB-based likelihood ratio tests. We perform a simula-

tion study to evaluate the power of scaDA and other ZINB-based likelihood ratio tests under

different scenarios when the underlying differential accessibility is driven by one or several

parameters across different effect sizes in order to have a better understanding of the model

performance. Fig 3 summarizes the power of five methods in each scenario. As expected, the

overall power of all methods increases when the effect size of parameter difference (i.e. log2

fold change) increases.

When the underlying differential accessibility between the two groups is only driven by the

mean difference (Scenario 1, Fig 3A) or prevalence difference (Scenario 2, Fig 3B), the corre-

sponding tests, which include ZINB(μ) only testing on mean difference and ZINB(p) only test-

ing on prevalence difference, are most powerful. Interestingly, for both Scenario 1 & 2, ZINB

(μ, p) outperforms ZINB(μ, ϕ, p). Though both composite tests involve the parameters that

drive the underlying differential accessibility between two groups, i.e. mean difference for Sce-

nario 1 and prevalence difference for Scenario 2, ZINB(μ, p) has one less degree freedom and

therefore is more powerful, especially considering ϕ in the composite test does not contribute

to the underlying differential accessibility in Scenario 1 & 2. Notably, scaDA performs second

best in both Scenario 1 & 2, which achieves slightly lower power than ZINB(μ) (Fig 3A) and

ZINB(p) (Fig 3B). Notably, scaDA performs better than both ZINB(μ, p) and ZINB(μ, ϕ, p).

Though both scaDA and ZINB(μ, ϕ, p) adopt the same composite hypothesis test with 3 d.f.,

scaDA is more powerful by benefiting from both dispersion shrinkage and refined estimates of

mean and prevalence. Importantly, the performance of scaDA is not compromised by adding

one more degree of freedom compared to ZINB(μ, p). Not surprisingly, ZINB(p), which tests
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on prevalence difference, performs worst in Scenario 1, where differential accessibility between

the two groups is only driven by mean difference. Similarly, ZINB(μ), which tests on mean dif-

ference, has the worst performance in Scenario 2, where differential accessibility between the

two groups is only driven by prevalence difference. Nevertheless, ZINB(μ) still has power and

the power increases when the effect size of prevalence difference increases. Similarly, ZINB(p)

also obtains power and the power increases when the effect size of mean difference increases.

This observation indicates a possible correlation between μ and p. Indeed, the prevalence is

close to the mean for scATAC-seq data with sparse and low read count. If scATAC-seq data is

binarized, the prevalence is equivalent to the mean.

In Scenario 3 (Fig 3C), it is not surprising that scaDA, which tests on dispersion difference

and achieves a better dispersion estimation, is the most powerful and holds a clear advantage

over other methods when underlying differential accessibility between the two groups is only

driven by dispersion difference. This observation indicates the necessity to include the disper-

sion parameter in the composite hypothesis test when the dispersion difference exists. The

existence of dispersion difference among cell types is further validated by the real data

Fig 3. Power analysis for scaDA and other ZINB-based likelihood ratio tests. Baseline values of three parameters

are estimated in the cell type “Granule neuron” from “Human Brain 3K”. For differential peaks, we fix the parameter

values in Group 1 and vary the parameter values in Group 2 with different effect sizes of selected parameters to create

power curves. To create parameter values in Group 2, we multiply and divide an effect size in terms of log2 fold change

from the baseline values for differential peaks in equal proportion. The log2 fold change of selected parameters is

changed from 0.5 to 3.0 with a step size of 0.5. Using the parameter setting in the four scenarios, we assume 20%

differential peaks and simulate the read counts based on ZINB for 4000 peaks across 100 cells in each group. A.

Scenario 1: only mean difference between two groups B. Scenario 2: only prevalence difference between two groups. C.

Scenario 3: only dispersion difference between two groups. D. Scenario 4: difference of all three parameters between

two groups.

https://doi.org/10.1371/journal.pcbi.1011854.g003
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exploration in “Human Brain 3K” (Fig 2C). Notably, even though both scaDA and ZINB(μ, ϕ,

p) have 3 d.f., scaDA improves the power significantly compared to its counterpart. Moreover,

it is also unsurprising to observe ZINB(μ) and ZINB(p), which do not involve dispersion

parameter in the test, perform worst. In Scenario 4 (Fig 3D), when the underlying differential

accessibility between the two groups is driven by the difference of all three parameters, scaDA

achieves the highest power across all effect sizes consistently. Not surprisingly, the second

best-performed methods are ZINB(μ, p) and ZINB(μ, ϕ, p), which are both composite tests

involving multiple parameters simultaneously. Simple hypothesis tests on only one parameter

such as ZINB(μ) and ZINB(p), are inferior to the composite tests such as ZINB(μ, p) and ZINB

(μ, ϕ, p).

Overall, it is evident that scaDA exhibits the most robust performance across different sce-

narios and this is especially important in real data analysis because the factors that drive under-

lying differential accessibility between the two cell types are unknown. We further increase the

sample size in each group to 200 and 300 respectively and repeat the simulations to evaluate

the performance of scaDA and other methods under different sample sizes (S2 and S3 Figs).

As expected, the power of all methods increases and the difference of method performance

diminishes when the sample size increases. However, scaDA still remains the top-performed

method and the advantage is more evident when dispersion is involved in the composite

hypothesis testing.

Power analysis for scaDA and published methods. We compare scaDA to state-of-the-

art published approaches in the same simulation strategy as aforementioned. These approaches

include methods for DE analysis of bulk RNA-seq such as NegBin and edgeR, methods for DE

analysis of scRNA-seq such as MAST, and methods for DA analysis of scATAC-seq such as

scATAC pro and Signac. Overall, scaDA is the most powerful test across all effect sizes in the

four scenarios, with the only exception of Scenario 2, where it ranks second to scATAC-pro.

Interestingly, MAST, which is a method developed for DE analysis of scRNA-seq data, per-

forms second to scaDA in most scenarios (Fig 4). Specifically, in Scenario 1 (Fig 4A), scaDA

ranks top, followed by Signac, edgeR, and NegBin. MAST and scATAC-pro are less powerful

compared to other methods. In Scenario 2 (Fig 4B), scaDA is only slightly less powerful than

scATAC-pro, closely followed by MAST. NegBin, edgeR, and Signac have an overall poor per-

formance. In Scenario 3 (Fig 4C), scaDA has a clear advantage over other methods by achiev-

ing significantly higher power. Except for MAST, other methods lack statistical power to

detect differential peaks. This observation further confirms the importance of including the

dispersion parameter in the composite hypothesis test if underlying differential accessibility is

driven by dispersion difference. In Scenario 4 (Fig 4D), scaDA still markedly outperforms

other methods by achieving the highest power, followed by MAST, while other methods have

comparable performance.

To evaluate the performance of all methods under different sample sizes, we repeat the sim-

ulations by increasing the sample size in each group to 200 and 300 respectively (S4 and S5

Figs). The power of all methods increases and the performance of all methods tends to con-

verge when the sample size increases. Nevertheless, we observe a consistent trend that scaDA

is superior to other methods and the advantage is more evident when the dispersion parameter

is considered in the composite hypothesis testing.

FDR control analysis. Besides the power analysis, we compare scaDA to both ZINB-

based LRT tests and published methods in terms of FDR control. This is done by plotting the

observed FDR against the nominal FDR level (Fig 5). Without loss of generality, we perform

the evaluation in Scenario 4, which is a general case, and choose 2.5 as the log2 fold change for

all three parameters. Compared to ZINB-based LRT tests, scaDA obtains the most accurate

FDR estimation. The observed FDR of ZINB(μ) and ZINB(p) is overall slightly descended
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relative to the nominal level, indicating the test is slightly conservative. Notably, ZINB(μ, ϕ, p)

and ZINB(μ, p) are overly conservative and give pessimistic results. Compared to published

methods, scaDA has the top performance by controlling the observed FDR closest to the nomi-

nal level. All other methods such as scATAC-pro, edgeR, and MAST have an overly conserva-

tive FDR estimation. Notably, NegBin exhibits substantial inflated FDR, and the FDR curve

exceeds the plotting range as the nominal FDR level increases (Fig 5B).

Similarly, we perform the FDR control analysis when the sample size in each group

increases to 200 and 300 respectively (S6 and S7 Figs). Compared to ZINB-based LRT tests,

scaDA still achieves the best FDR control and ZINB(μ) becomes more conservative in FDR

estimation (S6A and S7A Figs). Compared to published methods, scaDA is still the top-per-

formed method though the performance of all methods tends to converge when the sample

size increases. Notably, NegBin and edgeR, which are two methods developed for DE analysis

of bulk RNA-seq, suffer a substantially inflated FDR, and the FDR curve exceeds the plotting

range as the nominal FDR level increases (S6B and S7B Figs). Overall, all the evidence suggests

that scaDA achieves the best FDR control.

Fig 4. Power analysis for scaDA and published methods. Baseline values of three parameters are estimated in the cell

type “Granule neuron” from “Human Brain 3K”. For differential peaks, we fix the parameter values in Group 1 and

vary the parameter values in Group 2 with different effect sizes of selected parameters to create power curves. To create

parameter values in Group 2, we multiply and divide an effect size in terms of log2 fold change from the baseline values

for differential peaks in equal proportion. The log2 fold change of selected parameters is changed from 0.5 to 3.0 with a

step size of 0.5. Using the parameter setting in the four scenarios, we assume 20% differential peaks and simulate the

read counts based on ZINB for 4000 peaks across 100 cells in each group. A. Scenario 1: only mean difference between

two groups B. Scenario 2: only prevalence difference between two groups. C. Scenario 3: only dispersion difference

between two groups. D. Scenario 4: difference of all three parameters between two groups.

https://doi.org/10.1371/journal.pcbi.1011854.g004
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Parameter estimation. We notice that scaDA outperforms its closest counterpart ZINB

(μ, ϕ, p) in all simulation scenarios for both improved power and better FDR control even

both composite hypothesis tests focus on the same set of parameters mean, dispersion, and

prevalence. The key difference between scaDA and ZINB(μ, ϕ, p) lies in dispersion shrinkage

and iterative refinement of mean and prevalence, which may lead to a better parameter estima-

tion that is responsible for improved performance in both power analysis and FDR control.

To validate this, we evaluate the accuracy of parameter estimation for both methods. The

correlation between the true dispersion (ϕ) and the estimated dispersion (�̂) for both ZINB(μ,

ϕ, p) and scaDA are shown in Fig 6A. Consequently, scaDA yields a better correlation by

achieving a higher Pearson correlation coefficient of 0.443, which is higher than 0.303 obtained

by ZINB(μ, ϕ, p). In addition, scaDA consistently obtains lower MSEs in all three parameters

(Fig 6B), which indicates the effectiveness of parameter estimation by scaDA.

Evaluating DA analysis using three sc-multiome data

Overview of evaluation strategy. We perform DA analysis of scaDA and published meth-

ods in three sc-multiome datasets. The analyses for “Human Brain 3K” and “Human PBMC

10K” focus on identifying differential peaks between one cell type and all other cell types. Strat-

ified sampling is adopted to ensure balanced sample sizes between the two groups. Detecting

differential peaks in the first type of DA analysis is crucial for hypothesis generation, where

cell-type specific peaks can be identified for cell type annotation. The analyses for “Human

AD” focus on detecting the differential peaks between two disease stages (i.e., AD and control)

of each cell type. The second type of DA analysis can be widely used to identify disease-associ-

ated regions, which can be used for disease prevention and treatment.

Fig 5. FDR control analysis. scaDA is compared to both ZINB-based LRT tests and published methods. Using the

same simulation strategy in Scenario 4 (log2FC = 2.5), we assume 20% differential peaks and simulate the read counts

based on ZINB for 4000 peaks across 100 cells in each group. The observed FDR is plotted against the nominal FDR

level. A. scaDA is compared to ZINB-based LRT tests. B. scaDA is compared to published methods.

https://doi.org/10.1371/journal.pcbi.1011854.g005
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Since the gold standard for measuring differential peaks between cell types is not available,

we evaluate the differential peaks by leveraging the status of nearby differential gene expression

because chromatin accessibility near the promoters is positively correlated with gene expres-

sion. Based on the data type of sc-multiome data, we qualify the gene expression in two ways.

For sc-multiome data with ATAC and RNA profiled in the same cell, we use the profiled gene

expression directly. For sc-multiome data with ATAC and RNA not profiled in the same cell,

we estimate the gene expression by leveraging ATAC-seq counts in the 2 kb-upstream and

downstream region of transcriptional start sites (TSS). Specifically, we use “GeneActivity()”

function in the Signac package for the estimation of gene expression based on ATAC-seq

count. Once the gene expression is quantified, we perform the DE gene analysis using the Wil-

coxon rank-sum test. We adopt the Wilcoxon test because it’s a non-parametric method,

which tends to be more conservative compared to parametric alternatives, reducing the poten-

tial false positives. Consequently, genes with FDR less than 0.05 and the absolute value of log2

fold change in the first quantile are deemed as DE, and others are deemed as non-DE. Next,

we keep all peaks that are in proximity to both DE and non-DE genes and the proximity is

quantified as peaks within the window of 50kb with TSS in the center. Peaks within the 50kb

window of corresponding DE genes are considered as true differential and within the 50kb

window of non-DE genes are deemed as non-differential. Finally, we perform DA analysis

using scaDA and published methods. Peaks with FDR less than 0.05 and an absolute value of

log2 fold change larger than 0.5 are deemed as differential peaks and otherwise non-

differential.

