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Abstract

■ In value-based decisions, there are frequently multiple attri-
butes, such as cost, quality, or quantity, that contribute to the
overall goodness of an option. Because one option may not be
better in all attributes at once, the decision process should
include a means of weighing relevant attributes. Most
decision-making models solve this problem by computing an
integrated value, or utility, for each option from a weighted
combination of attributes. However, behavioral anomalies in
decision-making, such as context effects, indicate that other
attribute-specific computations might be taking place. Here,
we tested whether rhesus macaques show evidence of
attribute-specific processing in a value-based decision-making
task. Monkeys made a series of decisions involving choice
options comprising a sweetness and probability attribute. Each
attribute was represented by a separate bar with one of two

mappings between bar size and the magnitude of the attribute
(i.e., bigger = better or bigger = worse). We found that
translating across different mappings produced selective
impairments in decision-making. Choices were less accurate
and preferences were more variable when like attributes dif-
fered in mapping, suggesting that preventing monkeys from
easily making direct attribute comparisons resulted in less accu-
rate choice behavior. This was not the case when mappings of
unalike attributes within the same option were different. Like-
wise, gaze patterns favored transitions between like attributes
over transitions between unalike attributes of the same option,
so that like attributes were sampled sequentially to support
within-attribute comparisons. Together, these data demon-
strate that value-based decisions rely, at least in part, on directly
comparing like attributes of multiattribute options. ■

INTRODUCTION

Complex, real-world decisions often do not have a clear
best option. This is because there are typically multiple rel-
evant features, or attributes, such as quantity, quality, or
cost, that need to be considered to select the most pre-
ferred combination. This process could evolve in different
ways, and it remains unclear how the brain uses informa-
tion about different attributes to compute these types of
complex decisions.
A canonical solution to this problem is to compute an

integrated value, or utility, for each option from a
weighted combination of all relevant information. This
could allow different options to be compared on a
common scale, accounting for context, internal state,
and different features or attributes of unalike options
(Padoa-Schioppa, 2011; Wallis & Rich, 2011; Rangel &
Hare, 2010; Glimcher, Dorris, & Bayer, 2005). Many views
have proposed that decision computation occurs by
comparing these integrated option values (Figure 1A;
Rustichini & Padoa-Schioppa, 2015; Hunt et al., 2012).
Neural responses correlating with variables in these
models have been widely reported (Hunt, Behrens,
Hosokawa, Wallis, & Kennerley, 2015; Jocham, Hunt,

Near, & Behrens, 2012; Padoa-Schioppa & Assad, 2006;
Wallis & Miller, 2003; Tremblay & Schultz, 1999), sup-
porting the idea that the brain is capable of computing
something like integrated value.

In contrast, behavioral anomalies that are inconsistent
with the “integrate then compare” model of decision-
making are also well documented (Piantadosi & Hayden,
2015; Brandstätter, Gigerenzer, & Hertwig, 2006; Stewart,
Chater, & Brown, 2006; Simonson, 1989; Huber, Payne, &
Puto, 1982; Kahneman & Tversky, 1979) and suggest that
integrated value may not be the sole input into the deci-
sion process. For instance, choice biases known as “decoy”
or context “effects” arise when third options are added
to the choice set (Simonson, 1989; Huber et al., 1982;
Kahneman & Tversky, 1979). In these cases, the direction
of the bias depends on where the third option’s attributes
are situated with respect to those of the other options. A
suite of conceptual and quantitative decision-making
models have been developed to explain these empirical
results. Although there is heterogeneity in this family of
models, a common feature is that they include compari-
sons at the level of individual attributes, either alone or
in addition to comparisons of integrated values (Figure 1B
and C; Piantadosi & Hayden, 2015; Brandstätter et al.,
2006; Stewart et al., 2006; although see Chau, Law,
Lopez-Persem, Klein-Flügge, & Rushworth, 2020; Gluth,
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Kern, Kortmann, & Vitali, 2020; Gluth, Spektor, & Rieskamp,
2018; Chau, Kolling, Hunt, Walton, & Rushworth, 2014;
Louie, Khaw, & Glimcher, 2013). For instance, decision field
theory accounts for context effects by eschewing models
that rely on overall utility and instead suggesting that
preferences evolve over the course of a decision by incor-
porating a continuous stream of comparisons of attri-
butes (Roe, Busemeyer, & Townsend, 2001; Busemeyer
& Townsend, 1993). Options are represented in a multi-
attribute preference space and can interact, such that
closely related options compete with one another to
influence choice, with attention fluctuations determining
the relative weights of different attributes in the decision.

A related view is taken by attentional drift diffusion
models (aDDMs; Krajbich & Rangel, 2011; Basten, Biele,
Heekeren, & Fiebach, 2010; Krajbich, Armel, & Rangel,
2010; Milosavljevic, Malmaud, Huth, Koch, & Rangel,
2010; Philiastides, Biele, & Heekeren, 2010), including
recent multiattribute instantiations (Yang & Krajbich,
2022; Fisher, 2017, 2021), which model decisions as a
noisy process of accumulating evidence over time, until
a threshold is reached and finalizes the choice. aDDMs
have become a popular model of value-based decision-
making because they account for the effects of attention,
which influences both choice and neural encoding of
values of visually attended items (Smith & Krajbich,
2019; Hunt et al., 2018; McGinty, Rangel, & Newsome,
2016; Krajbich et al., 2010). The multiattribute aDDM
makes the assumption that like attributes are directly com-
pared while the options are also directly compared, each
feeding into the overall decision. Notably, there is no one
“integrated value,” only an accumulation of evidence.

Another view suggests that integrated values are com-
puted and compared, and this occurs in parallel with
attribute-level comparisons (Figure 1C). In the distributed
theory of decision-making, decisions are an emergent
property of computations performed in multiple brain
regions (Hunt & Hayden, 2017; Hunt, Dolan, & Behrens,
2014; Cisek, 2012). Therefore, competitions among

different choices occur at multiple levels of representa-
tion, including offer values, goals, and actions. Regions
share information in an ordered way but do not represent
a circuit in the canonical sense. Rather, recurrent and
overlapping computations are spread across the brain
and produce choice through their interactions. A specific
instantiation of this model proposes direct competition,
via mutual inhibition, at the level of attributes as well as
options, with each feeding into option-level accumulators
that compete with each other and produce a decision
output (Hunt et al., 2014). In this way, both attribute
and option comparisons contribute to choices in a hierar-
chical fashion. Collectively, these models represent alter-
natives to utility-based explanations of choice behavior
and demonstrate that the mechanism of preference-based
decision-making is far from a solved matter.
Here, we explored the potential for direct interaction or

comparison between attributes by analyzing multiattri-
bute decision-making behavior in rhesus macaques. The
monkeys were trained to choose between options that
varied in the sweetness of a sugar water reward and the
likelihood of receiving it. Each attribute was represented
by visually distinct bars whose sizes changed with respect
to the sweetness and probability level. Critically, bars were
presented in two mappings denoted by different colors:
one in which the size changed proportional to the good-
ness of the attribute (i.e., “bigger is better”) and one in
which the size changed inversely proportional to the
goodness of the attribute (“bigger is worse”). Both attri-
bute magnitude and mapping varied independently,
allowing us to reveal consistent patterns of choice deficits
that indicated the spontaneous use of within-attribute
comparisons, even when all information was available to
compute integrated values. Therefore, comparisons
between individual attributes of multiattribute options
appear to be a natural feature of goal-directed decision-
making in monkeys. This result opens new questions
about the neural mechanisms underlying complex, goal-
directed decisions.

