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Abstract
Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due 
to anthropogenic activity and climatic change. Baseline data to inform sustainable management 
options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions 
from lake or wetland deposits) can provide crucial long-term perspectives needed to identify 
drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource 
managers using three current issues facing tropical delta regions: hydrology and sediment supply, 
salinisation and nutrient pollution. The unique ability of palaeolimnological methods to untangle 
multiple stressors is also discussed. We demonstrate how palaeolimnology has been used to 
understand each of these issues, in other aquatic environments, to be incorporated into policy. 
Palaeolimnology is a key tool to understanding how anthropogenic influences interact with other 
environmental stressors, providing policymakers and resource managers with a ‘big picture’ view 
and possible holistic solutions that can be implemented.
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Introduction

Tropical river deltas are dynamic and productive ecosystems that sustain livelihoods and have 
been important in the development of civilisation. Deltas form through the deposition of sediment 
and nutrient inputs from both the upstream catchment by freshwater flow and from the nearshore 
environment by the tide, creating fan-like landscapes intersected by a distributary channel net-
work (Hiatt and Passalacqua, 2015; Tockner et al., 1999). Deltas are often referred to as socio-
ecological systems (SESs) (Berkes and Folke, 1998; Colding and Barthel, 2019; Kuenzer and 
Renaud, 2012) because of the interconnected relationships between human populations and the 
ecosystem services provided by numerous habitats from upstream catchments to the coast. Even 
though tropical deltas are important centres of natural resource extraction, agriculture, aquacul-
ture and industry (Adams et al., 2018; Adekola and Mitchell, 2011; Kuenzer and Renaud, 2012), 
they are facing mounting pressures from anthropogenic activities and environmental change that 
jeopardise human populations and the vital ecosystem services they provide (Islam et al., 2015; 
Kuenzer and Renaud, 2012).

Anthropogenic influence in any part of the watershed can lead to issues downstream and 
throughout the delta. For example, the construction of dams along the Mekong River basin has 
reduced freshwater flow to downstream Vietnam, resulting in increased saline intrusion within 
coastal waterways and soils (Li et al., 2017; Eslami et al., 2019). Sand mining, in addition to dam 
construction, reduces sediment flux downstream and increases riverbank and coastal erosion 
(Hackney et al., 2020; Jia et al., 2007; Marchesiello et al., 2019). Widespread nutrient enrichment 
arising from agricultural intensification (e.g. fertiliser runoff) and heavy metal pollution by indus-
trial or urban discharges into surrounding waterways has led to water quality degradation (Downing 
et al., 1999; Ezekwe and Edoghotu, 2015; Rahman et al., 2011). Environmental degradation due to 
anthropogenic influences negatively impact fisheries, drinking water and biodiversity (Baran 
et al., 2011; Benneyworth et al., 2016; Winemiller et al., 2016) and increases susceptibility to 
climate change effects (Ngo et al., 2018; Thilakarathne and Sridhar, 2017).

To address these interacting challenges, governments often try to balance economic develop-
ment and environmental protection by instituting management policies for the sustainable use of 
delta resources. However, a lack of long-term monitoring (over decades to centuries – most regular 
monitoring does not precede the 1990s) (Davidson et al., 2013; Smol, 1992) means it is difficult to 
detect changes in delta biogeochemistry, ecological regimes, or driving stressors, hampering 
appropriate policy responses. In the absence of lengthy water quality, sediment transport and 
hydrological data, palaeolimnology – the study of past lake and wetland sediments to reconstruct 
historical limnological and climatic conditions – can provide long-term perspectives of natural 
baselines (i.e. prior to a disturbance) and variability within ecosystems, as well as the impacts 
humans are having on the environment including the effectiveness of existing policy or manage-
ment regimes.

