Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 1;291(Pt 3):939–944. doi: 10.1042/bj2910939

8-vinyl reduction and chlorophyll a biosynthesis in higher plants.

B J Whyte 1, W T Griffiths 1
PMCID: PMC1132460  PMID: 8489519

Abstract

A technique involving solid-phase extractions and polyethylene h.p.l.c. suitable for the routine compositional analysis of the total protochlorophyllide pool of plants is described. The resynthesis kinetics of the individual components of the pool have been studied in briefly illuminated etiolated tissue of wheat (Triticum aestivum) and cucumber (Cucumis sativus) during subsequent redarkening. The data are interpreted in terms of a precursor-product relationship between the di- and mono-vinyl analogues of protochlorophyllide during their reaccumulation in darkness. The interconversion is assumed to be catalysed by an 8-vinyl reductase, which shows greater activity in wheat than in cucumber. Analyses of the redox state of the nicotinamide nucleotide of the pool during the process are compatible with NADPH as the cofactor of the putative reductase.

Full text

PDF
943

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belanger F. C., Duggan J. X., Rebeiz C. A. Chloroplast biogenesis. Identification of chlorophyllide a (E458f674) as a divinyl chlorophyllide a. J Biol Chem. 1982 May 10;257(9):4849–4858. [PubMed] [Google Scholar]
  2. Bramhall S., Noack N., Wu M., Loewenberg J. R. A simple colorimetric method for determination of protein. Anal Biochem. 1969 Oct 1;31(1):146–148. doi: 10.1016/0003-2697(69)90251-6. [DOI] [PubMed] [Google Scholar]
  3. Carey E. E., Rebeiz C. A. Chloroplast Biogenesis 49 : Differences among Angiosperms in the Biosynthesis and Accumulation of Monovinyl and Divinyl Protochlorophyllide during Photoperiodic Greening. Plant Physiol. 1985 Sep;79(1):1–6. doi: 10.1104/pp.79.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carey E. E., Tripathy B. C., Rebeiz C. A. Chloroplast biogenesis 51 : modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol. 1985 Dec;79(4):1059–1063. doi: 10.1104/pp.79.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellsworth R. K., Hsing A. S. The reduction of vinyl side-chains of Mg-protoporphyrin IX monomethyl ester in vitro. Biochim Biophys Acta. 1973 Jun 20;313(1):119–129. doi: 10.1016/0304-4165(73)90193-1. [DOI] [PubMed] [Google Scholar]
  6. GRANICK S. The structural and functional relationships between heme and chlorophyll. Harvey Lect. 1948 1949;Series 44:220–245. [PubMed] [Google Scholar]
  7. Gough S. Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes. Biochim Biophys Acta. 1972 Nov 24;286(1):36–54. doi: 10.1016/0304-4165(72)90086-4. [DOI] [PubMed] [Google Scholar]
  8. Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths W. T. Substrate-specificity studies on protochlorophyllide reductase in barley (Hordeum vulgare) etioplast membranes. Biochem J. 1980 Jan 15;186(1):267–278. doi: 10.1042/bj1860267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanamoto C. M., Castelfranco P. A. Separation of monovinyl and divinyl protochlorophyllides and chlorophyllides from etiolated and phototransformed cucumber cotyledons. Plant Physiol. 1983 Sep;73(1):79–81. doi: 10.1104/pp.73.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heber U. W., Santarius K. A. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):390–408. doi: 10.1016/0926-6585(65)90166-4. [DOI] [PubMed] [Google Scholar]
  12. Shioi Y., Beale S. I. Polyethylene-based high-performance liquid chromatography of chloroplast pigments: resolution of mono- and divinyl chlorophyllides and other pigment mixtures. Anal Biochem. 1987 May 1;162(2):493–499. doi: 10.1016/0003-2697(87)90425-8. [DOI] [PubMed] [Google Scholar]
  13. Shioi Y., Sasa T. Compositional heterogeneity of protochlorophyllide ester in etiolated leaves of higher plants. Arch Biochem Biophys. 1983 Jan;220(1):286–292. doi: 10.1016/0003-9861(83)90412-5. [DOI] [PubMed] [Google Scholar]
  14. Tripathy B. C., Rebeiz C. A. Chloroplast Biogenesis 60 : Conversion of Divinyl Protochlorophyllide to Monovinyl Protochlorophyllide in Green(ing) Barley, a Dark Monovinyl/Light Divinyl Plant Species. Plant Physiol. 1988 May;87(1):89–94. doi: 10.1104/pp.87.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOLFF J. B., PRICE L. Terminal steps of chlorophyll A biosynthesis in higher plants. Arch Biochem Biophys. 1957 Dec;72(2):293–301. doi: 10.1016/0003-9861(57)90205-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES