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Abstract

Single particle cryo-electron microscopy (EM) is a method for determining the 3-D structure of 

macromolecules from many noisy 2-D projection images of individual macromolecules whose 

orientations and positions are random and unknown. The problem of orientation assignment 

for the images motivated work on general multireference alignment. The recently introduced 

non-unique games framework provides a representation theoretic approach to alignment 

over compact groups, and offers a convex relaxation which is formulated as semidefinite 

programs with certificates of global optimality under certain circumstances. One of the great 

opportunities in cryo-EM is studying heterogeneous samples, containing two or more distinct 

classes or conformations of molecules. Taking advantage of this opportunity presents an 

algorithmic challenge: determining both the class and orientation of each particle. We generalize 

multireference alignment to a problem of alignment and classification, and we propose to extend 

non-unique games to the problem of simultaneous alignment and classification with the goal of 

simultaneously classifying cryo-EM images and aligning them within their respective classes.
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1. Introduction

A Non-Unique Game (NUG) is an optimization problem or a statistical estimation problem, 

of inferring n elements of a group g1, …, gn ∈ G by minimizing an expression of the form

argmin
g1, …, gn ∈ G

∑
i, j = 1

n
fij gigj

−1 ,

(1)
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where fij:G ℝ are loss functions for particular pairwise relations gigj
−1 between elements. 

This problem arises in multireference alignment (MRA) discussed in [1], and in more 

general settings discussed in [2]; A convex relaxation of the problem, proposed in [2], can 

be solved using semidefinite programming (SDP). NUG over the group ℤ2 and its SDP 

relaxation coincides with classification problems and graph-cut algorithms (e.g., [3, 4]).

One of the applications where NUGs and associated algorithms have been of particular 

interest is single particle cryo-electron microscopy (cryo-EM) [5, 6], where multiple noisy 

2-D projections images of individual, ideally identical, frozen-hydrated 3-D macromolecules 

whose orientations and positions are random and unknown, must be aligned over SO(3), as 

a step in reconstructing the macromolecule. Some of the popular software used for analysis 

of cryo-EM data (e.g. [7]) alternate between updating an estimate of the scattering density of 

the molecule and updating an estimate of particle orientations, and are sensitive to scattering 

density chosen for initialization. One approach to ab-initio modeling of molecules from 

cryo-EM data, discussed in further detail in Section 2.1 and in [8, 9, 10, 11], uses common 

lines in the Fourier transforms of particle images to align them. The Fourier transform of 

these 2-D particle images are slices of the 3-D Fourier transform of the scattering density 

of the molecule, therefore each two slices have a common line where they intersect. This 

approach to ab-initio modeling has been formulated as a NUG [2], with the potential 

advantage of certificates of global optimality and no need for an approximate structure for 

initialization; the software is under development at the time of writing this paper. Such 

ab-initio models are used to initialize other algorithms, and to recover smaller structures.

Cryo-EM has been the subject of the 2017 Nobel Prize in Chemistry, due to the 

breakthroughs that the method facilitated in mapping the structure of molecules that 

are difficult to crystallize. Cryo-EM does not require crystallization necessary for X-ray 

crystallography, and unlike NMR it is not limited to small size molecules. One of the 

additional great opportunities in cryo-EM, is to overcome heterogeneity in the sample 

[12]: in practice many samples contain two (or more) distinct types of molecules (or 

different conformations of the same molecule); methods like X-ray crystallography and 

NMR, which measure ensembles of particles, have a difficulty distinguishing between these 

different types. In the case of heterogeneous samples, we do not know the orientation or the 

conformation of the molecule in each particle image; it is therefore natural to ask how MRA 

can be accomplished before classification of the particle images, or how classification can be 

accomplished before the particle images are aligned.

In this paper we discuss the problem of alignment and classification, referred to as 

heterogeneous MRA, and propose to solve them simultaneously. This approach is based 

on the observation that both alignment and classification are problems over compact groups, 

and that the direct product of these groups is also a compact group.

We reformulate the problem as an optimization problem over the direct product of the 

groups, and reduce it to a NUG. In addition, we discuss some of the symmetries in the 

problem, which are exploited to reduce the size of the resulting SDPs. Furthermore, we 

propose an approach for controlling the size of the classes. The approach can be generalized 

to simultaneous alignment and parametrization, in the case of continuous heterogeneity 
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(which will be discussed in a future paper). We demonstrate the applicability of this 

approach with examples of simoultanous alignment and classifcation over SO(2), comparing 

the quality of classification to a method of alignment-free classification based on invariant 

features.

Our approach is also applicable to other recently proposed methods of optimization 

over groups (e.g. [13, 14, 15]). The idea introduced in this work to treat alignment 

and classification/heterogeneity as two sides of the same coin in MRA has since been 

generalized to algorithms that take other perspectives on MRA and heterogeneity (inter alia 

[16, 17, 18, 19]).

This work suggests that the NUG solver for cryo-EM (developed for the homogeneous 

case) can be extended to solve the alignment and classification problems simultaneously 

in the case of heterogeneous cryo-EM samples; the algorithm inherits the properties of the 

NUG solver, such as certificates of global optimality in some cases and not requiring an 

approximate structure for initialization. Analogously to the role of ab-initio modeling in 

the homogeneous case, we envision this type of algorithms used in ab-initio modeling of 

heterogeneous samples, providing multiple 3-D structures or classification and alignment as 

initialization for refinement algorithms.

This paper is organized as follows. In Sections 2.1 and 2.2 we present a brief overview of 

cryo-EM as motivation for the discussion of simultaneous alignment and classification. The 

remainder of Section 2 summarizes some standard results used in this paper, as well as some 

previous work on NUGs. Section 3 contains a more detailed discussion of the problem, and 

the derivation of the main arguments in this paper. In section 4 we propose SDP algorithms 

for simultaneous alignment and classification. Section 5 contains experimental results for the 

case of simultaneous alignment and classification over SO(2). In section 6 we summarize 

our conclusions and briefly discuss generalizations and future work.

2. Preliminaries

2.1. The Cryo-EM Problem

Electron microscopy is an important tool for recovering the 3-D structure of molecules. 

Of particular interest in the context of this paper is single particle reconstruction (SPR), 

and more specifically, cryo-EM, where multiple noisy 2-D projections, ideally of identical 

particles in different orientations, are used in order to recover the 3-D structure. The 

following formula is a simplified imaging model of SPR

PRX x, y =
z

X Rr dz

(2)

where r = x, y, z , R is some random rotation matrix in SO(3), X is the scattering density 

of the molecule, and P is the projection operator. In other words, the model is that the 

molecule is rotated in a random direction, and the image obtained is the top-view projection 

of the rotated molecule, integrating out the z axis. Indeed, one of the characteristic properties 
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of cryo-EM SPR that sets it apart from other tomography techniques is that the orientation 

R of the molecule in each image is unknown in cryo-EM, whereas in other tomography 

techniques the rotation angles are typically recorded with the measurements. The analysis of 

cryo-EM images is further complicated by extremely high level of noise, far exceeding the 

signal in magnitude, which makes it difficult not only to analyze the particles in the images, 

but also to locate the particles in the micrographs produced. Sample images are presented in 

fig. 1. More detailed discussions of these challenges, and various other challenges, such as 

the contrast transfer functions (CTF) applied to the images in the imaging process, can be 

found, for example, in [5].

The reconstruction of the molecule (or, more precisely, the density X) from the images 

obtained in cryo-EM requires an estimate of the rotation angles of the images. The Fourier 

slice theorem (see, for example, [20]) provides a way to estimate these rotations from the 

common lines between the images (see, for example [8, 9, 10, 11], and fig. 2). In the context 

of this paper, we assume that for every pair of images i and j, we have some function fij g
which corresponds to the “incompatibility” between the images i and j for every relative 

orientation g ∈ SO 3 ; this function is a measure of the discrepancy between the radial line in 

the Fourier transform of image i and the radial line in the Fourier transform of image j which 

would have corresponded to the common line between the plane of i and the plane of j, if 
the relative orientation of the two images had been g. Had there not been noise, we would 

have expected that fij gij = 0 for the true relative rotation gij between image i and image j, 
and fij g > 0 for every other g (in fact, fij gij = 0 for every gij that yields the same common 

lines for the pair of images as gij since various rotations can yield the same common line. 

The ambiguity is resolved, up to reflections, only by adding a third image). In practice, due 

to the high levels of noise, fij need not be 0 at gij, and in fact, the value of fij may even not 

be minimized at gij. However, the expected value of fij is lower for the true gij than it is for 

other relative rotations. For more details about this loss function in the context of this paper, 

see [2].

2.2. The Heterogeneity Problem in Cryo-EM

So far, we have assumed that all the molecules being imaged in an experiment are identical 

copies of each other, so that all the images are projections of identical copies, from different 

directions. However, in practice, the molecules in a given sample may differ from one 

another for various reasons. For example, the sample may contain several types of different 

molecules due to some contamination or feature of the experiment. Alternatively, the 

molecules which are studied may have several different conformations or states, or some 

local variability (see example in fig. 3). The heterogeneity may be discrete (e.g. in the case 

of distinct different molecules) or continuous (in the case of molecules with continuous 

variability).

When there is heterogeneity in the samples, high resolution reconstruction of the molecules 

requires not only an estimate of the rotation of each image, but also classification of the 

images into clusters, each corresponding to a different molecule which is to be reconstructed 

separately. Some of the existing SPR analysis methods rely on some prior knowledge 

of the underlying molecules and on iterative processes of estimating the structure of the 
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molecules and matching images to those estimates (e.g. [22, 23, 7]), and others require some 

method of recovering the rotation of the images although the images reflect mixtures of 

projections of different molecules (e.g. [24, 25]). A recent independent work [26] proposes 

to iterate between estimating the orientations and estimating the class labels based on 

pairwise relations between images.

2.3. Irreducible Representations of Groups

The purpose of sections 2.3 to 2.5 is to briefly review some standard results in group theory 

and harmonic analysis; more detailed discussions of these facts can be found, inter alia, in 

[28, 29, 30].

Suppose that G is a compact group and f ∈ L2 G , then by the Peter-Weyl Theorem [31], the 

generalized Fourier expansion of f is

f g = ∑
k

dktr f k ρk g ,

(3)

where the matrices ρk g  are the irreducible representations of G, dk is the dimensionality of 

the kth representation, and the matrices f̂ k  are the Fourier coefficients of f, defined by the 

formula

f k = ∫
G

f g ρk
* g dg,

(4)

with dg the Haar measure on G normalized so that

G
dg = 1 .

(5)

Remark 1. For abelian groups, such as SO(2) (shifts on a circle), dk = 1 for all k. However, 

in SO(3), which is of particular interest in the cryo-EM application, dk = 2k + 1 with 

k = 0,1, 2, ….

The integration of any irreducible representation with respect to the Haar measure yields the 

zero matrix, except for the case of the trivial constant irreducible representation ρ0:

G
ρk g dg = 0 ∀k ≠ 0 .

(6)
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The following are well known properties of irreducible and unitary representations of 

compact groups:

ρk g1g2 = ρk g1 ρk g2 ,

(7)

ρk g−1 = ρk
* g .

(8)

2.4. Special Cases: SO(2) and ℤM

In the special case where G = ℤM (discrete cyclic group of M elements), there is a 

finite set of M irreducible representations, and all the irreducible representations are of 

dimensionality one (scalar rather than a matrix). The irreducible representations ηm m = 0
M − 1 of 

ℤM are

ηm a = ei2πam/M , a = 0, 1, …, m − 1.

(9)

The Fourier coefficients of a function over ℤM are simply the discrete Fourier transform 

(DFT) of the function (with the appropriate normalization eq. (5)).

In the special case where G = SO 2 , there is an infinite set of irreducible representations, 

and all the irreducible representations are of dimensionality one. The irreducible 

representations ηk k = − ∞
∞  of SO(2) are

ηk a = eiak , a ∈ 0,2π .

(10)

Remark 2. For the sake of brevity, and with a small abuse of notation, we will use elements 
of the groups ℤM and SO(2) and integers and angles interchangeably. For example, in eq. 

(10), the variable “a” can denote an element of SO(2) or an angle. Therefore, a1a2
−1 would 

mean the same as a1 − a2 mod2π, with the former in group notation and the latter in angle 

notation; a = e (where e is the identity element) in group notation means the same as a = 0
in angle notations. The appropriate interpretation, group element or integers and angles, is 
obvious from the context or does not matter.

2.5. Direct Products of Groups

The direct product G × A of two compact groups G and A is also a compact group, which 

has the elements g, a :g ∈ G, a ∈ A . In this paper, we are particularly interested in the case 

A = ℤM.
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The product of two elements of G × A is defined in terms of elements in G and A by the 

following formula

gi, ai gj, aj = gigj, aiaj .

(11)

It follows that

gi, ai gj, aj
−1 = gigj

−1, aiaj
−1 .