Palaeolimnology uses chronologically controlled (e.g. radioisotope dating – 210Pb, 137Ams, 14C) 
sediment cores to provide temporal context in the study of organic and inorganic remnants found in 
sediments (referred to as proxies) to uncover the historical environmental conditions of aquatic 
systems and their catchments over timescales of decades to millennia (Figure 1). Palaeolimnological 
proxies have been used successfully to detect shifts in the biological, environmental and physical 
conditions within some tropical aquatic ecosystems (Velez et al., 2018; Wengrat et al., 2018; Zong 
et al., 2010a). Such shifts can be attributed to specific events or activities (e.g. dam construction, 
climate change, land-use change (Bianchi et al., 2013; Inda et al., 2016; Zeng et al., 2018)) and 
provide a valuable resource for setting restoration goals and management strategies (Alexson 
et al., 2018; Köster et al., 2007; Perga et al., 2015). The power of proxies to detect long-term 
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environmental and ecological change, and to elucidate the complex dynamics existing between 
humans and deltaic environments, have led to palaeolimnological methods being used to inform 
tropical delta management plans (Escobar et al., 2020). Palaeolimnology can also demonstrate the 
timescales over which changes within a system occur; from long-term shifts in hydrology to short-
term pollution impacts, as well as understanding contemporary or predicted conditions (e.g. land-
use change, climate change) in various aquatic systems within the context of historical baselines 
(Bennion et al., 2011). Here, we argue that policymakers and resource managers in tropical nations 
should engage with the use of palaeolimnology more frequently to better understand the changes 
mega-deltas are undergoing and work for greater sustainability within these systems.

In this review, we aim to highlight how palaeolimnology can be used to inform management 
options for three key issues faced by tropical delta systems: (1) hydrology and sediment supply,  
(2) salinisation of freshwaters and soils and (3) nutrient enrichment and pollution of waterways. 
We discuss how palaeolimnology has already contributed to our understanding of these issues 
across different geographical regions, and how it has contributed to resource management in other 
environmental settings, and explaining how its inclusion can serve to strengthen future manage-
ment plans in tropical delta systems. We argue for palaeolimnology to be integrated as a key man-
agement tool for governments, policymakers and resource managers, alongside robust routine 
monitoring.

Hydrology and sediment supply

Central to the functioning of delta environments is hydrology (Dada et al., 2018; Le et al., 2007) 
and sediment flux (Coleman and Wright, 1975; Rahman et al., 2018), which sustain aquatic eco-
systems and processes of land accretion or erosion. Human modifications such as dam construction 

Figure 1. Stressors on river delta systems may be better understood using palaeolimnology. This diagram 
illustrates various stressors that may have significant impacts on delta systems, but sediments accumulating 
in aquatic sediments may hold clues as to how the system is responding over time, and if the systems are 
responding to management plans aimed at mitigating anthropogenic impacts.
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(Mikhailov et al., 2015; Xue et al., 2011), channel alterations (Restrepo and Kettner, 2012; Zhang 
et al., 2009) and land-use change (Remondi et al., 2016; Setti et al., 2020) can drastically transform 
flooding frequency and occurrence. These modifications can reduce freshwater supply to deltas, 
allow tidal flow of seawater further inland (Eslami et al., 2019; Gole and Vaidyaraman, 1967) and 
affect sediment flow, to cause excessive accretion or erosion in different regions of a delta. 
Excessive riverbed siltation can increase water levels that risk overtopping artificial embankments 
surrounding low-lying, reclaimed land to keep out river water and causes prolonged flooding 
(Auerbach et al., 2015), or lead to a net export of sediment to the open sea, resulting in land erosion 
and channel widening (Auerbach et al., 2015; Guchhait et al., 2016; Liu et al., 2018). Ecosystems 
in lower delta regions, such as mangrove forests, can be adversely affected by reduced sediment 
flux. When accretion rates within the forest are reduced, forests can drown if accretion rates fail to 
keep pace with sea level rise (Friess et al., 2019; Nienhuis et al., 2020). Sand mining, common in 
the Mekong River, also reduces sediment flux and exacerbates bank erosion (Hackney et al., 2020; 
Jia et al., 2007).

To diagnose the causes and consequences of human-induced changes to hydro-sediment dynam-
ics (see Boxes 1 and 2), palaeolimnological research can detect shifts in water flow or flooding 
frequency by tracking ecological changes to phytoplankton communities or shifting nutrient 
regimes (Chen et al., 2018; Liu et al., 2012). For example, a study on the long-term trends in the 
hydrological regime of a shallow lake in the Magdalena River in Colombia based on phytoplank-
ton and biogeochemical markers indicated that the existing lake shifted first from a flood-domi-
nated riverine system to a connected wetland system, then shifted again to a lake system ~60 years 
ago (Lopera-Congote et al., 2021). This reduced hydrological connectivity, partly caused by land-
use change around the lake, contributed to increased sediment run-off and eutrophication (Lopera-
Congote et al., 2021). This study highlighted that the best management option was to increase 
connectivity with surrounding hydrology.