Figure 1. Three models of goal-
directed decision-making. Each
box shows a representative two-
option choice. As in our task,
each option (A and B) consists
of two attributes: sweetness
(swt) and probability (prob). (A)
In the “integrate then compare”
model, attributes are combined
to compute an integrated value
for each option, which is then
compared to the other option’s
value to produce a decision.
(B) An attribute comparison
model, in which like features
(attributes) are compared
directly, so that the number and weight of each competition in favor of an option produce a choice. (C) A hybrid model, in which comparisons occur
at the multiple levels, including comparisons of attributes and integrated values, so that decisions arise from distributed processes. (Adapted from
Perkins & Rich, 2021.)
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METHODS

Experimental Design

We used a multiple attribute decision-making task to test
whether the choices of rhesus macaques are consistent
with comparing integrated values or like attributes to
make decisions.

Subjects and Behavior

Two adult male rhesus macaques (“C” and “D”) partici-
pated in the experiment. Neither animal had been used
for previous studies; however, they had been trained on
a battery of tasks. They were each 5 years old and weighed
11.8 and 9.4 kg, respectively, at the start of experiments.
Each was surgically implanted with a titanium head posi-
tioner. All procedures were in accord with the National
Institutes of Health guidelines and were approved by the
Icahn School of Medicine at Mount Sinai Animal Care and
Use Committee.
During experiments, monkeys sat in a primate chair in

a darkened testing chamber and were head-fixed facing
an 18-in. computer monitor positioned 17 in. away from
the subjects’ faces. MonkeyLogic software (Hwang, Mitz,
& Murray, 2019; Yiu et al., 2019; Asaad, Santhanam,
McClellan, & Freedman, 2013) controlled the behavior
interface. Subjects’ eye position was continuously moni-
tored by an infrared eye tracker (ViewPoint EyeTracker
USB-400, Arrington Systems) at a sampling rate of 400 Hz.
This signal was acquired by MonkeyLogic at 500 Hz to
align to behavioral data.

Task

Each trial began with the appearance of a fixation cue in
the center of the screen. When the monkey gazed at the
fixation point and simultaneously held a touch-sensitive
bar for 550msec, two (80% of trials) or three (20% of trials)
choice options were displayed on the screen. Options
were shown at two or three of six potential positions in a
hexagonal arrangement around central fixation. Option
positions were selected randomly, with the constraint that
they were never in adjacent positions on the hexagon.
Only two-option trials were analyzed in the present study.
Options were presented as a set of two bars. The width

of each bar was 2° of visual angle, and the height varied
from 2° to 10°. The size of the left bar of each pair indicated
the sweetness level (25-, 50-, 75-, 100-, or 125-mM sucrose
solution), whereas the right bar represented the proba-
bility level (10%, 30%, 50%, 70%, or 90%). The colors of
the bars indicated whether the size of the bar positively
correlated with sweetness/probability level, referred to as
“direct mapping,” or negatively correlated with sweetness/
probability level (“indirect mapping”). For example, a blue
sweetness bar indicated a direct mapping (large bar =
high sweetness), whereas a magenta sweetness bar indi-
cated an indirect mapping (large bar = low sweetness).

Bar size and mapping varied randomly and independently
on each trial.

While the monkeys continued to hold the touch bar,
they had up to 5 sec to freely view the images while gaze
position was tracked. They could make a selection at any
time by holding gaze on any part of the desired option and
releasing the touch-sensitive bar. This would trigger the
reward delivery immediately after an option was selected.
If an optionwas not selected in this window, or if the touch
bar was released when gaze was not directed toward an
option, this triggered a 5-sec timeout, during which no
reward was delivered and the screen displayed a red back-
ground. When the timeout was complete, the next trial
could be initiated. Intertrial intervals were 1 sec.

Rewards consisted of 0.33 mL of fluid delivered over
500 msec for Monkey D and 0.297 mL delivered over
450 msec for Monkey C. Different amounts were titrated
during pretraining to account for each subject’s relative
weighting of sweetness and probability, to balance as
closely as possible their subjective preference between
the two attributes.

Statistical Analysis

The number of subjects was not predetermined by any sta-
tistical methods. Two animals is a common standard for
monkey experiments because it is the smallest number
with which we can demonstrate reproducibility. All of
our analyses were carried out within subject, so that the
n for statistical tests is the number of trials or sessions.
The same analyses were then carried out as replications
in the second animal. The number of trials and sessions is
within the range of previous literature (Yamada, Imaizumi,
& Matsumoto, 2021; Padoa-Schioppa & Assad, 2006).

Some trials were excluded because the animal failed
to make a choice within 5 sec (Monkey D: 599, 1.04%,
Monkey C: 1203, 1.8%). There were more omissions on
trials with a smaller difference in values (i.e., more difficult
trials). In addition, three-option trials were part of the task
design but were excluded for the analyses in this article. All
statistical analyses were conducted with custom MATLAB
(The MathWorks Inc.) scripts.

Accuracies and RTs

Accuracies were calculated as the number of trials in which
the option with the highest expected value (EV; defined as
ordinal sweetness level multiplied by ordinal probability
level) was selected over other options, divided by the
number of valid trials in the same category. Because this
calculation relies on assumptions about how the attributes
are weighed by the subjects, we also computed accuracies
for a subset of “objective” trials, in which one option had
higher values of both sweetness and probability than the
other (e.g., SwtA > SwtB and ProbA > ProbB), meaning it
was the superior option regardless of attribute weighting.
RTs were measured as the time from stimulus onset to
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release of the touch bar, indicating option selection. For
Figure 3B, two 2-tailed binomial tests were performed
between the “all consistent” group and the “different
within option” group and between the “all consistent”
group and the “different within attribute” group (Nelson,
2023). Significance levels were Bonferroni-corrected for
multiple comparisons to α = .005.

Choice Regressions

We used the choice behavior of each monkey to examine
the influence of task variables on decision-making. To
quantify how each monkey weighs sweetness and proba-
bility, choices were modeled as a function of the log ratio
of each attribute (Conen & Padoa-Schioppa, 2019; Padoa-
Schioppa & Assad, 2008):

X ¼ β0 þ βProb log
ProbA
ProbB

� �
þ βSwt log

SwtA
SwtB

� �

þ βSwtDirASwtDirAþ βSwtDirBSwtDirB
þ βProbDirAProbDirAþ βProbDirBProbDirB
þ βPositionAPositionAþ βPositionBPositionB

(1)

Options were arbitrarily designated “A” and “B.” ProbA
or B and SwtA or B are the ordinal magnitudes of proba-
bility and sweetness, respectively, available in each option.
βprob/Swt are fitted weights of probability/sweetness
attributes. (Prob/Swt)Dir(A/B) is the mapping for each
attribute bar, coded as −1 or 1, with the corresponding
coefficient (β(prob/Swt)Dir(A/B)). Position(A/B) is the position
index (1–6) indicating one of six sites where options are
presented on the screen, and βposition(A/B) is the corre-
sponding coefficient. Only overall option locations were
included because the two attributes of an option were
always proximal to each other on the screen. β0 is a con-
stant to capture any bias toward A or B. The probability of
choosing option A was then calculated by a sigmoid func-
tion (Equation 2).

Pr ChoiceAð Þ ¼ 1
1 þ e−xð Þ

�
(2)

Choice probability colormaps were created from interpo-
lating choice probabilities from the logistic regression on
choice data, as above. Regressions were performed on
concatenated data from all sessions, although session-by-
session performance on each regression was assessed
and is noted where included.

To perform the bootstrap analysis in Figure 3C, we
reduced Equation 1 to just sweetness and probability
ratios, as there were limited effects of the additional pre-
dictors in the original model:

X ¼ β0 þ βProb log
ProbA
ProbB

� �
þ βSwt log

SwtA
SwtB

� �
(3)

Equation 3 was then used with Equation 2 to perform the
bootstrapped logistic regression.

RT Regression

To quantify how task variables affected RTs, a general
linear regression was performed on concatenated data
from all sessions.

log ReactionTimeð Þ ¼ β0 þ βSwtDiffSwtDiff
þ βProbDiffProbDiff þ βNumSwtIndNumSwtInd
þ βNumProbIndNumProbInd

(4)

SwtDiff denotes the difference in the ordinal sweetnesses
of the two options (0–4), and ProbDiff denotes the differ-
ence in the ordinal probabilities of the two options (0–4).
NumSwtInd denotes the number of sweetness bars with
the indirect mapping (0–2); NumProbInd denotes the
number of probability bars with the indirect mapping
(0–2). All predictors were mean centered (ranges above
are before mean centering).

Gaze Data Analysis

Gaze analyses were done with the EyeMMV MATLAB
package (Krassanakis, Filippakopoulou, & Nakos, 2014),
which extracts fixations from continuous eye movements.
Minimum fixation duration was set as 50 msec, a liberal
criterion that allowed us to capture shorter fixations as
assessed by visual inspection (Berg, Boehnke, Marino,
Munoz, & Itti, 2009). Tolerances were set as t1 = 2 and
t2 = 1, where t1 was the criterion in Euclidean distance
within which gaze track records would be included in a
fixation cluster and t2 was the criterion in Euclidean dis-
tance within which gaze track records would be included
in the computation of a fixation cluster mean. ROIs were
then defined to include each attribute bar in a session, and
fixations falling on each attribute were retained for
analysis. The eye tracker was calibrated at the start of each
session, and gaze data were further aligned in postproces-
sing by centering data to the median x− y coordinates for
the initial fixation window (placing it at the center fixation
cue) across the session. In addition, ROIs around each
attribute bar used for fixation detection were expanded
by 0.75° of visual angle on the outside of the bars and
0.5° of visual angle on the inside (so that there was no
unassigned space between the bars), to capture fixations
that were on the bar edges. Likewise, 0.5° of visual angle
was added to the top and bottom of the ROIs.
Unless otherwise stated, analyses were performed on

fixations that occurred between option presentation and
choice. Fixations detected immediately after option presen-
tationwere still at the center fixation cue andwereeliminated
by removing all fixations beginning in a 50-msec window
after the stimulus presentation. The final fixation in the
choice window was the fixation of the chosen option and
was also eliminated by removing the last fixation in the
response window. Ultimately, 14,030 trials in Monkey D
(24.6%) and 26,603 trials in Monkey C (40.7%) were excluded
from prechoice analyses for having no prechoice fixations.
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Regressions on Number of Fixations

To quantify the effects of task variables on the number of
fixations in each trial, we used a linear regression model
as follows:

NumberFixations ¼ β0 þ βSwtDiffSwtDiff
þ βProbDiffProbDiff þ βNumSwtIndNumSwtInd
þ βNumProdIndNumProdInd

(5)

where SwtDiff represents the difference between the
sweetnesses of the two options (0–4), ProbDiff represents
the difference between the probabilities of the two
options (0–4), NumSwtInd represents the number of
sweetness bars that were indirect (0–2), and NumProbInd
represents the number of probability bars that were indi-
rect (0–2). All predictors were mean centered (ranges
above are before mean centering).

Regression on Fixation Duration

To quantify the effects of task variables on the duration of
fixations, we used a linear regression model as follows:

log Fixation Durationð Þ ¼ β0 þ βSwtjProbSwtjProb
þ βChjUnchChjUnchþ βDirjIndDirjInd
þ βFixValFixVal þ βOtherAttSameOptOtherAttSameOpt
þ βSameAttOtherOptSameAttOtherOpt
þ βOtherAttOtherOptOtherAttOtherOpt
þ βSwtjProb�FixValSwtjProb * FixVal
þ βChjUnch�FixValChjUnch * FixVal
þ βDirjInd�FixValDirjInd * FixVal

(6)

where Swt|Prob represents whether the fixated bar was
for sweetness or probability (1, −1), Ch|Unch repre-
sents whether the fixated bar was part of the chosen or
unchosen option (1, −1), Dir|Ind represents whether
the fixated bar was the direct or indirect mapping (1,
−1), and FixVal represents the attribute value of the
fixated bar (1–5). OtherAttSameOpt represents the ordi-
nal magnitude of the other attribute of the same option
as the fixated bar (1–5), SameAttOtherOpt represents the
ordinal magnitude of the same attribute as the fixated
bar in the other option (1–5), and OtherAttOtherOpt rep-
resents the ordinal magnitude of the other attribute of
the other option as the fixated bar (1–5). All predictors
were mean centered (ranges above are before mean
centering).

Hypothesis Test on Regression Coefficients for
Gaze Transitions

Value difference was regressed against the number of gaze
transitions in two simple regressions. The first (βwithin att)
predicted the number of within-attribute gaze transitions
within a trial (e.g., SwtA↔ SwtB), and the second (βwithin opt)
predicted the number of within-option gaze transitions
within a trial (e.g., SwtA ↔ ProbA). The t statistic for the

two-sample hypothesis test that the slopes of these regres-
sions differed was calculated as

t ¼ βwithin att − βwithin opt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

within att þ SE2
within opt

q (7)

where SE is the standard error of the regression coefficient
(Zaiontz, n.d.).

Choice Models

The probability of choosing an arbitrary option A was fit by
generalized linear models with the logit link function
(Equation 2). This is equivalent to obtaining a softmax
decision rule (Sutton & Barto, 2018) that probabilistically
selects the option with the higher value. For the purposes
of this analysis, models were simplified to include only
information about attribute magnitudes, not mappings.
Three models differed only in how attributes were
combined.

The Log model was the same as Equation 3, and fit
choices based on the log ratio of each attribute:

X ¼ β0 þ βProb log
ProbA
ProbB

� �
þ βSwt log

SwtA
SwtB

� �
(8)

The difference (Diff ) model parameterized each attribute
independently, resulting in a linear combination of attri-
butes:

X ¼ β0 þ βProbA ProbAð Þ þ βSwtA SwtAð Þ
þβProbB ProbBð Þ þ βSwtB SwtBð Þ (9)

The EV model first computed EVs of each option as the
direct multiplication of probability and milligrams of
sucrose (Suc) and then fit choices based on the EVs avail-
able on each trial:

X ¼ β0 þ βA ProbA * SucAð Þ þ βB ProbB * SucBð Þ (10)

We compared the models as follows: First, coefficient
weights in each model were obtained by fitting monkeys’
behavior, separately for each session. Model fits to
behavior were compared with Akaike information criteria
(AICs), and the relative likelihood of each model was
computed as follows:

e
AICmin − AICi

2
(11)

where AICi is the AIC value obtained from the ith model
and AICmin is the minimum AIC across the three models.

Optimality of each model was then tested by using the
fitted models to predict choices on all 625 possible com-
parisons of different combinations of sweetness and prob-
ability. Expected rewards for these choices were calculated
by adding the probability of selecting option A times the
EV of A (in milligrams of sucrose) plus the probability of
selecting option B times the EV of option B.
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Finally, the performance of models fit to actual choice
data was compared to that of the same models fit to sim-
ulated choices, where the choice options were drawn from
the actual sessions, but the simulated choice corre-
sponded to the option with the higher EV, calculated for
each option as Prob * Suc. The fits of each model to these
simulated choices were again compared with AICs and
relative model likelihoods as above.

RESULTS

Monkeys Use Multiple Attributes to Make
Optimal Choices

Two monkeys performed a decision-making task in which
they selected between options comprising two attributes:
the sucrose concentration of a fluid reward (“sweetness”)
and the probability that it would be delivered (“probability”;
Figure 2A). Attributes varied across five magnitudes,
denoted by the length of separate bars. Bar size varied
either directly (i.e., bigger is better) or indirectly (i.e., bigger
is worse) with the magnitude of sweetness or probability,
and the mapping was denoted by the bar color (Figure 2B).
For example, a large blue bar would indicate a sweeter
option, whereas a large magenta bar would indicate a less
sweet option. Sweetness and probability magnitudes and
mappings varied independently in both options, and pairs

of bars composing an option were pseudorandomly
assigned to one of six possible locations on the task screen.
To initiate a trial, subjects held a touch-sensitive bar while
fixating a central point. Two options were shown, each
consisting of two bars. Monkeys freely viewed the options
and made a choice by releasing the bar while holding gaze
on one option. Reward was probabilistically delivered,
depending on the option selected. We quantified choice
behavior from 57,082 and 65,384 trials for Monkeys D
and C, respectively, performed over 69 and 76 sessions.
Both monkeys performed the task well and often chose

the option with the highest EV, when this was defined as
the product of sweetness and probability (across sessions:
Monkey D, 0.81± 0.007 [95% CI]; Monkey C, 0.82± 0.006
[95% CI]). Subjects chose the higher value option slightly
less frequently on trials where all attribute mappings were
indirect, compared to when they were all direct (across
sessions: Monkey D: direct: 0.84 ± 0.013 [95% CI], indi-
rect: 0.81 ± 0.02 [95% CI]; Monkey C: direct: 0.84 ±
0.013 [95%CI], indirect: 0.80± 0.013 [95%CI]). However,
this effect was small, andmonkeys still performed at a high
level for bothmappings, demonstrating that they are capa-
ble of using both mappings flexibly to retrieve information
about the different attributes.
Because this definition of EV does not account for sub-

jective preferences that differentially weight sweetness or

Figure 2. Multiattribute choice task and performance. (A) Trial schematic, where each option consists of a pair of bars indicating sweetness (left) and
probability (right). The figure shows two of six possible option locations. After the monkey makes a selection, the unchosen option disappears,
and reward is probabilistically delivered. (B) Each attribute bar had one of two mappings. Blue/yellow indicated a direct mapping, in which
taller bars represented greater sweetness/probability. Magenta/green indicated an indirect mapping, in which taller bars represented lower
sweetness/probability. (C) Accuracy based on EV in “objective trials,” split by direct and indirect mapping. Error bars indicate SEM. (D) Interpolated
predictions from fitted models (surfaces) show that the probability of choosing an arbitrary option A (Prob ChA) increases as the relative sweetness
or probability of that option increases, and the attributes contribute roughly equally to decisions (Equation 3). Actual choice frequencies (points) are
well fit by the model. Monkey D: n = 57,082; Monkey C: n = 65,384.
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probability, we also calculated objective accuracy on trials
where one option was superior in both sweetness and
probability. This excluded trials in which one option was
greater in one attribute but lower in the other (note that
this is irrespective of mappings). Objective accuracies
were very high, likely reflecting the fact that these were
easier decisions (Figure 2C; across sessions: Monkey D,
0.92 ± 0.008 [95% CI]; Monkey C, 0.93 ± 0.013 [95%
CI]). The effect of direct/indirectmapping on accuracy also
vanished in the objective trials for Monkey D and was
mitigated for Monkey C (across sessions: Monkey D: direct:
0.95 ± 0.012 [95% CI], indirect: 0.95 ± 0.014 [95% CI];
Monkey C: direct: 0.94 ± 0.02 [95% CI], indirect: 0.92 ±
0.013 [95% CI]).
To quantify the subjects’ preference weightings for the

two attributes, we fit choice data with a logistic regression
model similar to those used in previous decision-making
tasks (Conen & Padoa-Schioppa, 2019; Padoa-Schioppa &
Assad, 2008). The model predicted choices from the log
ratio of the ordinal magnitudes of each attribute, the map-
ping of each attribute (direct/indirect), and the position
index of each option on the task screen (see Methods).
The magnitudes of both attributes strongly predicted
choices in both subjects (Figure 2D), showing that mon-
keys tended to pick the option with higher sweetness
and probability. They also weighted the attributes roughly
equally, with a slight bias toward probability (Monkey D:

Log(ProbA/ProbB) β = 1.83, Log(SwtA/SwtB) β = 1.62;
Monkey C: Log(ProbA/ProbB), β = 2.64, Log(SwtA/SwtB)
β = 1.18; all ps < 1 × 10−13; Figures A1–A2). In contrast,
attribute mappings and location on the screen had mini-
mal effect on choice. Monkey D showed a tendency to
select options with indirect probability mappings in early
testing sessions, but this disappeared over time (Figure A2).
Therefore, monkeys primarily used sweetness and proba-
bility information to guide decisions. Choice RTs were also
faster with larger differences in EV and larger differences
in each attribute (Figure A3).

Mapping Mismatches Impair
Attribute Comparisons

Next, we considered two operations that could be
involved in computing decisions: integrating attribute
values within an option and directly comparing like attri-
butes across the different options. Because it is relatively
straightforward to identify a larger or smaller bar from a
pair, these processes should be easier when bars have
the same mapping and more difficult when they differ
(i.e., when one is direct and one is indirect). If options
are assessed solely on the basis of integrated value, the
attributes need to be integrated into an overall value
before comparison with another option. In this case, mis-
matching direct and indirect mappings “within an option”

Figure 3. Choice accuracy varies with attribute arrangement. (A) Schematic of three trial types. Burgundy: All attributes have the same mapping,
either all “direct” (shown) or all “indirect” (not shown). On these trials, comparison or integration processes would take place among attributes with
the same mapping. Gray: Mappings differ among attributes within an option, but like attributes of the two options are the same. In this case, attribute
comparisons would take place between bars with the same mapping, but integration within an option would take place across mismatched mappings
(blue dashed circle). Gold: Mappings differ within like attributes but are the same within each option, so attribute comparisons would take place
between mismatched mappings (blue dashed circle), but value integration would take place between bars with the same mapping. Note that, in the
last two trial types, there are always two bars of each mapping, and only their arrangement differs. (B) Accuracy on trials of each type in which there
was also an objectively better option (n = 3728 and 4188 trials for Monkeys D and C, respectively). Accuracy was consistently lower when like
attributes differed (gold). *Significant post hoc comparisons, binomial test. Error bars indicate SEM. (C) Distributions of bootstrapped samples of 400
trials, sampled from all trials (not only those with an objectively better option) in which attribute mappings were different within option (gray) or
different within attribute (gold) as in A. Mismatched mappings within attribute consistently resulted in smaller slopes (i.e., more variable choices).
*Significant Wilcoxon rank-sum tests. Monkey D: n = 57,082; Monkey C: n = 65,384.
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should disrupt the integration of the attributes and impair
choice accuracy. Once the option values are computed,
the original bar mapping should no longer matter, mean-
ing that mismatches across options should not have the
same effect. Conversely, if monkeys use direct attribute
comparisons to compute a choice, then mismatched
mappings “within like attributes” (across options) should
impair choice accuracy (Figure 3A). Because attribute
mappings varied independently, we were able to subse-
lect trials where attributes were either matched or mis-
matched in different combinations to test these
hypotheses.