(12)

If ηm a  is an irreducible representation of A and ρk g  is an irreducible representation of G, 

then ψk, m g, a , defined by the formula

ψk, m g, a = ρk g ⊗ ηm a ,

(13)

is an irreducible representation of G × A. The irreducible representations ψk, m g, a  of 

G × ℤM are summarized in table 2; in table 3 we substitute η0 a = 1 and ρ0 g = 1 for the 

trivial irreducible representations of A and G respectively. By remark 1, the irreducible 

representations of abelian groups, such as the irreducible representations ηm of ℤM, are one 

dimensional, so in this special case, the tensor product ⊗ can be replaced with the trivial 

product between the scalar valued function ηm a  and the (possibly) matrix valued function 

ρk g , as summarized in table 4.

2.6. Non-Unique Games (NUG)

Let G be a compact group, and for every 1 ≤ i, j ≤ n let fij ∈ L2 G ; non-unique games 

(NUG) are problems of the form eq. (1).

Remark 3. The solutions to non-unique games are not unique: if g1, …, gn is a solution, then, 

g1g, …, gng is also a solution for any g ∈ G, because fij gig gjg −1 = fij gigj
−1 . The solution is 

therefore unique at most up to a global group element; the relative pairwise ratios gigj
−1 may 

be unique.

2.6.1. Fourier Expansion of a NUG, and a Matrix Form—Using the Fourier 

expansion (see eq. (3)) of fij,

fij gigj
−1 = ∑

k = 0

∞
dktr f ijρk gigj

−1 ,

(14)

we rephrase eq. (1) in the Fourier expansion form:
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argmin
g1, …, gn ∈ G

∑
i, j = 1

n
∑

k = 0

∞
dktr f ij

k ρk gigj
−1 .

(15)

For example, in the case of ℤM, the Fourier coefficients of fij are given by its DFT, and the 

NUG becomes

argmin
a1, …, an ∈ ℤ

∑
i, j = 1

n
∑

m = 0

M − 1
f ij

k ei2πm ai − aj /M .

(16)

Plugging eq. (7) into eq. (15) yields

argmin
g1, …, gn ∈ G

∑
i, j = 1

n
∑

k = 0

∞
dktr f ij

k ρk gi ρk
* gj .

(17)

The same expression can be rewritten in a block matrix form:

argmin
g1, …, gn ∈ G

∑
k = 0

∞
tr F k X k ,

(18)

where,

X k =
ρk g1

⋮
ρk gn

ρk g1

⋮
ρk gn

*
, F k = dk

f11
k … fn1

k

⋮ ⋱ ⋮
f1n

k … fnn
k

.

(19)

Indeed, the i, j block of the matrix X k , which we denote by Xij
k , is

Xij
k = ρk gi ρk

* gj = ρk gigj
−1 .

(20)

Therefore, recovering the matrices Xij
k  which take the above form is equivalent to recovering 

the ratio gigj
−1 between pairs, which allows us to recover g1, …, gn up to a global element (see 

remark 3). In other words, we have “lifted” the problem from the original variables g1, …, gn

to the block matrices, where each block is associated with the ratio gigj
−1 between a pair.
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2.6.2. Convex Relaxation of NUG—We would like to convexify the NUG problem 

in order to use convex optimization theory and algorithms; in this section we consider the 

convex relaxation of eq. (18) and eq. (19):

argmin
X k

k = 0

∞
∑

k = 0

∞
tr F k X k

(21)

where the solution matrices X 0 , X 1 , … are in the convex hull of the matrices defined in eq. 

(19).

The following SDP relaxation has been proposed in [2]:

argmin
X 0 , X 1 , …

∑k = 0
∞ tr F k X k

 subject to  X k ≻ 0 ∀k
Xii

k = Idk × dk ∀k, i

∑k = 0
∞ dktr ρk

* g Xij
k ≥ 0 ∀1 ≤ i, j ≤ n, ∀g ∈ G

Xij
0 = 1 ∀1 ≤ i, j ≤ n

(22)

where,

X k =
X11

k ⋯ X1n
k

⋮ ⋱ ⋮
Xn1

k ⋯ Xnn
k

.

(23)

The constraints in eq. 22 are designed to restrict X k  in eq. 22 to the convex hull of the 

matrices in eq. (19).

Remark 4. When the expansion of the irreducible representations of G is infinite, 
it must be truncated in practice. The implementation of the non-negativity constraint 
∑k dktr ρ k

* g Xij
k ≥ 0 is not trivial. The problem is discussed in [2], where G is sampled 

and a non-negative kernel is applied. In some cases, sum-of-squares (SOS) constraints can 
also be used. The constraint, and possible improvements of it, are the subject of ongoing 
work.

3. NUG Formulation for Simultaneous Classification and Alignment

The purpose of this section is to introduce the problem of classification and alignment 

(heterogeneous MRA), demonstrate that it can be formulated as a NUG, and discuss the 

properties of the NUG SDP in this case. A simple case of heterogeneous MRA is provided 

Lederman and Singer Page 9

Appl Comput Harmon Anal. Author manuscript; available in PMC 2024 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Section 3.1 as a motivating example, followed by a formal problem formulation in Section 

3.2. In Sections 3.3 and 3.4 we some known aspects of NUG and SDPs from a perspective 

that is useful in the discussion of the connection between clustering and NUG of the convex 

relaxation of NUG. In Section 3.5, we introduce an extension of NUG that provides control 

on distributions and class sizes, which is used as an optional component in the remainder 

of the discussion. In Section 3.6, we write the problem introduced in Section 3.2 explicitly 

as a NUG, and infer the SDP associated with it. In Sections 3.7 and 3.8 we discuss finer 

properties of this SDP, generalizing some of the properties discussed in Sections 3.3 and 3.4.

3.1. Motivating Example: Classification and Alignment over SO(2)

In this section we present the problem of MRA over SO(2), and a heterogeneity problem 

associated with it. This problem turns out to be simpler than the cryo-EM problem in some 

fundamental ways which we will discuss in section 5 in the sense that there are tools 

available for approaching this problem that are not available in cryo-EM; however, in the 

context of the NUG formulation, the problem has many of the features of the cryo-EM 

problem.

Suppose that we have some periodic function ψ: 0, 2π ℂ over SO(2), and suppose that we 

are given multiple copies of this function, each shifted by some arbitrary angle. An example 

of such shifted copies is given in fig. 4. If we want to recover the original function (up to 

cyclic shifts), we may choose an arbitrary copy, because all the copies are identical to the 

original function up to shifts.

Next, suppose that we have noisy shifted copies of the function (fig. 5(a)). If we wish to 

approximate the original function (up to shifts), we would align the noisy copies (fig. 5(b)) 

and then average them to cancel out the noise (fig. 5(c)). Of course, in order to do this 

we must somehow recover the correct shifts of all the copies together (up to some global 

shift). In the following sections, we will use a loss function for different possible pairwise 

alignment; for each pair of copies, we can define a “compatibility penalty” for different 

possible alignments, for example (with slight abuse of notation), via the formula

fi, j g = φi − g ∘ φj 2
2 = 1

2π∫0

2π
φi θ − φj θ − g 2dθ .