Palaeolimnology is particularly useful in understanding changes in hydrology and sediment 
flux. Shifts in sediment accumulation rates within a particular basin can be quantified by radiomet-
ric dating (Cohen, 2003; Foucher et al., 2021), and shifts in hydrological sources and connectivity 
of deltaic lakes can be understood through a range of techniques including grain-size analysis and 
geochemical or organic tracing of sediment sources (Collins et al., 2020). Both aid in understand-
ing elemental point sources and how that has influenced ecological conditions (Bertrand et al., 
2005; Liu et al., 2012; Salgado et al., 2020). While difficulties may exist in finding suitable coring 
sites (see Box 1), careful employment of palaeolimnology in tropical deltas should be able to better 
help managers understand how changing hydrology or sediment fluxes can impact their resources.

Salinisation

Excessive saline intrusion into coastal water bodies is a growing problem in South and Southeast 
Asian delta communities (Clarke et al., 2018; Eslami et al., 2019; Szabo et al., 2016a). Increased 
instances of salinisation of soils and waterways are threatening livelihoods by reducing agricultural 
and aquacultural crop harvests, making coastal aquifers unusable and altering ecological function-
ing (Habiba et al., 2014; Hossain et al., 2016; Tran et al., 2022). Salinisation can be a gradual and 
irreversible process (caused by sea-level rise, salinisation of groundwater, or an excess of nutrients 
in floodplain agricultural fields) or can occur in temporary, periodic pulses (storm surges or sea-
sonal droughts). The history of natural salinisation and the triggers for its occurrence and impacts 
in comparison with anthropogenically-driven salinisation need investigating as a key tool in man-
aging this problem in these regions.
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Box 1. Sediment dynamics and potential coring in Lakes.

Figure B1.  (a) Depiction of sediment deposition dynamics in an aquatic system. Image modified from 
Håkanson (1982). (b) Satellite image of oxbow lakes in the NW section of the Ganges-Brahmaputra-
Meghna Delta system. Taken from Google Earth Pro. (c) Image of a reservoir on the Da River in the 
Red River Delta system, Vietnam. Photo Credit: Richard Walton.

The forces behind sediment deposition in lakes are dynamic and dependent on a range of physical 
factors including hydrological in-and-out flow, bathymetry, atmospheric deposition, wind and wave 
action, biodeposition and bioturbation among others (Håkanson and Jansson, 1983; Manning, 2011; 
Schillereff et al., 2014). The dynamics of delta environments may make finding a suitable coring site 
and getting a reliable chronology somewhat more complicated than in other landscapes. For example, 
monsoonal rains in South and Southeast Asia may increase sedimental inflow from the surrounding 
landscape as well as forming seasonal wetlands of relatively shallow depth (Islam et al., 2021). Naturally 
shifting channels or anthropogenic water diversions may alter the amount of hydrological and 
sedimental input available to a lake during the dry season (Remondi et al., 2016; Zhang et al., 2018). 
Furthermore, the amount of biological productivity in a lake, especially in tropical regions, can increase 
organic deposition and the chances of bioturbation, or disturbance of the sediments from organismal 
activities (Salgado et al., 2020). This can complicate where coring for palaeolimnological research is able 
to take place.

 (Continued)
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Many deltas, fortunately, still have ample choice for suitable coring sites that should yield a robust 
chronology. Provided no scouring or dredging has occurred over the past several decades, oxbow lakes 
and reservoirs >2 m depth are ideal locations to core in tropical mega-deltas. Oxbow lakes, which are 
stranded river meanders, are common features of large river deltas. When not still largely connected 
to its mother river channel, the sediments that settle out in the deepest points of the lake may be able 
to capture many of the signals (Galbarczyk-Gąsiorowska et al., 2009; Gell and Reid, 2014; Kattel et al., 
2016) that policymakers and resource managers would be interested in for a particular region as well 
as a wider landscape-scale view. Furthermore, reservoirs are also good locations where coring can be 
productive due to their connection with the wider river catchment and often deep areas that allow for 
sediment deposition to take place largely undisturbed (Chanudet et al., 2016; Fong et al., 2020; Wengrat 
et al., 2019). It should be noted, however, that reservoirs will only contain sediments from the point of 
construction and will therefore not capture any effects prior to major human activity in the region.

Box 1. (Continued)

Fortunately, palaeolimnology and proxy indicators of salinity have been frequently employed 
(Table 1) and used to change policy on managing salinisation in coastal environments (Gell et al., 
2007; Salgado et al., 2020). Reconstructing the history of change across multiple ecosystem  
components provides a much more robust understanding of salinity changes within the wider 
terrestrial-aquatic system (Gell et al., 2002; Reid et al., 2002; Smol and Stoermer, 2010). 
Palaeolimnological studies provide management insights into the vulnerability of lake and wetland 
systems to salinisation by examining the historical development of delta systems. For example, 
palaeolimnological studies have shown that Tonle Sap Lake originated as a brackish waterbody 
tied to the Mekong (Penny, 2006) and has tracked the response of mangrove coverage in Cambodia 
to shifts in salinity (Li et al., 2012) prior to the Mekong Delta progradation into modern-day 
Vietnam. Other studies have shown reductions in freshwater discharge are responsible for rising 
salinity in Brazilian and East Asian deltaic waterways (Castro et al., 2013; Cho et al., 2017; Zong 
et al., 2010b). Several studies have also linked shifts in salinity to specific, sudden events such as 
a storm surge event impacting deltaic lakes in the Arctic Circle (Deasley et al., 2012; Pisaric et al., 
2011; Thienpont et al., 2015) leading to long-term ecological impacts, a scenario in which resource 
managers in tropical mega-delta systems may want to prepare for as such extreme events are 
argued to become more likely (Bevacqua et al., 2020; MacLeod et al., 2021; Rao et al., 2020).

Palaeolimnology can help elucidate the impacts of recent and sudden events of salinisation  
in ecological systems, as well as putting these types of events into historical and climatic context. 
For example, Roberts et al. (2022) found that coastal lakes in eastern Norfolk, England, had been 
regularly inundated with seawater during past storm surge events. Recovery to pre-event condi-
tions was dependent not only on the severity of the event, but also on how the intrusion event 
interacted with other drivers of ecological conditions such as sedimentation rates or ongoing modi-
fications to the catchment, that is, agricultural drainage (Roberts et al., 2022). When combining 
modern sampling and monitoring techniques (see Pisaric et al., 2011; Thienpont et al., 2012) with 
local community knowledge (Kokelj et al., 2012), use of palaeolimnology to better track and 
understand the scale of salinity impacts in tropical deltas can offer a more holistic solution for 
resource managers and policymakers.

Nutrient enrichment and other anthropogenic pollutants

Nutrient and pollutant levels play key roles in determining water quality within delta systems. Over 
the last ~70 years, anthropogenic impacts on biogeochemical cycling in aquatic systems (Rockström 
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Box 2. The Yangtze River floodplain.

Figure B2. Map of Yangtze River middle and lower floodplains. Produced on Google Earth Pro.

The Yangtze River floodplain encompasses portions of the middle and lower reaches of the river and 
includes many lakes and wetlands. Although this floodplain is not a tropical river delta, floodplains can 
act as good analogues for understanding lakes systems in tropical deltaic systems. Complex floodplains 
such as on the Yangtze can have similar dynamics to deltas, with lakes connected directly to river 
channels or through seasonal flooding that can rapidly flush the system (Dearing et al., 2012; Tockner 
et al., 1999) and subject it to accelerated taphonomic pressures (Bozelli et al., 2009; Heiler et al., 1995).

Several palaeolimnological studies have shown that alterations in hydrological connectivity during the 
mid-20th and late-20th century has been the main driver for declines in water quality and increases in 
sedimentation rates in floodplain lakes (Xue and Yao, 2011; Xu et al., 2017; Yang et al., 2014; Zhang 
et al., 2018). In Lake Poyang, Zhang et al. (2018) found through diatom analysis that hydrology was 
the dominant driver of ecosystem health and functioning prior to changes in hydrological connectivity 
and supply between 1949 and 1995. After which due to significant land use change in the catchment, 
an upsurge of flow into the lake alongside a rise in nutrients, precipitating the eutrophication of 
the lake (Zhang et al., 2018). This was further compounded by the building of the upstream Three 
Gorges Dam which reduced hydrological connectivity (Zhang et al., 2018). Diatom analysis of four 
lakes along the Yangtze floodplain showed hydrodynamics were previously the driving force of their 
ecological status, but the lakes underwent eutrophication due to reduced hydrological connectivity 
after several dams were built upstream (Yang et al., 2014). More importantly for managers concerned 
with resources derived from floodplain lakes, smaller, shallow lakes and those with few macrophytes 
experienced the greatest acceleration in sedimentation rates arising from land-use change (Xue and 
Yao, 2011; Xu et al., 2017).