Fig 6. Parameter estimation. Using the same simulation strategy in Scenario 4 (log2FC = 2.5), we assume 20%

differential peaks and simulate the read counts based on ZINB for 4000 peaks across 100 cells in each group. A. True

dispersion is plotted against the estimated dispersion from ZINB(μ, ϕ, p) and scaDA on a log scale plot. B. MSE

calculated between true and estimated mean, dispersion, and prevalence from ZINB(μ, ϕ, p) and scaDA.

https://doi.org/10.1371/journal.pcbi.1011854.g006
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As the goal of DA analysis is to have as many true positives as possible among the top-

ranked differential peaks, we adopt the proportion of true differential peaks among top-ranked

differential peaks, named true discovery rate (TDR), which has been widely used for quantify-

ing the differential biological signals [16, 23], as the performance measure in the real data anal-

ysis. Specifically, we calculate TDR in the top-ranked peaks ranging from 20% to 100% with a

step size of 20%. When all peaks are used i.e., 100%, TDR is equivalent to the True Positive

Rate (TPR), which is also the statistical power.

Human brain 3K. We employ the Seurat 10x sc-multiome data analysis pipeline to pro-

cess “Human Brain 3K”, which profiles DNA accessibility and gene expression in the same

cells, by performing quality control, data transformation, dimension reduction, and cell type

annotation. For quality control, we keep cells with counts of ATAC reads less than 100k but

larger than 1k and counts of RNA reads less than 25k but larger than 1k. In addition, we keep

cells with nucleosome signal scores less than 2, TSS enrichment scores larger than 1, and per-

cent of mitochondrial gene expression less than 20%. For data transformation, sctransform

[24] is applied to RNA modality and TF-IDF is used for ATAC modality. For dimension

reduction, PCA and SVD are performed for RNA and ATAC modalities respectively. Finally,

Weighted Nearest Neighbor (WNN) analysis is performed for UMAP visualization and clus-

tering by integrating both RNA and ATAC-seq modalities. Consequently, 14 distinct clusters

have been identified with the number of cells and cell type proportions reported in S1 Table.

For cell type annotation, DE analysis is performed between each cluster and all the other clus-

ters. Top DE genes for each cluster are identified and compared to reported gene markers

from a published study on human cerebellar development [22].

As aforementioned, DE analysis is performed using RNA modality, and true differential

peaks are defined as peaks proximate to DE genes. TDR is calculated by comparing the differ-

ential peaks identified by each DA method and true differential peaks. Consequently, we plot

the TDR across cell types at different levels of top-ranked differential peaks identified by each

Fig 7. Human Brain 3K. A. True Discovery Rate (TDR) is reported across 8 cell types for all methods at different

levels of top percentages (i.e., 20%, 40%, 60%, 80%, and 100%) B. Power (TDR at 100%) across 8 cell types for all

methods.

https://doi.org/10.1371/journal.pcbi.1011854.g007
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method (Fig 7). Overall, all methods exhibit the highest mTDR (mean TDR) across cell types

in top 20% peaks and experience declined mTDR as the top percentage increases, which indi-

cates that all methods are more powerful in identifying true differential peaks in top-ranked

peaks. Importantly, scaDA achieves the best performance by obtaining the highest mTDR in

top 20% differential peaks (0.81 for scaDA, 0.72 for Signac, 0.72 for scATAC pro, 0.67 for

MAST, 0.64 for NegBin, 0.67 for edgeR). The trend consistently holds across all levels of top

percentages. When the top percentage equals 100%, TDR is equivalent to TPR (i.e. power). It

is clear that scaDA is the most powerful (0.51 for scaDA, 0.34 for Signac, 0.34 for scATAC pro,

0.33 for MAST, 0.22 for NegBin, 0.28 for edgeR). In addition, TDR demonstrates a large vari-

ability across cell types at different levels of top percentages. However, scaDA still holds less

variability than all compared methods in top 20% peaks (0.03 for scaDA, 0.09 for Signac, 0.08

for scATAC pro, 0.10 for MAST, 0.05 for NegBin, 0.08 for edgeR). Signac, scATAC-pro,

MAST, and edgeR generally yield comparable performances but exhibit a higher variability

than scaDA and NegBin. NegBin obtains the second-lowest mTDR but the second-lowest vari-

ability across all levels of top percentages. Interestingly, NegBin has less variability than its

closest counterpart edgeR. The summary of mean and variability of TDR of all methods across

all levels of top percentages can be found in S2 and S3 Tables. Moreover, we evaluate the

power of all methods for each cell type (Fig 7B). scaDA performs the best by obtaining the

highest power in 6 out of 8 cell types, which is followed by Signac with the highest power in 2

out of 8 cell types (S4 Table). We further explore the TDR of all methods for each cell type at

different levels of top percentages and find scaDA consistently has overall best performance

(S8 Fig). Similarly, we find that scaDA outperforms other ZINB-based methods (S9 Fig).

Human PBMC 10K. Similarly, Seurat 10x sc-multiome data analysis pipeline is used to

process “Human PBMC 10K”, which profiles DNA accessibility and gene expression in the

same cells, by performing quality control, data transformation, dimension reduction, and cell

type annotation. In particular, cell type annotation is performed using PBMC reference

scRNA-seq data [25]. As a result, 20 clusters are identified and annotated, and cell types with

cell numbers less than 100 are excluded resulting in 14 cell types for the following analysis. Cell

type proportion and number of cells in each cell type are reported in S5 Table.

Similar to before, true differential peaks are defined as peaks proximate to DE genes. TDR

is calculated by comparing the differential peaks identified by each DA method and true differ-

ential peaks. As a result, TDR across 14 cell types at different levels of top-ranked differential

peaks, which are identified by each method, are demonstrated in Fig 8. It is expected that the

performance of all methods decrease when the top percentage increases. Notably, scaDA

obtains the highest mTDR in the top 20% differential peaks (0.57 for scaDA, 0.49 for NegBin,

0.45 for edgeR, 0.45 for Signac, 0.43 for scATAC pro and 0.40 for MAST). Moreover, scaDA

achieves the highest power (0.24 for scaDA, 0.16 for NegBin, 0.14 for edgeR, 0.10 for Signac,

0.10 for scATAC pro and 0.09 for MAST). In addition, the trend persists across all levels of top

percentages. Besides achieving the highest mTDR, scaDA also holds the smallest variability of

TDR across cell types among all methods in top 20% differential peaks (0.02 for scaDA, 0.07

for NegBin, 0.06 for edgeR, 0.07 for Signac, 0.07 for scATAC pro and 0.08 for MAST). For

scaDA, the trend of yielding the smallest variability of TDR across cell types is consistent

across all levels of top percentages. In addition, the superiority of scaDA is more evident for

top-ranked differential peaks (e.g., 20%, 40%). In contrast, other methods suffer a larger vari-

ability of TDR across cell types in top-ranked differential peaks (e.g., 20%, 40%). The variabil-

ity of other methods will decrease when the percentage increases. The summary of the mean

and variability of TDR of all methods across all levels of top percentages can be found in S6

and S7 Tables. We further investigate the performance of all methods for each cell type. scaDA

obtained the highest power in 9 out of 14 cell types and second highest in 5 out of 14 cell types
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(Fig 8B, S8 Table). In addition, the superiority of scaDA persists at different levels of top per-

centage (S10 Fig). Furthermore, scaDA surpasses other ZINB-based methods by obtaining an

overall highest TDR (S11 Fig).

Human AD. “Human AD” consists of 12 AD and 8 healthy control samples across 3

batches. Cell type annotation has been provided for all cells in the metadata. Seven major cell

types are provided, which include Astrocytes (ASC), Excitatory neurons (EX), Inhibitory neu-

ron (INH), Microglia (MG), Oligodendrocytes (ODC), Olig. progenitors (OPC) Pericytes/

endothelial (PER.END). Due to few cells in PER.END, we remove PER.END from the follow-

ing analysis. As the RNA and ATAC modalities are profiled in separate scATAC-seq and

scRNA-seq data, we use the ATAC modality to infer “pseudo” gene expression for DE analysis

to prevent the potential domain shift of data modality. We employ the Signac 10x scATAC-seq

data analysis pipeline to process the data by performing quality control, data transformation,

dimension reduction, and cell type annotation. To reduce the batch effect, we perform cell

type-specific DA analysis for each pair of one AD and one control sample within each batch.

TDR is calculated as aforementioned accordingly.

Consequently, TDR across all cell types and pairwise comparison at different levels of top-

ranked differential peaks are presented in Fig 9A. scaDA obtains the highest mTDR in the top

20% differential peaks (0.77 for scaDA, 0.65 for scATAC pro, 0.62 for MAST, 0.51 for edgeR,

0.45 for Signac, and 0.16 for NegBin). Similarly, scaDA performs much better than other meth-

ods by obtaining a significantly higher power (0.69 for scaDA, 0.34 for scATAC pro, 0.33 for

MAST, 0.35 for edgeR, 0.21 for Signac, and 0.09 for NegBin). A persistent trend, in which

scaDA consistently obtains the highest mTDR, is observed across all levels of top percentages.

Except for NegBin, which has the worst performance in terms of mTDR, scaDA achieves the

smallest variability of TDR across all cell types and pair comparison among all methods in top

20% differential peaks (0.10 for scaDA, 0.17 for scATAC pro, 0.17 for MAST, 0.16 for edgeR,

0.19 for Signac and 0.07 for NegBin). The trend of variability of TDR across all cell types and

pair comparison is consistent at all levels of top percentages, where scaDA and NegBin have a

Fig 8. Human PBMC 10K. A. True Discovery Rate (TDR) across 14 cell types for all methods at different levels of top

percentages (i.e., 20%, 40%, 60%, 80%, and 100%) B. Power (TDR at 100%) across 14 cell types for all methods.

https://doi.org/10.1371/journal.pcbi.1011854.g008
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small variability but other methods suffer a large variability. The summary of the mean and vari-

ability of TDR across all cell types and pair comparison at different levels of top percentages can

be found in S10 and S11 Tables. In addition, for each method, the mean power of all pairwise

comparisons is reported for each cell type (Fig 9B). Remarkably, scaDA is most powerful by

obtaining the highest power in 6 out of 6 cell types. Following scaDA, scATAC-pro achieves the

second highest power in 3 out of 6 cell types (S12 Table). For each method, mTDR of all pairwise

comparisons for each cell type at different levels of top percentages is explored (S12 Fig). Again,

scaDA achieves the best performance by obtaining the overall highest cell type-specific mTDR.

Similarly, scaDA achieves an overall higher TDR than other ZINB-based methods (S13 Fig).

Gene Ontology analysis

We perform the Gene ontology (GO) analysis for differential peaks identified by each method

(FDR<0.05, abs(log2FC)>0.5). For the GO analysis, we choose microglia from “Human AD”

for DA analysis. Microglia are innate immune cells of the myeloid lineage that reside in the cen-

tral nervous system (CNS) and are key cellular mediators of neuroinflammation. It is well-

known that microglia has demonstrated a key role in the pathogenesis of AD by generating

adaptive immune response [26]. Therefore, a top-performed method is expected to identify dif-

ferential peaks that are more functionally enriched in neural and immune-related GO terms.

First, we assign identified differential peaks to protein-coding genes, which will be used for

GO analysis. The selection of the genes is based on the positional overlap between the differen-

tial peaks and 50kb extended region of TSS with TSS in the middle. Next, we perform GO

term analysis using the “enrichGO” function in “clusterProfiler” R/Bioconductor package [27]

with default parameter setting such as pAdjustMethod = “BH” and qvalueCutoff = 0.05. We

compare scaDA to the published methods including NegBin, edgeR, MAST, scATAC-pro and

Signac. For each method, we perform the DA analysis between one AD and one control sam-

ple by pairwise comparison within each of the three batches, which results in 34 sets of

Fig 9. Human AD. A. Mean True Discovery Rate (TDR) across all 6 cell types and pairwise comparison for all

methods at different levels of top percentages (i.e., 20%, 40%, 60%, 80%, and 100%) B. Mean Power (TDR at 100%)

across all 6 cell types and pairwise comparison for all methods.

https://doi.org/10.1371/journal.pcbi.1011854.g009

PLOS COMPUTATIONAL BIOLOGY scaDA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011854 August 2, 2024 19 / 28

https://doi.org/10.1371/journal.pcbi.1011854.g009
https://doi.org/10.1371/journal.pcbi.1011854


differential peaks and 34 sets of GO analysis results. For each GO term, we employ Stouffer’s

Z-score method [28], which combines p-values from 34 sets into a single p-value, and then

applies multiple testing corrections to obtain FDR.

Consequently, the performance of all methods has been demonstrated by enrichment in 10

significant GO terms (FDR<0.05) (Fig 10), which include “cognition” and “learning or mem-

ory” related to clinical phenotype of AD involves progressive cognitive decline and memory

loss [29]; “regulation of trans-synaptic signaling” and “moderation of chemical synaptic trans-

mission” related to synaptic transmission that promotes neurodegeneration [30]; “regulation

of amyloid-beta formation” and “amyloid-beta metabolic process” related to Amyloid beta,

which is one protein crucial to AD development [31]; “immunological memory process” and

“negative regulation of adaptive immune response” related to microglia’s role in the pathogen-

esis of AD by generating adaptive immune response [26].

The majority of all methods are enriched in the 10 key GO terms related to AD neurode-

generation and clinical phenotype of AD. Remarkably, scaDA stands out by obtaining the

highest enrichment. Following scaDA, scATAC-pro, MAST, and Signac, three methods devel-

oped for single-cell genomics, rank in the second tie. edgeR and NegBin, two methods devel-

oped for differential analysis of bulk RNA-seq, perform worst. Particularly, NegBin fails to

identify differential peaks enriched in any of the GO terms. All the evidence demonstrates that

scaDA is capable of identifying differential peaks enriched in GO terms related to neurogenesis

and clinical phenotype of AD, which further validates scaDA is still the top-performed method

compared to its counterparts by GO analysis.

Fig 10. GO analysis for AD microglia. Gene ontology (GO) analysis is performed on differential peaks identified by

scaDA and published methods. Microglia from “Human AD” is selected for the GO analysis.

https://doi.org/10.1371/journal.pcbi.1011854.g010
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GWAS enrichment analysis

GWAS enrichment analysis aims to evaluate the enrichment of diseases/traits-associated

GWAS SNPs in cell type-specific chromatin accessible regions. The analysis can help identify

disease/trait-associated cell types and provide functional annotation and interpretation for

GWAS SNPs [6]. Recently, GWAS enrichment analysis has been widely performed in several

AD studies to evaluate the enrichment of AD-associated GWAS SNPs in chromatin accessible

regions across major brain cell types [21, 32]. Enlightened by the previous studies, we adopt

GWAS enrichment analysis to evaluate the differential peaks identified by all methods.

Similar to the GO analysis, we select microglia from “Human AD” for DA analysis and

identify differential peaks for each method. For AD-associated GWAS SNPs, we collect AD-

associated GWAS summary statistics in a study named “genome-wide association study by

proxy (GWAX)” [33]. We identify 1302 positive AD-associated GWAS SNPs

(p-value<1x10−4) and generate negative control SNPs 10 times more than the positive set

using the strategy from previous work [34–36]. Next, for each method, we count how many

positive/negative SNPs are within differential peaks/non-differential peaks and construct a 2

by 2 contingency table. We then perform Fisher’s exact test to calculate the odd ratio (OR),

confidence interval (CI), and p-value for the table. Similar to the GO analysis, for each method,

we perform the DA analysis between one AD and one control sample by pairwise comparison

within each of the three batches, which results in 34 sets of differential peaks and 34 sets of OR,

CI, and p-value. To integrate 34 sets of results and resolve the potential discrepancy, we per-

form a meta-analysis by adopting the R package “meta”. Consequently, we obtain one set of

OR, CI, and p-value for each method (Fig 11). Consequently, scaDA achieves the highest OR

Fig 11. GWAS enrichment analysis. Microglia from “Human AD” is selected for DA analysis and identify differential

peaks for each method. GWAS enrichment analysis is performed by evaluating the enrichment of AD-associated

GWAS summary statistics in microglia-specific differential peaks. Results are presented in terms of logOR, CI and

pvalue.

https://doi.org/10.1371/journal.pcbi.1011854.g011
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(logOR = 1.97) and the most significant finding (p-value = 0.026). Interestingly, edgeR ranks

second by achieving a slightly lower OR and less significant p-value (logOR = 1.88 and pva-

lue = 0.037). Though positive AD-associated GWAS SNPs are enriched in differential peaks

identified by MAST and scATAC-pro (logOR = 1.56 and 1.15), the finding is not statistically

significant (p-value = 0.081 and 0.198). Surprisingly, NegBin and Signac show unfavorable

performance by failing to detect differential peaks hit by positive AD-associated GWAS SNPs.

Discussion

With the advent of scATAC-seq data, differential chromatin (DA) analysis is able to identify

cell-type specific chromatin accessible regions by comparing two cell types or detect disease-

associated chromatin accessible regions by the two-group analysis (e.g., disease and normal)

for the same cell type. The DA regions can be further linked to dynamic cis-regulatory ele-

ments and regulated genes to have a comprehensive picture of gene regulatory activities. Statis-

tical methods have been widely developed and used for performing DA analysis.

Nonparametric methods, such as the Wilcoxon rank-sum test, have been adopted by state-of-

the-art scATAC-seq analysis pipelines such as Signac and scATAC-pro because of their

robustness to distribution assumption. Nevertheless, the Wilcoxon test is unable to adjust

covariates and provide interpretable effect sizes. Other statistical methods such as MAST,

which has been developed for differential expression analysis for scRNA-seq data, can be used

directly for DA analysis. However, these methods may not be optimal for scATAC-seq data

due to the different data characteristics such that scATAC-seq has more severe sparsity due to

more peaks than genes and higher drop rates [11].