First, we focused on trials with an objectively better
option, as described above, so we could calculate choice
accuracies. Among these trials, we compared accuracy
when all four bars had a consistent mapping, meaning all
were direct or all were indirect, to accuracies when two
bars were direct and two were indirect. In the latter case,
we separated trials in which like attributes had the same
mapping but differed within an option and those in which
the two bars of an option had the same mapping but dif-
fered from the two bars of the other option. On these tri-
als, monkeys were consistently less accurate when bars of
like attributes had mismatched mappings, suggesting a
disruption of attribute-level comparisons [one-way
ANOVA: Monkey D: F(2, 10897) = 35.58, p = 3.97 ×
10−16; Monkey C: F(2, 12595) = 3.48, p = .03;
Figure 3B]. In contrast, when options are matched within
attribute but mismatched within option, we found less or
no deficit in choice accuracy. Because there was the same
number of direct or indirect attributes in each condition
and attributes merely varied in arrangement, the slightly
lower accuracy using indirect bars cannot explain this
result. Likewise, mappings were randomly and indepen-
dently assigned to each attribute and option, so the
mapping of a particular attribute could not influence this
effect. Instead, the arrangement of attribute mappings in
the choice determined choice accuracy. Similar but more
subtle effects were found in RTs (Figure A4).

To assess effects across all choices (not only objective
ones), we separately modeled trials in which bar mappings
differed within an option and those in which bars differed
within like attributes as sigmoid functions (Equation 3). If
different bar mappings impeded within-attribute compar-
isons, we would expect less consistent choices on those
trials, quantified as shallower fitted slopes. To control for
effects of trial number, we created 100 bootstrapped
samples of 400 trials for each condition and estimated
distributions of fitted slopes for each. We found that
choices were more variable when bars differed within
attribute versus within option for both sweetness and
probability (Figure 3C). The effect was slightly stronger
when models were fit only to trials without an objectively
better option, compared to those where one option was
better in both attributes (Figure A5). This was expected
if the more difficult nonobjective trials were more taxing
on comparison processes, therefore revealing stronger

differences. Overall, preventing monkeys from easily mak-
ing direct attribute comparisons resulted in less accurate
choice behavior, suggesting that they rely on these com-
parisons to make multiattribute decisions.

Gaze Patterns during Multiattribute Choices

As humans or monkeys decide, they acquire information
by shifting gaze among visible options, and this process of
allotting attention influences the dynamics of decision
formation (Smith & Krajbich, 2019; Lim, O’Doherty, &
Rangel, 2011; Armel, Beaumel, & Rangel, 2008). Our task
presented attributes as physically separate bars, which
allowed us to use eye tracking to quantify gaze patterns
across the different options and attributes. First, we
focused on fixations on attribute bars before a choice
was made (the prechoice epoch). The final fixation that
coincided with the choice report, when the monkey
released the touch bar, was excluded. Monkey C made
slightly fewer fixations per trial than Monkey D (Monkey
D: mean = 2.89 fixations, SE = 0.0058, n = 43,052 trials;
Monkey C: mean= 2.35 fixations, SE=0.0034, n=38,781
trials), and both monkeys exhibited idiosyncratic prefer-
ences for looking at either the sweetness (Monkey D) or
probability (Monkey C) bars (Figure A6). Notably, despite
these tendencies, behavioral choices reflected clear usage
of information represented by both attribute bars (see
Figure 2D). Therefore, gaze bias is not a one-to-one proxy
for preference and is dissociable from choice behavior,
although they are not entirely independent.
First, we determined whether there were general pat-

terns that related gaze behavior to choices. Both monkeys
made more fixations per choice as the difference between
the attributes in the two options decreased, so they looked
more at the options when choices weremore difficult (i.e.,
close in value; Figure 4A). We quantified this with a general
linear regression that predicted the number of fixations on
any attribute bar from the difference in offered sweet-
nesses and probabilities, as well as the mapping of each
attribute, and found that smaller differences in either
attribute predicted more fixations per trial (Monkey D
and C, respectively: sweetness difference: β = −0.10
and −0.02, p = 2.71 × 10−112 and 4.77 × 10−10; proba-
bility difference: β = −0.17 and −0.10, p = 8.8 × 10−317

and 3.37 × 10−297). In addition, consistent with previous
reports (Krajbich et al., 2010), fixations were longer when
monkeys looked at either bar of the option they would
eventually select (the “chosen option”), compared to
the one they would not (the “unchosen option”;
Figure 4B). Therefore, aspects of the monkeys’ gaze pat-
terns aligned with expected effects of value and choice.
Next, we assessed effects of attribute mapping on gaze

patterns. Here, MonkeyD slightly preferred to look at indi-
rect sweetness and probability bars, whereas Monkey C
preferred to look at indirect sweetness bars but direct
probability bars (Figure A6B). These patterns are reflected
in the effects of bar mappings on fixation number in the
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linear model (Monkey D and C: number of indirect sweet-
ness bars: β = 0.004 and 0.05, p = .57 and 8.36 × 10−32;
number of indirect probability bars: β=−0.06 and−0.11,
p= 2.49 × 10−18 and 5.41 × 10−131), but effects are weak
compared to the attribute magnitudes and idiosyncratic
to the individual monkeys.
Finally, we assessed the same effects on fixation

durations, using a linear regression model to predict the
duration of any fixation from features of the fixated bar
(magnitude andmapping), features of the nonfixated bars,
and fixation sequence. Acrossmonkeys, fixations were lon-
ger for probability bars, chosen options, indirect bars, and
greater values of the fixated attribute (Figure A7). In addi-
tion, there were some effects of unfixated attributes. Both
monkeys showed shorter fixations when either attribute of
the other option had a greater value. However, for greater
values of the other attribute of the same option, Monkey C
had longer fixations, whereas Monkey D had shorter.

Together, the strongest patterns in gaze behavior were
related to the monkeys’ choices, with only weak or
idiosyncratic effects of other variables such as attribute
mapping suggesting that gaze can provide a window into
decision-making processes.

Gaze Transitions Are Consistent with
Attribute Comparison

Our choice data suggested that monkeys compared like
attributes of the two options when making a decision.
Gaze shifts can provide insights into the order of informa-
tion sampling and therefore reveal patterns consistent
with attribute comparison or value integration. If monkeys
use direct comparison of attributes to help them decide,
we predicted that most gaze transitions would be between
bars representing like attributes. To assess this, we deter-
mined how often gaze transitioned between attributes of

Figure 4. Gaze patterns in multiattribute choices. (A) Colormaps show that the mean number of fixations on any bar scaled with the ordinal
difference between sweetness and probability of the choice options. Monkey D: n = 51,115; Monkey C: n = 53,727. (B) The mean duration of
fixations on either bar of the chosen option (Ch) was higher than those on bars of the unchosen (Uch) option. Bars show the aggregate of all
fixations in a trial, and error bars represent 99% confidence intervals. Monkey D: n= 51,115 fixations; Monkey C: n= 53,727 fixations. (C) Schematic
showing within-attribute (red arrows) and within-option (black arrows) gaze transitions. Black bars represent sweetness, white bars represent
probability, and an option comprises two bars in the same gray circle. (D) Number of fixation (fix) transitions within option (black) or within attribute
(red) for each monkey before a choice is made. Error bars indicate SEM. *p < 10−10. n = 88,819 (Monkey D) and 106,800 (Monkey C) fixation
transitions. (E) Number of fixation transitions as in D, except after the choice is reported. n = 81,909 (Monkey D) and 110,400 (Monkey C) fixation
transitions. (F) The number of fixation transitions per trial within option or within attribute varied with the difference in EV of the choice options on
that trial. Dashed lines show SEM (very small because of a high number of trials). n = 43,430 (Monkey D) and 27,055 (Monkey C) trials. (G) The
number of fixation transitions per trial, split by attribute arrangement, as in Figure 2E. Planned post hoc comparisons from a two-way ANOVA
compared within-attribute and within-option transitions. *p < .0033 (Bonferroni-corrected). Error bars indicate 95% CI. n = 43,430 (Monkey D) and
27,055 (Monkey C) trials.