et al., 2009) have led to limits being set to avert widespread eutrophication of global marine and 
freshwater systems (Steffen et al., 2015). Eutrophication, from high nitrogen (N) and phosphorus 
(P) inputs, results in excessive primary production and can trigger shifts in aquatic community 
assemblages such as the onset of harmful algal blooms (Scheffer, 1989). Elevated levels of eutroph-
ication may lead to reductions in aquatic biodiversity (Jeppesen et al., 2000; Sayer et al., 2010), 
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which can surpass key ecological thresholds such as a clear water, macrophyte-dominated system 
becoming a turbid phytoplankton dominated system (Davidson and Jeppesen, 2013; Davidson 
et al., 2023; Jinglu et al., 2007). Freshwater and marine environments can respond differently to 
nutrient loading. Freshwater environments are typically P-limited (although see Lewis, 2000 for 
tropical exceptions) whilst marine environments are N-limited (Cloern, 2001; Pinto-coelho, 1998). 
Increasing reactive nitrogen pollution in tropical deltas (Lee et al., 2019) has led to an exacerbation 
in the total number of coastal eutrophication cases.

Nutrient sources arising from anthropogenic activities can be readily detected in tropical river 
systems, such as in the Red River Delta, Vietnam, where four nutrient point sources were detected 
using stable isotopes (Luu et al., 2020) and may be preserved in the sediment record as Fontana 
et al. (2014) revealed in their study that untreated sewage was the cause of eutrophication in a 
Brazilian reservoir. Moreover, stronger aquatic biogeochemical responses to eutrophication have 
been documented in tropical delta systems when compared with temperate regions (Corredor et al., 
1999; Downing et al., 1999). As well as (now scarce) unmodified natural lake systems, reservoirs 
have proven useful in reconstructing nutrient enrichment over more recent timescales due to their 
importance as reliable public water resources and known period of creation (Lewis, 2000). Studies 
in three tropical reservoirs in Brazil have shown that prolonged eutrophication over several dec-
ades has altered and simplified the phytoplankton community, with cascading impacts on other 
species (Costa-Böddeker et al., 2012; Wengrat et al., 2018) and with increased occurrences of toxic 
cyanobacterial blooms (Fontana et al., 2014).

A common impact of eutrophication is the shift in planktonic communities to frequent and 
intense cyanobacteria blooms (Labaut et al., 2020; O’Neil et al., 2012; Taranu et al., 2015). These 
blooms can lead to losses in aquatic biodiversity, reduced attenuation of light in the water column 
for photosynthetic organisms, and bottom water hypoxia triggering fish kills and lakebed internal 
loading. As a result, lakes can become locked into turbid states (Merel et al., 2013; Visser et al., 
2016). Blooms also have the capacity to produce harmful algal toxins (e.g. hepatoxins and neuro-
toxins) causing Harmful Algal Blooms (HABs) in high concentrations. Algal pigment biomarkers 
or photosynthetic sulphur bacteria (for identifying lake anoxia) in sediments (Table 1) can identify 
the relative proportion of algal groups over time (e.g. eukaryotic algae (diatoms, chlorophytes, 
cryptophytes), cyanobacteria and photosynthetic bacteria) and their response to anthropogenic cli-
mate change and pollution. The consequences of increased phytoplankton productivity in response 
to eutrophication can favour cyanobacteria and mixotrophic algal groups due to resource competi-
tion and light availability (Gangi et al., 2020).

Reconstructing historical eutrophication and its associated effects on the timing and rate of 
ecosystem deterioration is valuable for informing tangible management plans. For instance, palae-
olimnological methods can be used to determine the nutrient sequestration rates by coring reser-
voirs upstream of deltas and verify estimates of nutrient starvation caused by damming (Quynh 
et al., 2005). Alternatively, Wengrat et al. (2019) were able to separate natural trophic variability 
within five Brazilian reservoirs and showed that eutrophication of each reservoir was a gradual 
process with varying levels of ecological impact. In this instance, the authors were able to advise 
managers that not all trophic changes in the reservoirs were a response to anthropogenic impacts, 
and the first several years of a reservoir’s existence are too unstable to be used as reference condi-
tions, with the most effective management of the reservoirs would come from a catchment-scale 
approach (Wengrat et al., 2019).

As well as nutrient enrichment, the rise of the Anthropocene has also seen the increasing trans-
mission of organic and inorganic pollutants (ranging from metals, pesticides, fungicides, persis-
tent organic pollutants (POPs), personal care products (PCPs), polycyclic aromatic hydrocarbons 
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(PAHs) and other chemical compounds into aquatic ecosystems. Pollution events and their subse-
quent effects can often be clearly detected in the sediment record. For example, Costa-Böddeker 
et al. (2018) found elevated levels of Pb, Cr and Ni amongst other metal pollutants accumulating 
in the last two decades in the Thi Vai Estuary, Vietnam due to recent industrialisation and changes 
in land use. In Central America, Salgado et al. (2020) also found that the construction of the 
Panama Canal led to increasing pollutant delivery in Gatun Lake typically associated with 
increased mining and fossil fuel combustion such as zinc (Zn), copper (Cu) and lead (Pb). 
Coupling the timing of pollutants entering the system with collapse ecological communities 
through palaeolimnology can provide the necessary evidence needed to introduce regulation into 
the system (Sayer et al., 2006).

Mangrove forests are also indicator environments of pollutants in tropical deltas because they 
sequester material transported from both land and sea. Pollutant trapping is a recognised ecosystem 
service potentially acting as an important policy driver for the restoration and protection of these 
valuable forests. By reducing pollutant concentrations in the water column, wider ecosystem health 
is improved (Vo et al., 2012). Palaeolimnological methods employed on more recent sediments 
may help assess changes in the severity of pollution over time and determine whether measures to 
reduce pollution release are working. For example, treaties on halting atmospheric testing of ther-
monuclear weapons have resulted in a sharp decrease of anthropogenic radionuclide pollution 
since the 1970s (Walling et al., 1995), although continued testing in some areas of the tropical 
Pacific may provide distinct pollution signatures (Chaboche et al., 2022) during the 1970s phase 
out. Use of palaeolimnology in mangrove ecosystems has been used to track heavy metal and 
hydrocarbon contaminants from boats, cars and effluent (Costa et al., 2015), as well as coastal 
eutrophication (reconstructed by diatom species assemblage and C:N ratio change (Logan and 
Taffs, 2009; Macreadie et al., 2012)), and microplastic pollution (Deng et al., 2021). These meth-
ods can then be used to identify the main sources for the pollution (such as urbanised areas, sewage 
outflows, tourism activities and ocean circulation), and recommend on steps needed to control 
pollution levels and provide remediation (Wu et al., 2014). The extent of transboundary impacts 
relative to those arising from local pollution sources, however, remains unknown for many tropical 
river systems, making palaeolimnology a key tool to answer such questions.

Multiple stressors

The key issues discussed above are often considered in isolation by policymakers and resource 
managers. Aquatic ecology and fluvial dynamics are, however, complex systems driven by multi-
ple stressors, resulting in a wide array of challenges to tropical delta resilience (Renaud et al., 2013; 
Szabo et al., 2016b; Woodroffe et al., 2006). As we show here, palaeolimnology can help resource 
managers understand the impact of multiple stressors at landscape-scales, in a more holistic way. 
Crucially, it can interpret sediment records from both terrestrial and aquatic stressors within the 
delta catchment (Gell et al., 2009; Hunt and Rushworth, 2005; Wengrat et al., 2019) to disentangle 
multiple impacts (Anderson et al., 2006; Smol, 2010) and assist resource managers and policy 
makers in implementing the best solutions (see Box 3), particularly when multiple basins are com-
pared across regions to find primary stressors (Mills et al., 2017).

Many different anthropogenic activities are influencing deltaic changes in hydrology, sediment 
supply, soil and water salinity and nutrient/heavy metal pollution, such that managing a single 
stressor is unlikely to resolve the matter (Jackson et al., 2016; Vinebrooke et al., 2004). 
Palaeolimnological studies have helped understand how multiple stressors can be synergistic  
or antagonistic over time to create the physical and ecological issues we observe in the present. 
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Box 3. Palaeolimnology and management.

Figure B3. Gatun Lake in Panama. Photo credit: Jorge Salgado.

Palaeolimnology has been a key informer of management plans in recent decades. For example, it 
has played an important role in the development of an ecosystem-based risk management plan to 
understand the environmental controls on salinity in two South American coastal lagoons important 
to the regional economy (Velez et al., 2018). In palaeolimnological research used to reconstruct the 
systems over the last 10,000 years, it was shown that hydrological connectivity was the determining 
factor for salinity levels in the lagoons, with freshwater discharge and changes to sea-level over time 
being the major determinants of lagoon salinity (Inda et al., 2016; Van der Hammen and Noldus, 1984; 
Velez et al., 2014). As such, managers were encouraged to place hydrological connectivity at the top 
of the list of the priorities for maintaining the SES (Velez et al., 2018). Another study using a multi-
proxy palaeolimnological approach, revealed that a century after the Chagres River was impounded to 
build the Panama Canal, salt intrusions gradually increased in the coastal Gatun Lake, one of the largest 
freshwater sources for Panamanians (Salgado et al., 2020). These changes in salinity were evident from 
observations in increases in salinity-tolerant and marine diatom species along with increases in calcium 
concentrations.

In Brazil, reservoirs such as the Guarapiranga and other neighbouring impoundments (Fontana 
et al., 2014; Gangi et al., 2020; Wengrat et al., 2019) are among the most prominent examples 
of palaeolimnological research influencing resource management. Here, palaeoecological studies 
showed reductions in diatom species diversity over recent decades was due to a response to cultural 
eutrophication, derived from untreated industrial and urban effluent sources as identified by increasing 
stable isotope compositions of nitrogen (d15N) in the sediment record (Fontana et al., 2014; Wengrat 
et al., 2018). The research highlighted in these studies have provided well-grounded recommendations 
for the effective management of tropical reservoir systems, including the provision of well-defined 
baseline conditions and records of past productivity, whilst highlighting the significance of constraining 
wider basin scale changes and analytical tools to assess ecological change (Wengrat et al., 2019). Such 
examples clearly demonstrate how palaeolimnology studies can lead to management plans that are 
better suited for environmental recovery and adaptation while allowing these regions continue to find 
ways increase sustainability in natural resource extraction.
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For example, Salgado et al. (2019) studied the effects of historical changes of native aquatic plants 
to lake surface area, eutrophication and the invasion of water hyacinth (Eichhornia crassippes) in 
Lake Fúquene, Colombia. By using multiple cores and a multi-proxy approach (plant macrofossils, 
pollen and trace elements) the study found that the increase in invasive hyacinth was triggered by 
lake management practices (diversion of hydrological inflow) acting synergistically with internal 
and continued external nutrient loading leading to eutrophication, benefitting the spread of water 
hyacinth over native species.

Elsewhere, a study in Lake Furnas on São Miguel Island, Azores, Portugal identified that 
eutrophication, warming water column temperatures and anthropogenically introduced fish species 
in the 19th century, could not explain present-day anoxia in the system. Only the co-occurrence of 
the three stressors, in addition to the introduction of larger piscivorous fish in the late-20th century, 
could explain phytoplankton community changes that depleted the already-reduced levels of dis-
solved oxygen creating anoxic conditions (Buchaca et al., 2011). Both above examples pre-dated 
monitoring of those systems meaning that palaeolimnology could fill in the data gaps and help to 
better explain multiple stressors on deltaic systems (Salgado et al., 2020; Smol, 2010; Wengrat 
et al., 2019).

Conclusion

The stresses on tropical river deltas and their communities, both naturally occurring and anthropo-
genically induced, constitute a major threat to tropical river delta SESs. Many processes such as 
changes to hydrology and sediment supply, ingress of saline waters and excessive inputs of nutri-
ents and pollutants occur at timescales that are either too extended or precede the onset of monitor-
ing. Environmental data availability is limited in many delta regions, which endangers the ability 
for delta ecosystems and human communities to proceed in a resilient and sustainable manner. 
Palaeolimnological methods can address the problems of data scarcity in delta regions, enabling 
managers to set reference conditions for remediation and to better understand the long-term dynam-
ics driving the scale of impact from individual and multiple stressors. Commissioning the use of 
palaeolimnology in the updating of policy or management plans can provide the critical long-term 
data on sensitivity and change that is key to making such action well-informed and effective. We 
therefore strongly encourage governments, resource managers and scientific experts alike to more 
fully use palaeolimnological tools and advocate for their inclusion at the outset of any remediation 
efforts in these regions.
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