Considering the excessive zeros of scATAC-seq data, it is ideal to model the ATAC count

data using a zero-inflated negative binomial model (ZINB). Motivated by real data exploration

where we observe “distribution difference”, that is, distributions of all three parameters are dif-

ferent between multiple pairs of cell types, we decide to adopt composite hypothesis testing,

which is more robust when the difference of chromatin accessibility is not determined by one

single parameter. Collectively, we develop scaDA, a novel statistical framework based on ZINB

model for DA analysis by joint considering mean, dispersion, and prevalence in a composite

hypothesis testing framework. To improve the parameter estimation, scaDA incorporates a

powerful empirical Bayes approach to derive a posterior estimate of dispersion and further

refines the estimate of mean and prevalence in an iterative fashion. To evaluate the effective-

ness of scaDA, we perform a semi-parametric simulation based on one real scATAC-seq data,

where mean and prevalence parameter values are randomly sampled from real data estimates

and dispersion parameter values are generated from a log-normal distribution with hyper-

parameters computed from the same real data. Importantly, we design four scenarios, where

the differential chromatin accessibility is driven by each of the three parameters or three

parameters at the same time.

Consequently, scaDA outperforms both ZINB-based LRTs and state-of-the-art published

methods respectively. When compared to ZINB-based LRTs that the differential chromatin

accessibility is only driven by mean or prevalence, scaDA is only slightly less powerful than

ZINB(μ) and ZINB(p) respectively. However, when differential chromatin accessibility is

driven by dispersion or three parameters, scaDA is the most powerful. Importantly, scaDA

outperforms its closest counterpart-ZINB model ZINB(μ, ϕ, p), which also performs compos-

ite test for three parameters. This observation can be explained by the additional benefit of

improving the parameter estimation by dispersion shrinkage and parameter refinement for

mean and prevalence, which is implemented by scaDA. Continuing the momentum, scaDA

maintains top performed method among state-of-the-art published methods, which ranges
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from DE methods for bulk-RNA and scRNA-seq to DA methods for scATAC-seq. Moreover,

FDR control analysis confirms the superiority of scaDA by obtaining the best FDR control

among both ZINB-based LRTs and published methods. We further explore different sample

sizes for both power analysis and FDR control analysis. The overall trend persists that scaDA

maintains the top performance. However, the advantage of scaDA diminishes as the benefit of

increased sample size outweighs the gain from the more advanced method.

We apply scaDA to three sc-multiome data by leveraging the status of nearby differential

expressed genes to evaluate differential peaks. We use the true discovery rate (TDR), which is

defined as the proportion of true differential peaks among top-ranked differential peaks to

evaluate the model performance. As a result, scaDA is most powerful by obtaining the highest

mean and lowest variability of TDR across all cell types at different levels of top percentages. In

addition, scaDA is the most frequently top-ranked method by power across all cell types. To

evaluate the functional consequence of identified differential peaks, we perform Gene Ontol-

ogy analysis on the differential peaks identified from microglia in “Human AD”. Conse-

quently, scaDA successfully identifies differential peaks, which are most enriched in GO terms

related to neurogenesis and clinical phenotype of AD. Furthermore, we perform GWAS

enrichment analysis on identified differential peaks by leveraging a published AD-associated

GWAS summary statistics. As a result, AD-associated GWAS SNPs are more enriched in dif-

ferential peaks identified by scaDA than other published methods. Therefore, scaDA outper-

forms existing methods by both GO analysis and GWAS enrichment analysis, which further

confirms the practical advantage of using scaDA in DA analysis.

Despite the favorable performance of scaDA, scaDA is limited in several aspects. Similar to

existing methods, scaDA performs the DA analysis for each chromatin accessible region indi-

vidually and independently. In fact, these peaks can be co-accessible, which can be predicted

from scATAC-seq data using methods such Cicero [37]. Thus, scaDA can be extended to test

the differentially co-accessible peaks in a multivariate test. The multivariate test may help alle-

viate the multiple testing burden, increase the statistical power, and provide novel biological

findings. In addition, the current version of scaDA is limited to two-group comparison and

our immediate plan is to extend scaDA to a multifactor design. This extension is crucial as the

experimental design for scATAC-seq becomes sophisticated, where multiple batches, condi-

tions, platforms, and treatments can be considered simultaneously. We will explore these

directions to extend and improve scaDA in future work.
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