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A concentration of visual cortex-like neurons
in prefrontal cortex

Olivia Rose 1,2 & Carlos R. Ponce 1

Visual recognition is largely realized through neurons in the ventral stream,
though recently, studies have suggested that ventrolateral prefrontal cortex
(vlPFC) is also important for visual processing. While it is hypothesized that
sensory and cognitive processes are integrated in vlPFC neurons, it is not clear
how this mechanism benefits vision, or even if vlPFC neurons have properties
essential for computations in visual cortex implemented via recurrence. Here,
we investigated if vlPFC neurons in two male monkeys had functions com-
parable to visual cortex, including receptive fields, image selectivity, and the
capacity to synthesize highly activating stimuli using generative networks. We
found a subset of vlPFC sites showall properties, suggesting subpopulations of
vlPFC neurons encode statistics about the world. Further, these vlPFC sites
may be anatomically clustered, consistent with fMRI-identified functional
organization. Our findings suggest that stable visual encoding in vlPFCmay be
a necessary condition for local and brain-wide computations.

Areas V1, V2, V4, and inferotemporal cortex (IT) contain a high pro-
portion of neurons that respond strongly to specific shapes at pre-
ferred retinal positions. These neurons appear to function as filters
that fire maximally when their encoded pattern occurs within an
input image1, so they are frequently modeled as kernels in artificial
neural networks (ANNs), such as convolutional networks2–4. While
there is excitement in using ANNs as models of the visual system,
how far can we carry this analogy? One way to answer this is to
investigate the state of visual information beyond sensory areas. IT
and V4 project to ventral portions of lateral prefrontal cortex
(vlPFC)5,6. PFC contains heterogeneous neuronal populations, some
showing visual tuning7,8, with most representing behavioral task
variables related to decision-making. Frequently, ANNs are trained
for classification, where “decisions” are made by an output layer,
usually a fully connected stage that combines the activity of units
with receptive fields (RFs)9. These units have access to all regions of
the visual input, and they encode complex conjunctions of lower-
level features resembling objects and scenes. This can be demon-
strated using feature visualization techniques, which create synthetic
images that best describe the RF shape10,11 (Fig. 1a). So, is this decision
stage in ANNs comparable to what happens in primate cortex — e.g.,
do visual vlPFC neurons encode full objects and scenes, like fully

connected units in an ANN, or do they encode simpler features like
convolutional units?

Many PFC neurons show visual properties during passive viewing
(without extensive task training7,8,12), such as RFs13–16, and selectivity for
some image categories over others (simple geometric shapes8 or
faces7,17). However, these observations do not prove conclusively that
all vlPFC neurons encode objects or scenes. Visual neurons can appear
object-selective when they respond to lower-level features contained
within the image18,19, and discovering these features requires a sys-
tematic deconstruction of the image (via feature removal18 or
visualization20). Some studies worked to show that in PFC, intact faces
were elemental units of representation7, but these relied on coarse
image-scrambling techniques which can eradicate critical features. To
explore if PFC neurons function are comparable to ANN fully con-
nected units (Fig. 1a, bottom right), we set out to determine if vlPFC
neurons could drive the synthesis of images using deep networks. This
technique combines electrophysiology, search algorithms21 and gen-
erative adversarial networks pretrained to generate images based on
natural statistics22.

We used the DeePSim11 generative network, which encodes nat-
ural statistics via low-level features (e.g., short continuous lines, color
patches), not pre-defined objects or scenes as in recent networks23,24.
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Fig. 1 | Experimental designs. a Common convolutional neural network archi-
tecture with convolutional layers and fully connected layers, with the last used for
classification. Feature visualization shows low-level pattern encoding in convolu-
tional layers and more object- and scene-like encoding in connected layers.
b Location of microelectrode arrays implanted in cortex of two macaques. vlPFC
ventrolateral prefrontal cortex. CPB auditory caudal parabelt. P.S. principal sulcus,
S.T.S. superior temporal sulcus, LU lunate. c Receptive fieldmapping task: stimulus
is flashed in multiple locations on the screen, blue drop represents liquid reward
delivery. d Retinotopic vs. allocentric coding experiments: designed as previous
fixation task, only the horizontal position of the fixation point shifts pseudo-

randomly across trials. e Selectivity: different images are presented at the same
position relative to the fixation point. f Image synthesis experiments: images are
manipulated (“evolved”) to increase firing rate, using a closed-loop design com-
prising neuronal firing rate responses, an image generator (generative adversarial
network, GAN), and a search algorithm (covariancematrix adaptation evolutionary
strategy, CMAES). g Polysensory experiments: subject maintains fixation while an
image or sound is played, followed by reward delivery. All tasks relied on passive
fixation. N = 32 unique microwires per array, showing signals from single neurons
and neuronal microclusters (multiunits), involving 16 and 21 experiments (monkey
C and D).
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We also characterized the basic visual properties of the same vlPFC
neurons to determine if they also had receptive fields (RFs) and
selectivity in the absence of task training. The answer has significant
implications for both biological and computer vision research pro-
grams: given evidence that vlPFC is necessary for computations in IT25,
when designing deep models of the primate visual system, is it
essential to include a vlPFC-like processing stage that is fully con-
nected or convolutional?

Results
We trained two rhesusmacaques (Monkeys C and D, both adultmales)
to perform a passive fixation task, keeping their gaze on a red spot at
the center of the monitor as images were flashed. Each animal was
implanted with two 32-channel floating microelectrode arrays
(Microprobes for Life Sciences). Both animals had one array implanted
in right vlPFC, ventral to the principal sulcus and anterior to the arc-
uate sulcus (Fig. 1b); the specific implant location was dictated by
visual identification of these sulci and by avoiding local vasculature.
Themost likely location for the arrays was 8A, given their proximity to
the ventral-dorsal border marked by the principal sulcus26. Monkey C
had a second 32-channel array implanted in area V4, between the
lunate- and the inferior occipital sulcus. Monkey D had a second 32-
channel array implanted in the auditory caudal parabelt (CPB, at the
caudal tail of the gyrus dorsal to the superior temporal sulcus). Most
array channels showed multiunit and hash activity, although there
were also transient single units. Below, we report both single- and
multiunit activity results as sites, although examples using single units
will be specified.

Many vlPFC sites showed position tuning consistent with V4 RFs
Each site was tested to determine if (a) it was visually responsive and
(b) it had an RF. Images (5°-wide) were flashed along an invisible grid
spanning 40° of visual angle (−20° to 20°) along the x- and y-axis while
the animal kept fixation (Fig. 1c). A site was defined as visually
responsive if it showed a statistically reliable change in firing rate after
imageonset. The same sitewasdefinedashaving anRF if thisfiring rate
change was dependent on position. To determine if neuronal sites had
a significant change in firing rate in response to visual stimulation, we
divided the first 200ms of response after image onset into a baseline
window (1–30ms) and an evoked window (50–150ms). We computed
the mean firing rate in each time window per experiment, then per-
formed a two-sided Student’s t-test and corrected by false-discovery
rate (FDR). We found that 32/32 (100%) of V4 sites showed a statisti-
cally reliable change in firing rate, whereas none of the 32 (0%) CPB
sites did (p <0.05, after FDR correction). Next, we measured visual
responsiveness in the vlPFC sites across stimulation in all grid posi-
tions. We found that 16/32 (50%, Monkey C) and 12/32 (37.5%, Monkey
D) of sites in Monkey D showed a significant change in firing rate after
image onset (N = 20 experiments). To control for baseline window
sizes, we also measured the responsiveness of PFC sites in separate
experiments, using 5–10°-wide images at locations near the population
RF. We focused on the change in activity at −150 to 0ms before image
onset vs. 50 to 200ms after. We found that out of 434 recordings
across days, 41.9% and 40.6% of sites showed responsiveness (using a
shorter baseline window resulted in estimates of 46.6% and 43%). We
conclude that many vlPFC neuronal sites signaled the onset of a pic-
ture on the screen in the absence of task training, similarly to V4 sites.