Perkins, Gillis, and Rich 1887



the same option (i.e., sweetness bar A↔ probability bar A,
or sweetness bar B ↔ probability bar B), which would be
expected during integration into an overall value. We com-
pared this to transitions between two bars representing
like attributes (i.e., sweetness bar A ↔ sweetness bar B,
or probability bar A ↔ probability bar B), which would
be expected with attribute comparisons (Figure 4C). For
this analysis, trials with less than two fixations before a
choice were excluded, yielding 22,357 (D) and 10,728
(C) trials for gaze transition analyses (for prechoice fixations)
and 43,430 (D) and 32,046 (C) for postchoice analysis. Gaze
transitions that were neither between like attributes nor
between the two attributes of an option (e.g., sweetness
bar A ↔ probability bar B) were also excluded.

Both subjects made significantly more within-attribute
transitions than within-option transitions in the prechoice
epoch [Monkey D: t(36,378) = −86.1, p < 1 × 10−13;
Monkey C: t(17,079) = −70.6, p < 1 × 10−12 ;
Figure 4D]. This is consistent with the idea that monkeys
compare information about the like attributes to each
other. As a follow-up, we quantified the same measure in
the postchoice epoch, when only the chosen option was
displayed on the screen. Despite the unchosen option
not being visible, monkeys occasionally looked to the
location where it previously was, but predominantly, we
found within-option transitions as expected [Monkey D:
t(64,609) = 122.8, p < 1 × 10−14; Monkey C: t(58,684) =
91.456, p < 1 × 10−13; Figure 4E]. In summary, monkeys
showed within-attribute sampling of information before
making a choice.

Next, we assessed how both types of gaze transitions
changed with choice difficulty, using the difference in
EVs between the two options as a proxy for the difficulty
of the decision. Although both within-option and
within-attribute transitions increased on more difficult
trials, the increase in within-attribute transitions was
greater than within-option transitions (Figure 4F). This
was quantified by significantly greater slopes in a regres-
sion that correlated number of within-attribute gaze
transitions and EV difference, compared to the same
regression for within-option transitions [t test for
differences between slopes; Monkey D: t(44,668) =
−13.3, p < 1 × 10−10; Monkey C: t(21,342) = −3.57,
p = 3.59×10−4]. Therefore, within-attribute transitions
predominate when choices are more difficult, which
would be expected if these shifts in attention mediate
comparison of like attributes.

Finally, we considered whether gaze transitions also
reflected the perceptual difficulty of the decision by asses-
sing trials where the bar mappings were (1) all consistent,
(2) different within option, or (3) different within attri-
bute, as in Figure 3A. Here, monkeys primarily made
within-attribute gaze transitions, regardless of attribute
arrangement. There was a significant interaction between
categorical factors of Trial type (attribute mapping: all
consistent, different within option, or different within
attribute) and Transition type (within-attribute or within-

option) on the number of fixation transitions per trial
[two-way ANOVA; Monkey D: F(2, 14777) = 5.64, p =
.004; Monkey C: F(2, 12905) = 3.9, p = .02]. This was
driven by within-option transitions increasing propor-
tionally more on different within-attribute trials (i.e.,
when mappings were consistent within option), although
there were more within-attribute transitions on all trial
types (Figure 4G). Therefore, in agreement with patterns
in choice behavior, gaze behavior also indicated that mon-
keys used attribute comparisons to guide their choices. In
addition, gaze patterns primarily reflected choice difficulty
related to value difference but not perceptual difficulty.

Simulations of Choice Behavior

Our behavior data indicate that monkeys use information
about separate attributes to make value-based choices.
However, this should be a suboptimal strategy in this task,
if optimal choices are defined as the total EV of a series of
choices. To assess the optimality of monkeys’ choices, we
quantified the EV of each option in terms of milligrams of
sucrose, by multiplying the amount of sucrose in each
option by the probability of receiving it. We then tested
three models of choice behavior that differed in how they
computed the values of options and determined the total
amount of sucrose each would earn over a series of simu-
lated trials. The first model calculated EVs as we defined
them. The second computed the log ratio of each attri-
bute, as in Figure 2D, and the third computed the differ-
ence among attributes, allowing each to be independently
weighted (see Methods). Themodel based on log ratios of
attributes (henceforth, Log model) is commonly used in
choice tasks (Conen & Padoa-Schioppa, 2019; Padoa-
Schioppa & Assad, 2006, 2008) and derived from the
assumption that the two attributes are multiplicatively
combined when calculating an option value, although they
are independently weighted (Padoa-Schioppa, 2022).
Therefore, the main difference between the Log model
and the EV model is that attribute weights are free param-
eters in the Log model versus determined as a simple mul-
tiplication of milligrams times probability in the EV model.
On the other hand, the Diff model assumes a linear rather
thanmultiplicative combination of attributes and has been
used to model choices among “bundles,” or separate out-
comes that must be chosen together (Padoa-Schioppa,
2022; FitzGerald, Seymour, & Dolan, 2009). In each case,
we used logistic regression to fit a sigmoid to choices in
the task, separately for each session, to obtain weights
on each model predictor. We then tested the models on
all 625 possible choices among different combinations of
sweetness and probability. We found that, as expected, the
EV model earns the greatest amount of sucrose overall
[repeated-measures ANOVAs: Monkey D: F(2, 136) =
154.5, p = 1 × 10−27; Monkey C: F(2, 152) = 343.6, p =
4.1 × 10−57; Figure 5A]. However, model comparisons
using AIC revealed that the Diff model was the better fit
to each monkey’s behavior [repeated-measures ANOVAs:

1888 Journal of Cognitive Neuroscience Volume 36, Number 9



Monkey D: F(2, 136) = 69.7, p = 1.4 × 10−21; Monkey C:
F(2, 152) = 121.58, p = 2.9 × 10−32; Figure 5B]. This
suggests that monkeys favored a decision strategy that is
suboptimal in this task. Alternatively, their behavior could
have been optimized for something other than total
milligrams of sucrose, although they showed consistent
preferences for sweeter, more probable options.
For comparison, we also fit the same three models to

simulated trials in which options were drawn from actual
trials, but simulated choices reflected the higher EV (in
milligrams of sucrose) or a random selection on choices
with equivalent EVs. In this case, the EV model was the
best fit to the simulated choices [repeated-measures
ANOVAs: Monkey D: F(2, 136) = 2082.7, p = 9.9 ×
10−103; Monkey C: F(2, 152) = 1461.3, p = 5.6 ×
10−100; Figure 5C]. The Log model was also a close fit,
reflecting the fact that it differs from the EV model only
in allowing attributes to be weighted, and in this case,
the weights were fit to a pattern of choices consistent with
a multiplicative EV computation. In contrast, the Diff
model, which fit actual choice data the best, was the poor-
est fit when choices are based strictly on EVs. Together,
these simulations support the notion that monkeys solve
this multiattribute decision task using a strategy that
involves consideration of individual attributes, rather
than strictly computing an integrated EV.

DISCUSSION

A central premise of most decision-making models is the
idea that choices involve the computation and comparison
of integrated values. However, other views have proposed
that unintegrated attributes also play a role. Here, we used
a novel multiattribute decision-making task for monkeys to
test whether complex decisions incorporate information
about unique attributes as part of the choice process. Pat-
terns in choice accuracy, preference consistency, and
directed gaze all indicated that monkeys spontaneously
used direct comparisons of like attributes to arrive at a deci-
sion. Importantly, this occurred while information was also
available to compute integrated values, so the task revealed
aspects of the monkeys’ natural tendency to use uninte-
grated attributes. Consistent with this, our simulations
indicated that modeling the monkeys’ choices with an EV
computation fit their behavior patterns worse than choice
models that parameterize the attributes independently.
Although these data do not exclude a role for integrated
value comparisons, they do emphasize that integrated value
is not the sole decision variable that the brain uses when
computing a preference-based choice. Because our experi-
ment included only two young adult male monkeys, further
studies will be needed to determine if this decision-making
strategy is affected by biological variables such as age or sex.

Figure 5. Models of multiattribute choice behavior. (A) EVs earned by each model, shown as the percentage of the maximum amount of sucrose that
could be obtained, calculated across 625 trials consisting of all possible choices among combinations of sweetness and probability in the task. Models
were fit to actual choice data on a session-by-session basis to obtain attribute weights. Bars = average, points = sessions. **Bonferroni-corrected
post hoc comparisons, p < 1 × 10−3. (B) The fit of each model to the monkeys’ choices was compared with AICs, computed for each session. Insets
show the relative likelihood of each model for each session. Bars = average, points = sessions. **Bonferroni-corrected post hoc comparisons, p < 1 ×
10−7. (C) Each model was fit to a pattern of “optimal” choices, or choices that would, on average, maximize the earned sucrose, and compared
with AICs. Insets show the relative likelihood of each model for each session. Bars = average, points = sessions. **Bonferroni-corrected post hoc
comparisons, p < 1 × 10−20. Df = Diff; Lg = Log.
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Our results provide support for a class of model in which
choices are based on evaluation of individual attributes,
either without (Trueblood, Brown, & Heathcote, 2014;
Hotaling, Busemeyer, & Li, 2010; Usher & McClelland,
2004; Roe et al., 2001) or in parallel to (Hunt & Hayden,
2017; Hunt et al., 2014) the computation of integrated
values. Many models that include within-attribute compari-
sons also account for classic anomalies in multiattribute
choices, such as context effects (Landry & Webb, 2021;
Turner, Schley, Muller, & Tsetsos, 2018). For example,
one type of model proposes that attributes are compared
in a pairwise manner and evidence in favor of an option
accumulates linearly, weighted by attention. This accounts
for attraction effects because greater attentional weights are
placed on options that are closer together in attribute space
(Turner et al., 2018; Trueblood et al., 2014). In addition to
our results, models such as this support the validity of
attribute-based theories of decision-making.

Our results could also align with theories that propose
decisions arise from parallel comparisons of multiple vari-
ables, including like attributes, integrated values, and attri-
bute saliencies (Hunt et al., 2014; Cisek, 2012). From this
view, decisions arise from distributed brain systems, which
may be arranged hierarchically, such that information about
option and attribute values can be jointly used along with
other variables to produce a decision (Hunt et al., 2014).
Notably, our study cannot address situations where options
do not share a common attribute. Whereas some have pro-
posed that this is a context in which integrated value com-
parisons are particularly important (Padoa-Schioppa,
2011), other models solve this dilemma with a series of
accept/reject decisions at the level of attributes (Stewart
et al., 2006). Regardless, our results demonstrate the need
to consider attribute-level processes as a mechanism
involved in multiattribute decision-making.

Our conclusions are based in part on subtle impair-
ments in choice behavior revealed by our task design,
which incorporated different perceptual mappings of
visual cues to attribute values (i.e., “bigger is better” vs.
“smaller is better”). When mappings of two attribute bars
were the same, the monkeys could compare them with a
simple perceptual judgment to determine which is taller
or shorter, or they could reference internal representa-
tions of either the specific meaning (e.g., 50% probability
of reward) or the position on a value scale indicated by
each bar. When the mappings differed, however, they
could not use simple perceptual judgments and had to rely
on and translate between internal representations, making
the mismatched condition potentially more difficult.
Indeed, we found lower objective accuracies and less con-
sistent preferences when mappings were different within
like attributes, suggesting that like attributes were the
components of the display that themonkeys were translat-
ing between.

Having the same mapping not only provides an easier
way of comparing bars but also can be seen as grouping
them, either perceptually (by color) or informationally

(by relationship of size to goodness). Previous work has
shown that grouping attributes by type or the option they
belong to, either through colored backgrounds or proxim-
ity, without introducing significant processing costs, does
not change decision-making strategies (Ettlin & Bröder,
2015). This makes it unlikely that the perceptual grouping
drove our behavioral effects. Rather, our data suggest that
an inefficiency was introduced to the decision process
when the subjects had to compare attributes across infor-
mational groups (i.e., different mappings). Because the
same degree of deficit was not seen when there were dis-
cordant informational groups within an option, it suggests
that operations taking place within an option are less crit-
ical to the choice process, and the brain relies more on
direct attribute comparison to make decisions.
It is unlikely that our behavioral effects were driven by

perceptual features in other ways, for instance, by way of
differences in preference or accuracy of value estimation
for one of the mappings. This is because we subselected
trials from our large data set that had an identical number
of “direct” and “indirect” bars on the screen in each condi-
tion (i.e., different within option or different within attri-
bute). With this approach, only the particular arrangement
of the matched or mismatched attributes varied across
conditions, eliminating effects that might arise merely
from the monkeys’ interpretations of the direct or indirect
condition.
If monkeys used comparison of attributes to help them

make decisions, we expected this would also be evident in
the way they gathered information while making a choice.
For this, we analyzed patterns of fixation and predicted
that gaze would predominantly transition between the
bars representing like attributes. From this view, shifting
gaze reflects a process by which items are brought into
the focus of attention and therefore sequentially sampled
(Krajbich et al., 2010). As predicted, we found a tendency
to shift gaze between like attributes, particularly on more
difficult choices when the options were more similar in
value. This is consistent with human studies, which find
that gaze tends to shift primarily between alternatives
along single attribute dimensions during multiattribute
choices (Ryan-Lortie, Pelletier, Pilgrim, & Fellows, 2023;
Noguchi & Stewart, 2014; Russo & Rosen, 1975). It is also
in line with lesion evidence indicating the importance of
sampling attributes in sequence in choice behavior. For
instance, when asked to choose between hypothetical
apartments that vary in multiple features, control subjects
tended to favor attribute-based strategies and uncovered
information about like attributes in sequence (Fellows,
2006). In contrast, individuals with damage to the ventro-
medial PFC, an area important for value-based decision-
making, tended to favor alternative-based decision
strategies, seeking out all of the information pertaining
to a given option at once. This suggests that damage to
decision-making circuits disrupted an otherwise common
tendency to sequentially gather information about like
attributes. Therefore, across species, gaze patterns
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consistently reveal preferences for within-attribute gaze
transitions, reflecting a search strategy oriented toward
making within-attribute comparisons.
Because the same decision can be made a number of

different ways and can rely to varying degrees on unob-
servable internal states, studies often seek a fuller
understanding of decision processes by assessing the
neural substrates (Padoa-Schioppa, 2007). A number of
brain regions have been implicated in value-based
decision-making. Among these, the OFC is particularly
important, as damage or disruption consistently alters
value-based choice behavior, suggesting that OFC neurons
perform choice-relevant computations (Ballesta, Shi,
Conen, & Padoa-Schioppa, 2020; Rudebeck, Saunders,
Prescott, Chau, & Murray, 2013). Integrated value signals
are commonly found within OFC, including in single-unit
firing rates (Padoa-Schioppa & Assad, 2006; Wallis & Miller,
2003; Tremblay & Schultz, 1999), population codes
(Yamada et al., 2021; Rich & Wallis, 2016), field potentials
(Saez et al., 2018; Rich & Wallis, 2016, 2017), and fMRI
BOLD signals (Chikazoe, Lee, Kriegeskorte, & Anderson,
2014; Plassmann, O’Doherty, & Rangel, 2007), and this
has been taken as evidence that integrated value is the
key decision variable in OFC. However, multiple laborato-
ries consistently report neurons in monkey OFC (primarily
Area 13) that encode the value of unique attributes (Pastor-

Bernier, Stasiak, & Schultz, 2019; Setogawa et al., 2019;
Blanchard, Hayden, & Bromberg-Martin, 2015; Raghuraman
& Padoa-Schioppa, 2014; Hosokawa, Kennerley, Sloan, &
Wallis, 2013; Padoa-Schioppa & Assad, 2006), and similar
signals can be found in human fMRI BOLD (Howard,
Gottfried, Tobler, & Kahnt, 2015). These responses are
understudied compared to the more prevalent integrated
value signals, making it unclear whether they inform choice
behavior or are used to compute the integrated values that
then guide choice. On the basis of our results, the possi-
bility of attribute-level processing should be considered
when interpreting neural correlates of choice behavior in
OFC and other regions.

In summary, our results provide robust behavioral
evidence that monkeys use attribute comparisons when
making multiattribute decisions. This stands in contrast
to models in which choices emerge exclusively from the
computation and comparison of integrated values and
instead supports those that rely at least in part on
attribute-level operations. This is particularly relevant
when interpreting neural responses in choice paradigms
where decision variables, such as attribute values and
integrated values, are often correlated. Without directly
testing alternate possibilities, the same data could be inter-
preted as support for entirely different psychological and
neural mechanisms of decision-making.

Figure A1. Monkeys use
multiple attributes to make
choices. (A) Colormap of
predicted choice probabilities
from logistic regression on the
log ratio of Sweetness A/B and
Probability A/B (as in Figure 2D,
but flattened; Equation 3).
Brighter colors represent
greater frequency with which
arbitrary option A was selected.
n = 57,082 (Monkey D) and
65,384 (Monkey C). (B)
Colormaps of real choice
frequencies. Each subplot
shows choices when option A
has sweetness magnitude of
1–5 (subplots from top to
bottom, y axis) and probability
magnitude of 1–5 (subplots
left to right, x axis). Within
each subplot, magnitudes of
option B vary in the same range
(1–5 for each). SwtB/ProbB =
sweetness/probability of option B.
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Figure A2. Regression
coefficients from logistic
regressions on choice. (A)
Regressions performed on
concatenated data (Equation 1)
found that the strongest
predictors of choice are the
relative magnitude of sweetness
and probability of the two
options. n = 57,082 (Monkey
D) and 65,384 (Monkey C). (B)
Plot of regression coefficients
for sweetness/probability
mapping from the choice
regression over sessions. Only
mapping betas for option A are
shown, as betas for A and B
are roughly inverses of each
other. Across sessions, the
relative weighting of direct
versus indirect mapping varied
considerably. Monkey D initially
preferred indirect probability
mappings, but this preference
disappeared by the end of
testing. Monkey C showed no
consistent preference for
direct or indirect mappings
across testing.

Figure A3. RTs in multiple attribute choices. RTs were defined as the time between the appearance of choice options on the screen and the time
when the touch bar was released to select an option. Average RTs across sessions were 672.20 ± 30.5 msec for Monkey D and 570.31 ± 23.2 msec
(95% CI) for Monkey C. RTs were shorter on trials with an objectively better option, compared to other trials, consistent with the idea that these are
easier choices (Monkey D: 609.93 ± 11.68 msec [95% CI], Monkey C: 528.27 ± 10.33 msec [95% CI]; two-sample t tests: Monkey D: p = 7.93 ×
10−27, Monkey C: p = 8.29 × 10−40). (A) Average RTs across sessions varied with the difference in the EV of the two options, defined as the Ordinal
Sweetness × Ordinal Probability. Error bars indicate SEM. n = 69 (Monkey D) and 76 (Monkey C; sessions). (B) RTs were only weakly sensitive to
direct/indirect attribute mapping in Monkey C (two-sample t test). Error bars indicate SEM. n = 69 (Monkey D) and 76 (Monkey C) sessions. (C)
Regression coefficients from a linear regression on RT. SwtDiff and ProbDiff are the differences between the ordinal value of each attribute (0–4).
NumSwtInd and NumProbInd are the number of indirect mappings of each attribute in the trial (0–2). *p < 0.01. n= 56,889 (Monkey D) and 65,322
(Monkey C).

1892 Journal of Cognitive Neuroscience Volume 36, Number 9



Figure A4. RTs split by
attribute arrangement (as in
Figure 2E). Error bars indicate
SEM. Statistics were performed
on log-transformed RTs.
One-way ANOVA: Monkey D:
F(2, 10876) = 22.07, p = 2.71 ×
10−10; Monkey C: F(2, 12586) =
14.11, p = 7.56 × 10−7.
Post hoc comparisons, α =
.005; Monkey D: all consistent
versus different within option:
p = 0.98, all consistent versus
different within attribute: p =
4.77 × 10−9; Monkey C: all
consistent versus different
within option, p = 2.92 × 10−4, all consistent versus different within attribute, p = .11. Because of the sample size, some comparisons reached
significance, but the effect size is very small and may reflect spurious effects.

Figure A5. Choice models of objective and nonobjective trials. We compared trials with objectively better options (“Objective Trials”) and those in
which option A was better in one attribute and option B was better in the other (“Nonobjective Trials”). (A) Predicted probabilities from models fit to
objective trials in which attributes were either mismatched within option (top) or within like attributes (bottom). Black regions indicate trials that
were excluded because they did not meet the criteria of having one option superior to the other in both attributes. Monkey D: 18,207 included trials,
Monkey C: 21,066 included trials. (B) Distributions of 100 bootstrapped samples of 400 trials, drawn from trials shown in A, in which attribute
mappings were different within option (gray) or different within attribute (gold). Mismatched mappings within attribute consistently resulted in
smaller slopes (i.e., more variable choices). (C) Predicted probabilities from models fit to nonobjective trials in which attributes were either
mismatched within option (top) or within like attributes (bottom). Black regions indicate trials that were not included in the analysis because they
did not meet these criteria. Monkey D: 38,875 included trials, Monkey C: 44,318 included trials. (D) Distributions of 100 bootstrapped samples of 400
trials, drawn from trials shown in C, separated as in B. Overall, there were slightly larger effects of attribute mapping on nonobjective trials, which may
be more difficult for the monkey and therefore reveal choice inefficiencies to a greater extent. Importantly, all effects in any trial subset consistently
showed that mismatched mappings within attribute resulted in smaller slopes (i.e., more variable choices). *Significant Wilcoxon rank-sum tests.
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Figure A6. Number of fixations
on attribute bars within a trial.
(A) Histogram of number of
fixations per trial. Fixations that
coincided with the choice (dark
gray) were removed from all
analyses. Trials with less than
two fixations (light gray) were
removed from analyses of
prechoice gaze transitions.
(B) Mean number of fixations
per trial, split by direct/indirect
mapping of each attribute.
Fixations were counted
between cue onset and choice.
Error bars indicate SEM. n =
51,115 (Monkey D) and 53,727
(Monkey C) trials.

Figure A7. Regression coefficients from multiple linear regressions. Regressions predicted fixation duration (log[msec]) from predictor variables on
the x axis. *p< .01. Error bars show standard error of the coefficients. Ordinal values in the table are before mean centering. n= 81,158 (Monkey D)
and 52,416 (Monkey C) fixations.
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