(24)

An example of such compatibility loss function is given in fig. 6. When the shifts are 

unknown, the problem of aligning the signals is a NUG (see [2, 1]).

In the heterogeneity problem we have a mixture of prototype signals; in this simplified 

example, let us assume that we have a mixture of noisy shifted versions of two classes of 

functions ψ1 and ψ2, so that each sample is a shifted noisy version of either ψ1 or ψ2 as 

illustrated in the example in fig. 7(a). If we knew both the class and shift of each sample, 

we could divide the samples into two classes, and align them within each class (fig. 7(b),(c)), 

so that we could average within each class and approximate the two original signals (fig. 7 

(d),(e)).
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We know neither the shift nor the class of the samples; we study the extension of MRA and 

NUG to this case of alignment in the presence of heterogeneity.

3.2. Problem Formulation

We would like to find the optimal way to divide the samples into M classes, so that we can 

best align them within each class. More formally, we would like to optimize the rotations 

and classification together:

argmin
g1, …, gn ∈ G

a1, …, an ∈ 0, .., M − 1

∑
m = 0

M − 1
∑
i, j:

ai = m
aj = m

fij gigj
−1 .

(25)

Remark 5. In this formulation, it is typically assumed that the loss fij is non-negative, and 

typically larger when i and j do not belong to the same class, so that there is an incentive to 
distribute the samples among M clusters, and align them within each cluster.

We will also discuss the problem of controlling the distribution to different clusters; for 

example, we will discuss the case where all the clusters are required to be of equal size:

i:ai = m = n/M .

(26)

3.3. Ambiguity

In some cases, there is a degree of ambiguity in a solution of a NUG (in addition to the 

inherent global ambiguity discussed in remark 3). Suppose that g1, g2, …, gn is a solution of 

the NUG in eq. (18) with the corresponding matrices X 0 , X 1 , …, and suppose that there 

exists another solution g1, g2, …, gn with corresponding matrices X 0 , X 1 , … that achieves 

the same optimization objective. We would be particularly interested in the case where 

g1, g2, …, gn cannot be obtained by applying some group element to g1, g2, …, gn (the case 

discussed in remark 3), so that in general X k ≠ X k . In the convex formulation of the 

problem in eq. (21), if both X 0 , X 1 , … and X 0 , X 1 , … are solutions, then so is every 

convex combination X‾ 0 , X‾ 1 , … of those solutions, even if there is no “physical” solution 

g‾1, g‾2, …, g‾n which corresponds to X‾ 0 , X‾ 1 , ….. In some cases, where the form of the 

ambiguity is known, we can use this property to enforce a solution of a certain form. An 

example is provided in the next section.

3.4. Reducing k-clustering to a NUG

In this section we discuss the NUG formulation of the problem of clustering vertices in a 

graph in k communities, to which we refer as k-clustering or k-classification. In particular, 

we discuss the max-k-cut problem and the balanced version of the problem (where each 
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cluster contains an equal number of vertices). The SDP relaxation of max-k-cut has been 

studied in [3, 4] and the closely related min-k-cut problem has been studied as a NUG 

in [2]. For completeness, we present a slightly different formulation and derivation of 

the max-k-cut problem to illustrate some aspects of the NUG SDP which are useful the 

remainder of the discussion of alignment and classification. Since “k” is often reserved for 

denoting indices of irreducible representations, we denote the number of clusters by M.

Given an undirected weighted graph V , E  (e.g. fig. 8(a)), the max-k-cut problem is to 

divide the vertices of a graph into M clusters (e.g. fig. 8(b)), cutting the most edges between 

clusters

argmax
a1, …, an ∈ 0, …, M − 1

∑
i, j = 1

n
1 − δ ai − aj wij,

(27)

with wij the weight of the edge between vertices i and j. In other words, the problem is to 

divide the graph into M clusters retaining the minimal sum of edge weights:

argmin
a1, …, an ∈ 0, …, M − 1

∑
i, j = 1

n
fij ai − aj ,

(28)

where fij a = wijδ a . We can view the weight of each edge as a measure of incompatibility 

or “distance,” and attempt to classify the vertices into clusters which are the least 

incompatible; i.e. the goal is to minimize the sum of intra-cluster weights retained, by 

finding a clustering that removes as many inter-cluster edges as possible.

The following SDP relaxation has been proposed in [3, 4],

min
Y

tr W Y

Subject to Y ≻ 0
Y ii = 1 ∀i

Y ij ≥ − 1
M − 1 ∀i, j

(29)

where W  is the matrix of edge weights. In a solution that corresponds to a “physical” 

solution (a valid classification, rather than, for example, a convex combination of 

classifications), Y ij = 1 if i and j are in the same cluster, and Y ij = − 1
M − 1  otherwise. A 

derivation for the related min-k-cut problem, in the context of NUG, is provided in [2]. We 

discuss an additional derivation which we will generalize in the following sections.
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We consider the group ℤM of cyclic shifts. A function over this group can be written 

explicitly as a vector of length M, indexed 0, 1, …, M − 1. We define the function fij by the 

following formula

fij = wij, 0, 0, … ⊤,

(30)

where wij is the weight of the edge between i and j. We denote by ai the class assignment of 

the i element, so that

fij ai − aj =
0 : ai ≠ aj

wij : ai = aj
,

(31)

or, in group notation

fij aiaj
−1 =

0 : aiaj
−1 ≠ e

wij : aiaj
−1 = e

,

(32)

where e is the identity element. This fij is precisely the loss function fij in eq. (28).

The discrete Fourier transform (DFT) of fij (with the appropriate choice of normalization) is

f̂ ij = 1
M wij, wij, wij, … ⊤ .

(33)

These coefficients coincide with the coefficients of the expansion of fij in the irreducible 

representation of ℤM:

fij a = ∑
m = 0

M − 1
f ij m ei2πam/M .

(34)

Rewriting the clustering problem eq. (28) as a NUG over ℤM yields

argmin
a1, …, an ∈ ℤM

∑
i, j = 1

n
fij aiaj

−1 ,

(35)

and substituting eq. (33) and eq. (35) into the block matrix formulation in eq. (18) yields
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argmin
X 0 , …, X M − 1

∑m = 0
M − 1 tr F̂ m X m

(36)

subject to X m  having the structure in eq. (19). The scalar irreducible representations here 

are ηm a = ei2πam/k, so that for every m = 0, 1, …, M − 1, the matrix X m  is an n × n matrix 

with Xij
m  in position i, j. The matrix F̂ m  is a matrix of the coefficients f̂ ij m  in the DFT of 

fij; by eq.(33), f̂ ij
m = wij/M, for all m. For some solution of the NUG, we have for every pair 

i, j, with aiaj
−1 = aij

Xij
m = ei2πaijm/M,

(37)

where we again use aij as the group elements and the angle.

After writing the problem in the block matrix form, we turn our attention to the convex 

version of this formulation (see eq. (21)). In particular, we discuss the ambiguity in the 

solution, which results in convex combinations of equivalent solutions, as discussed in 

section 3.3. Obviously, the solution to eq. (28) is unique at most up to any permutation (and 

not only cyclic shifts) of the labels assigned to each class. For example, Class 1 can be 

renamed Class 2 and vice versa, without changing the graph cut, as illustrated in fig. 8(b). 

In other words, the loss function fij aiaj
−1  depends only on whether or not i and j are in the 

same class, so it is invariant to permutations: for any permutation σ,

∑
i, j = 1

n
fij aiaj

−1 = ∑
i, j = 1

n
fij σ ai σ aj

−1 .

(38)

It follows that in the convexified formulation we can average all the different permutations, 

as discussed in section 3.3. If i and j are assigned to the same class in the solution, then 

ai = aj so aij = aiaj
−1 = e (or in integer notation ai − aj = 0) and by eq. (37)

Xij
0 = Xij

1 = … = Xij
M − 1 = 1 .

(39)

However, if i and j are not assigned to the same class in the solution, we can average all the 

solutions for all permutations, where the solution for a permutation σ is

Xij
m = ei2π σ ai σ aj

−1 m/M = ei2π σ ai − σ aj m/M .

(40)
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A simple computation yields the averaged (equally weighted convex combination) solution 

for all m > 0, when i and j are not assigned to the same class,

Xij
m = 1

M − 1 ∑
a = 1

M − 1
ei2πam/M = − 1

M − 1 .

(41)

In other words, X 0  is the all-ones matrix, and the matrices for all m > 0 are equal:

X 1 = X 2 = … = X M − 1 ,

(42)

with the element Xij
m  of these matrices with m > 0:

Xij
m =

1 , if i and j are in the same class,

− 1
M − 1 , otherwise.

(43)

Since Xij
0 = 1 is fixed, it can be ignored in the loss term of eq. (36), so the optimization is 

reduced to

argmin
X 1 , …, X M − 1

∑
m = 1

M − 1
tr F m X m .

(44)

Using eq. (42) and eq. (33), the optimization is further reduced to

argmin
X 1

M − 1 tr F̂ 1 X 1 ,

(45)

which is scaled to

argmin
X 1

tr F̂ 1 X 1 .

(46)

Setting X 1 = Y , we have the optimization term in eq. (29), with the other conditions in eq. 

(29) following from the derivation above.
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3.5. Controlling Cluster Size or Distributions

The purpose of this section is to extend the NUG framework by adding constraints on the 

distribution of solutions over the group.

In some cases it is useful to restrict the clusters in a graph cut problem to be of equal size 

(for example, see discussion of min-k-cut in [32]), i.e.

i:ai = m = n/M .

(47)

The NUG formulation does not have a mechanism to enforce such a constraint. We first 

consider the extension of the NUG in eq. (29) for the max-k-cut problem to the case of 

balanced cluster size. We add the constraint that for m > 0,

∑
j

Xij
m = 0 ∀i

(48)

(for m = 0, the matrix X 0  is the trivial all ones matrix). Indeed, for any valid balanced 

solution, every vertex i has n/M vertices (including itself) in the same cluster, and for these 

vertices Xij
m = 1; every vertex also has n

M M − 1  vertices in different classes, for these 

vertices Xij
m = − 1

M − 1 . Therefore, the sum of these elements is 0. This solution resembles 

the algorithm proposed in [32].

This idea is a special case of a more general framework that enforces constant distribution 

over the group by enforcing eq. (48). The strict constraint on the distribution can be 

relaxed to an approximation, and therefore extended beyond discrete groups by relaxing 

the condition to one of the following constraints

∑
j

Xij
m q

2
≤ w m ∀i,

(49)

∑
ij

Xij
m q

2
≤ w m ,

(50)

∑
i

∑
j

Xij
m q

2
≤ w m ,
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(51)

or by adding a similar constraint as a regularizer in the optimization (with the obvious 

extension where the irreducible representation Xij
m  is a matrix). This approach, which views 

the irreducible representations and their sum as an approximation of the Haar measure of the 

group (or appropriate variation when a prior is available), will be discussed in more detail in 

a future paper.

3.6. The Direct Product of Alignment and Classification (Product NUG)

The purpose of this section is to formulate the problem of simultaneous alignment and 

classification as a NUG. We revisit eq. (25) and rewrite the summation in the optimization:

∑
m = 0

M − 1
∑
i, j:

ai = m
aj = m

fij gigj
−1 = ∑

i, j = 1

n
δ ai, aj fij gigj

−1 ,

(52)

where

δ ai, aj =
1 : ai = aj

0 : otherwise
.

(53)

With a small abuse of notation, we rewrite the class labels a1, …, an as elements in ℤM; the 

expression ai = aj can also be written as aiaj
−1 = e (where e is the identity element of ℤM), so, 

we can also write eq. (53) as:

δ ai, aj = δ aiaj
−1 = 1 : aiaj

−1 = e
0 : otherwise.

(54)

We introduce the function f ij:G × ℤM ℝ, defined as

f ij g, a = fij g δ a .

(55)

Using the identity eq. (12), we obtain

f ij gi, ai gj, aj
−1 = f ij gigj

−1, aiaj
−1 ,

(56)
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and observe that f ij gi, ai gj, ai
−1  is now simply a function over the compact group G × ℤM. 

Therefore, the expression in eq. (25) is reduced to the the explicit form of a NUG

argmin
g1, a1 , …, gn, an ∈ G × ℤM

∑
i, j

f ij gi, ai gj, aj
−1 .

(57)

The block matrix formulation eq. (18) of this product NUG is

argmin
g1, a1 , …, gn, an ∈ G × ℤM

∑
k = 0

∞
∑

m = 0

M − 1
tr F k, m X k, m )

(58)

Where,

X k, m =
ψk, m g1, a1

⋮
ψk, m gn, an

ψk, m g1, a1

⋮
ψk, m gn, an

*
,

F k, m = dkm

f11 k, m ⋯ fn1 k, m
⋮ ⋱ ⋮

f1n k, m ⋯ fnn k, m
,

(59)

with f̂ ij k, m  the Fourier coefficient of f ij corresponding to the irreducible representation 

ψk, m, and dkm the dimensionality of that irreducible representation. The irreducible 

representations ψk, m of G × ℤM are enumerated in table 4; they are referenced by two indices, 

k = 0,1, … and m = 0,1, …, M − 1.

As in the general discussion of NUG, we are interested in the convex relaxation of eq. (58):

argmin
X k, m

k, m

∑
m = 0

M − 1
∑

k = 0

∞
tr F k, m X k, m

(60)

where the solution matrices X k, m  are in the convex hull of the matrices defined in eq. (59).

The relaxation of the form eq. (22) is
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maximize
X k, m

∑
m = 0

M − 1
∑

k = 0

∞
tr F̂ k, m X k, m

subject to X k, m ⪰ 0 ∀k, m
Xii

k, m = 1 ∀k, m, i
∑
k, m

tr ψk, m
* g, a Xij

k, m ≥ 0 ∀i, j, ∀ g, a ∈ G × ℤM

Xij
0,0 = 1 ∀i, j

Xij
k, m ≥ − 1

M − 1 ∀m > 0, ∀i, j .

(61)

In the following sections, we turn our attention to the ambiguities and symmetries in X k, m

of the convexified formulation eq. (60).

3.7. The 0 Order Representation of Alignment, and the Clustering Label Ambiguity

As discussed in section 3.3, when there is ambiguity in the solution of the NUG, it is 

manifested as convex combinations of solutions in the covexified formulation eq. (60). As 

discussed in section 3.4, there is ambiguity in the assignment of class labels which leads to 

symmetries in the NUG for the clustering problem.

We observe that the irreducible representations ψ0, m of G × ℤM, enumerated in the first row 

of table 4, are simply the irreducible representations of ℤM which appear in the max-k-cut 

problem, as are the coefficients of the expansion of fij. Therefore, the same argument used 

in section 3.4 can be used here to identify the desired form of the first row in the solution 

of the convex simultaneous alignment and classification problem eq. (60). In fact, the same 

argument applies to all rows, which can be averaged in the same way; the form of the 

averaged solution of each block Xij
k, m  is summarized in table 5, for the two cases: either i and 

j are in the same class (a), or they are in different classes (b).

3.8. Inter-Class Invariance

In addition to the class label ambiguity, there is another type of ambiguity which emerges 

in the simultaneous clustering and alignment product NUG. We observe that the solution is 

invariant to a G group action on one class (without applying the same action to the other 

classes, so this is not a group action of G × A).

Lemma 1. Let a1, …, an ∈ ℤM, g1, …, gn ∈ G and g1, …, gn ∈ G. Suppose that a ∈ ℤM and g ∈ G
are some arbitrary class and rotation, and suppose that

gi =
gig : ai = a
gi : otℎerwise.

(62)

Then, the objective value in eq. (25) is the same for g1, …, gn ∈ G and g1, …, gn ∈ G:
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∑
m = 0

M − 1
∑
i, j:

ai = m
aj = m

fij gigj
−1 = ∑

m = 0

M − 1
∑
i, j:

ai = m
aj = m

fij gigj
−1 .

(63)

In other words, if a1, …, an, g1, …, gn is a solution of eq. (25), then so is a1, …, an, g1, …, gn.

Proof. For any m ≠ a (the clusters that have not been rotated), gi = gi, so that

∑
i, j:

ai = m
aj = m

fij gigj
−1 = ∑

i, j:
ai = m
aj = m

fij gigj
−1 .

(64)

For m = a, we have

fij gigj
−1 = fij gig gjg −1 = fij gigg−1gj

−1 = fij gigj
−1

(65)

so that eq. (64) holds for m = a as well. □

It follows that when ai ≠ aj, we may average over all inter-class rotations. By eq. (6), using 

the Haar measure for the possible alignments yields 0 for all elements with k ≠ 0. The form 

of the averaged solution of each block Xij
k, m  is summarized in table 6, for the two cases: 

either i and j are in the same cluster, or they are in different clusters.

4. Algorithms

Substituting the results of section 3.6 into eq. (22) we obtain the following SDP:

argmin
X k, m

k, m

∑k = 0
∞ ∑m = 0

M − 1 tr F k, m X k, m

subject to X k, m ≽ 0 ∀k, m
Xii

k, m = Idk × dk ∀k, m, i

∑k = 0
∞ ∑m = 0

M − 1 dktr ψk, m
* g, a Xij

k ≥ 0 ∀i, j
∀g, a ∈ G × ℤM

Xij
0, 0 = 1 ∀i, j

(66)
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The coefficient in the matrix F̂ k, m  can be obtained from the original alignment problem, 

when no clustering is required; suppose that the coefficients in that problem are F̂ k , then 

for all k and m, the coefficients F̂ k, m  are

F̂ k, m = 1
M F̂ k .

(67)

We observe that due to the structure discussed in sections 3.7 and 3.8, regardless of whether 

ai = aj or ai ≠ aj,

X 0, m = X 0,1 ∀m ≠ 0

X k, m = X k, 0 ∀k ≠ 0, ∀m .

(68)

Taking these observations into account, eq. (66) is reduced to

argmin
X k, m

∑m = 0
M − 1 ∑k = 0

∞ tr F k, m X k, m

subject to X 0, m = X 0, 1 ∀m ≠ 0

X k, m = X k, 0 ∀k ≠ 0 , ∀m

Xij
0, m ≥ − 1

M − 1 ∀m > 0 , ∀i, j

X k, m ≻ 0 ∀k, m
Xii

k, m = 1 ∀k, i
∑k, m tr ψk, m

* g, a Xij
k, m ≥ 0 ∀i, j, ∀ g, a ∈ G × ℤM

Xij
0, 0 = 1 ∀i, j .

(69)

In fact, the requirement for non-negativity over G × ℤM is redundant, due to the following 

lemma.

Lemma 2. Suppose that a ≠ e (where e is the identity element of ℤM). If the other constraints 

in eq. (69) are satisfied, then for all i, j,

∑
k, m

tr ρk, m
* g, a Xij

k, m ≥ 0

(70)

for all g ∈ G and all a ≠ e.

Proof. Due to the other constraints in eq. (69), for all k > 0, we have 

X k, 0 = X k, 1 = … = X k, m , so that for all k > 0
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∑
m = 0

M − 1
tr ψk, m

* g, a Xij
k, m = tr ρk

* g Xij
k, 0 ∑

m = 0

M − 1
ηm a = 0

(71)

where the last step is due to the fact that ∑m = 0
M − 1 ηm a = 0 for a that are not the identity.

For k = 0, we have Xij
0,0 = 1 and − 1

M − 1 ≤ X 0, m ≤ 1, so that

∑
m = 0

M − 1
tr ψ0, m

* g, a Xij
0, m = 1 + ∑

m = 1

M − 1
ηm a Xij

0, m ≥ 1 − M − 1 / M − 1 = 0

(72)

Using this lemma, eq. (69) is reduced to

argmin
X k, m

∑m = 0
M − 1 ∑k = 0

∞ tr F k, m X k, m

subject to X 0, m = X 0, 1 ∀m > 1

X k, m = X k, 0 ∀k ≠ 0

Xij
0, m ≥ − 1

M − 1 ∀m > 0, ∀i, j

X k, m ≽ 0 ∀k, m
Xii

k, m = 1 ∀k, i
∑k, m tr ρk, m

* g, e Xij
k, m ≥ 0 ∀i, j, ∀g ∈ G

Xij
0, 0 = 1 ∀i, j

(73)

where e is the identity element of ℤM.

4.1. Controlling Class Size

When the size of the classes is known to be equal, the constraint eq. (48) of section 3.5 is 

added to the SDP. Considering all the symmetries, the constraint takes the form

∑
j

Xij
0, 1 = 0 ∀i .

(74)

4.2. Variables and Constraints Accounting

The purpose of this section is to discuss the number of free variables remaining in the 

formulation eq. (73), and the number of constraints. We note that the only remaining matrix 

variables are X 0,1  and X 1,0 , X 2,0 , X 3,0 , … The matrix X 0,0  is the trivial all ones matrix, 

and every other matrix is set to be equal to the appropriate matrix of those listed above 
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(see eq. 68). We observe that the matrix X 0,1  has exactly the same form as the matrix 

Y  in the max-cut classification SDP, and the constrains on it are similar. The matrices 

X 1,0 , X 2,0 , X 3,0 .. have the same form as the matrices X 1 , X 2 , X 3 , … in the alignment 

problem, and also have similar constraints.

Suppose that the overall number of matrix elements Xi . j
k  (summing over all k) for each pair 

i, j in the irreducible representation for alignment is κ (if the expansion is truncated at K
representations, the number of elements in the case of SO(2) is O k  and in the case of 

SO(3) it is O k3 , and suppose that the number of elements in the irreducible representations 

for classification is the number of classes M. Then, there would be overall approximately 

κM matrix elements in the matrices Xi . j
k, m  for all k and m in the formulation in eq. (66). 

Instead, the formulation in eq. (73) implies that the remaining variables are Xi . j
k, 0  and Xi . j

0,1 , 

so that the overall number of matrix elements is κ + 1 κ variables in Xi . j
k, 0  and one in Xi . j

0,1 ). 

In other words, the number of free variables and constraints in eq. (73) is smaller than the 

straightforward formulation that does not take the symmetries into acount.

5. Experimental Results

In this section we present experiments with the simplified case of alignment and clustering 

of noisy functions over SO(2) (also discussed in section 3.1). We generated 4 complex 

valued prototype functions over SO 2 , the functions are low-bandwidth, represented by 11 

coefficients in the Fourier domain. For each prototype function we generated 15 copies, each 

copy was shifted randomly on SO(2), and random noise was added to each of the shifted 

copies, yielding a dataset si i = 1
n  of n = 60 signals. The problem is now to align and cluster 

the signals in the dataset.

We implemented the SDP in eq. (73) with balanced classes (eq. (74)) in Matlab, using CVX 

[33, 34]. For every pair of signals si and sj we compute fij:

fij g = ∥ si − g ∘ sj ∥,

(75)

where g ∘ sj is the signal sj rotated by g. The rotation is implemented by multiplication by 

the appropriate phase in the Fourier domain. We construct the n × n matrices of coefficients 

F̂ k  (the matrices for MRA without classification); the elements in the i, j position in the k
matrix is the k element in the DFT of fji.

f̂ ij
⋅ = ℱ fji .

(76)

The non-negativity constraint is implemented using the Fejér kernel (see [2]).

To study the performance of the algorithm, we examine the classification performance, 

which we can compare to a benchmark clustering method based on shift-invariant 
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signatures. The auto-correlation and bispectrum [35] of signals are invariant to rotations; 

therefore, in the absence of noise, we can compute the auto-correlation or bispectrum of 

each signal in our dataset, and use these as signatures by which to cluster. In the presence 

of noise, these signatures are distorted, leading to possible errors in clustering. We computed 

the bispectrum of each signal in the dataset and also solved the SDP for the product NUG 

of this dataset. In the case of low noise, the classification can be read directly from the 

matrix X 0,1 , however, as the noise increases, a rounding procedure is required to recover 

an approximate classification based on the output of the SDP. For simplicity, we used the 

simple k-means to cluster the signals: first by the bispectral signature of each signal, and 

then by the columns of the matrix X 0, 1  obtained by the SDP (as a simple rounding method 

for the SDP). For simplicity, we did not enforce equal cluster sizes in the k-means. We 

measured the fraction of signals that were misclassified (the clusters are recovered only up 

to permutation: even if the k-means find the correct clusters, the class labels are assigned 

arbitrarily. We computed the minimum error over all permutations of class labels). This 

experiment examines only the classification properties of the algorithm, but given a good 

classification the problem is reduced to the NUG of alignment within each class. Special 

cases of alignment problems allow specialized rounding procedures using the output of this 

algorithm directly.

We repeated the experiment 20 times for every noise level. The results are presented in 

fig. 9. We experimented with both auto-correlation and bispectrum; since the results were 

very similar in the two cases we present the results for bispectrum here. The experiment 

demonstrates that the product NUG achieves considerably better classification results in the 

presence of noise.

Remark 6. In the cryo-EM problem, the images which we wish to align are different 
projections of the molecule X. While bispectrum and auto-correlation have been used to 
find images from the same plane (see [36]), these signatures are not invariant to projections. 
Therefore, in the cryo-EM problem, these signatures cannot be used for classification, so 
they do not provide an alternative for the product NUG discussed here.

In other words, although the product NUG achieves better results than invariant signature 

based clustering in these experiments, its true importance is in cases where such alternative 

methods cannot be used. An implementation of the NUG for alignment over SO(3) in the 

special case of cryo-EM (even without classification) was not yet avialble at the time of 

writing this paper.

6. Summary and Future Work

The problem of simultaneous alignment and classification has been formulated as a non-

unique game, and an algorithm has been presented for solving a convex relaxation of the 

problem. The algorithm has been demonstrated for the case of simultaneous alignment 

and classification of mixed signals over SO(2); and it is currently being adapted for the 

heterogeneity problem of cryo-EM. It should be noted that SDPs like the one proposed here 

are difficult to scale using off-the-shelf solvers to very large problems, such as alignment of 

hundreds of thousands of images produced in modern cryo-EM experiments. Nevertheless, 
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special purpose solvers provide more scalability, the SDPs offer certificates of global 

optimality of solutions found using other approaches in some circumstances, they provide a 

benchmark for approximate optimizations, and they can be applied to reduced datasets (e.g. 

class averages of images). Furthermore, the approach can be used with other recent methods 

for optimization over groups.

The approach discussed here can be generalized to the case of continuous heterogeneity, 

where the molecules are not classified to distinct classes, but rather lie on a continuum of 

states that can be parametrized (alternatively, the states are distinct, but related to some 

degree). In this case, we follow similar ideas to those in this paper, however there are some 

additional details that require considerations in the choice of underlying groups and the 

structure of fij; this case will be discussed in more detail in a future paper.

As discussed in section 3.5, there are several variations of the control over the size of 

clusters. Furthermore, the same ideas can be used to control the distribution of the recovered 

rotation angles (for example, when the images can be assumed to come from approximately 

uniform distribution over SO(3)).
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Figure 1: 
Left: two raw experimental images of TRPV1, available via EMDB 5778 [21]. Right: 

computed projections of TRPV1 which are the closest to the images on their left.
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Figure 2: 
Common Lines in cryo-EM. The left most images Ii and Ij are examples of projections of a 

molecule density X; each projection is obtained from a different direction. At the center, are 

the Fourier transforms Îi and Îj of those images, overlaid with radial lines. The lower right 

sub-figure is a visualization of the two slices of the 3-D Fourier transform of the 3-D density 

X, corresponding to Îi and Îj; the two slices intersect each other, so that there is a line in Îi

that is identical to a line in Îj (assuming no noise). Indeed, the point xij, yij  which lies along 

this common line in Îi is identical to the point xji, yji  which lies along this common line in 

Îj. A more detailed discussion of common lines is available, for example, in [8, 9, 10, 11]
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Figure 3: 
Classical (left) and hybrid (right) states of 70S E. Coli ribosome (image source: [27]).
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Figure 4: 
Shifted copies of a function over SO(2)
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Figure 5: 
Noisy shifted copies of a function over SO(2)
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Figure 6: 
Loss function for alignment of signals
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Figure 7: 
Classification and alignment over SO(2)
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Figure 8: 
Graph cut and label ambiguity. A graph and equivalent Max-3-cuts, where only the label 

assigned to each class is changed, without changing the cut.
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Figure 9: 
Classification error vs. noise level, 4 balanced clusters
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Table 1:

Table of Notation

A∗ the complex conjugate transpose of the matrix A

ℤM the cyclic group of order M
G × A the direct product between group G and group A

g ∘ f the action of g ∈ Gon a functionf ∈ L2(Y): (g ∘ f)(x) = f g−1x

tr(A) the trace of the matrix A
A ⊗ B the Kronecker (tensor) product of the matrix A and the matrix B
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Table 2:

Irreducible representations of G × A

ψk, m((g, a)) m = 0 m = 1 ⋯
η0(a) η1(a) ⋯

k = 0 ρ0(g) ρ0(g) ⊗ η0(a) ρ0(g) ⊗ η1(a) ⋯
k = 1 ρ1(g) ρ1(g) ⊗ η0(a) ρ1(g) ⊗ η1(a) ⋯
k = 2 ρ2(g) ρ2(g) ⊗ η0(a) ρ2(g) ⊗ η1(a) ⋯
k = 3 ρ3(g) ρ3(g) ⊗ η0(a) ρ3(g) ⊗ η1(a) ⋯
⋮ ⋮ ⋮ ⋱
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Table 3:

Product irreducible representations, after substituting the trivial irreducible representations

ψk, m((g, a)) η0(a) = 1 η1(a) ⋯
ρ0(g) = 1 1 η1(a) ⋯
ρ1(g) ρ1(g) ρ1(g) ⊗ η1(a) ⋯
ρ2(g) ρ2(g) ρ2(g) ⊗ η1(a) ⋯
ρ3(g) ρ3(g) ρ3(g) ⊗ η1(a) ⋯
⋮ ⋮ ⋮ ⋱
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Table 4:

Product irreducible representations in the special case of G × ℤM, after plugging in the trivial irreducible 

representations

ψk, m((g, a)) η0(a) = 1 η1(a) ⋯ ηM − 1(a)

ρ0(g) = 1 1 η1(a) ⋯ ηM − 1(a)
ρ1(g) ρ1(g) ρ1(g)η1(a) ⋯ ρ1(g)ηM − 1(a)
ρ2(g) ρ2(g) ρ2(g)η1(a) ⋯ ρ2(g)ηM − 1(a)
ρ3(g) ρ3(g) ρ3(g)η1(a) ⋯ ρ3(g)ηM − 1(a)
⋮ ⋮ ⋮ ⋱ ⋮
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Table 5:

The desired form of blocks Xij
k, m  of X k, m , corresponding to (a) same, and (b) distinct classes

(a) ai = aj (b) ai ≠ aj

X(k, m) m = 0 m = 1 ⋯ m = M − 1 X(k, m) m = 0 m = 1 ⋯ m = M − 1

k = 0 1 1 ⋯ 1 k = 0 1 − 1
M − 1 ⋯ − 1

M − 1

k = 1 Xij
(1, 0) Xij

(1, 0) ⋯ Xi, j
(1, 0) k = 1 Xij

(1, 0) − Xij
(1, 0)

M − 1 ⋯ − Xij
(1, 0)

M − 1

k = 2 Xi, j
(2, 0) Xi, j

(2, 0) ⋯ Xi, j
(2, 0) k = 2 Xi, j

(2, 0) − Xi, j
(2, 0)

M − 1 ⋯ − Xi, j
(2, 0)

M − 1

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
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Table 6:

The desired form of blocks Xij
k, m  of X k, m , after averaging inter-class rotations (lemma 1)

(a) ai = aj (b) ai ≠ aj

X(k, m) m = 0 m = 1 ⋯ m = M − 1 X(k, m) m = 0 m = 1 ⋯ m = M − 1

k = 0 1 1 ⋯ 1 k = 0 1 − 1
M − 1 ⋯ − 1

M − 1

k = 1 Xij
(1, 0) Xij

(1, 0) ⋯ Xi, j
(1, 0) k = 1 0 0 ⋯ 0

k = 2 Xi, j
(2, 0) Xi, j

(2, 0) ⋯ Xi, j
(2, 0) k = 2 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
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