Next, we tested if this responsiveness depended on position. To
determine the proportion of sites with RFs, we used each site’s
responses to perform a one-way ANOVA factor of stimulus position).
We also computed each site’s mean response per position and then
visualized ameanRF across all trials (N = 16 experiments forMonkeyC,
21 for Monkey D). We fit a 2-D Gaussian function27 to each RF to obtain
the horizontal and vertical positions and tuning widths. We found that
all 32 V4 sites (100%, Monkey C) showed significant RFs across days

(p < 0.01, one-way ANOVA with correction by false-discovery rate),
while none of the 32 CPB sites (0%, Monkey D) did. In vlPFC, a reliable
subset of sites demonstrated RFs consistently: out of 32 vlPFC chan-
nels per monkey, six sites in Monkey C (18.8%) and 12 in Monkey D
(37.5%) showed robust RFs (18/64 total vlPFC channels, 28.1%). These
RFs represented the contralateral visual hemifield to the implanted
hemisphere, though a small fraction spanned the midline between
contra- and ipsilateral hemifields (Fig. 2a–c, Supplemental Fig. 1a, b).
Compared to V4 RFs, vlPFC RFs covered more of the visual field (i.e.,
had larger estimated widths; see Fig. 2d), though in our samples, vlPFC
RFs were also more eccentric than the V4 RFs (Supplemental Table 1).
V4 RFs were located around (10.1, −3.2)° ± (0.003, 0.005)° (horizontal
and vertical coordinates, median ± standard error via bootstrap), with
respect tofixation (0,0)°. The tuningwidths ofV4RFs ranged from4.5°
to 5.0°, with a mean width of 4.7° ± 0.001° (across X and Y). The
sampled RFs in vlPFC were located around (12.7, 11.5)° ± (0.1, 0.03)° in
Monkey C, and at (10.2, −11.3)° ± (0.04, 0.05)° in Monkey D (Fig. 2c).
vlPFC RF tuning widths ranged from 4.6° to 12.2°, with ameanwidth of
7.7° ± 0.07° in Monkey C and 7.2° ± 0.02° in Monkey D (Fig. 2d). We
performed a limited test to determine if these RFs were retinocentric—
bound to the position of the fovea—or allocentric, influenced by
absolute position in world coordinates; we observed that the RFs
shifted as the fovea moved between fixation positions (Fig. 1d, Sup-
plemental Fig. 2).We conclude that a substantial fraction of vlPFC sites
showed robust RFs that were measurable even in the absence of task
training. Below, we show these RFs are stable across months.

We found that sites with reliable RFs seemed to be close to one
another within the layout of the array (Fig. 2b). To test if such clus-
tering could arise from random sampling of an otherwise mixed (salt-
and-pepper) distribution of sites having or lacking RFs, we calculated
the mean distance (in μm) between channels having RFs, then per-
formedapermutation test to estimate the probability of this clustering
arising from chance. We randomly resampled channels across the
array and computed the mean distances among them (each sample
having the same number of RF channels, sampled with replacement,
Monkey C: N = 6 channels; Monkey D: N = 12 channels, 1000 samples
per monkey). For Monkey C, the observed mean distance between
channels with RFs was 667.6 ± 2.6μm, while the mean distance
between randomly sampled channels was 1236.1 ± 7.8μm (p =0.01).
For Monkey D, the mean observed distance was 752.2 ± 1.3μm, while
the mean randomized distance was 1233.1 ± 4.9μm (p =0.002). Thus,
vlPFC sites with RFs were more likely to be close to one another,
providing further evidence of the standing functional organization of
RFs in previous studies13,28.

Image selectivity in vlPFC without task training
Ventral stream neurons are commonly characterized in terms of their
visual selectivity, which is observed even when animals lacked task
training or were anesthetized29–31. To determine if these vlPFC sites
showed selectivity, we showed full-color photographs of categories
such asmonkeys, humans and other animals, fruits, objects, and scenes
(Fig. 1e). In case some neuronswere tuned for simpler features, we also
included artificial stimuli such as Gabor wavelets, lines of different
orientations, and curved objects previously used to test V4
neurons32,33. For an independent description of the stimulus set, we
used Google Cloud Vision (GCV) to assign labels to all presented
images. GCV assigned 3403 labels across images (563 unique). The
most common labels were Terrestrial animal (0.05%), Primate (0.04%),
Snout (0.04%), Macaque (0.04%), Rhesus macaque (0.03%), Plant
(0.03%), Wildlife (0.03%), and Fur (0.03%) (Fig. 3a, i-iii). The images
were presented during a simple fixation task, 100ms ON, 100ms off,
3–6 images per trial before rewarding with a drop of juice. We mea-
sured the number of image-selective sites per area, and how their
preferences changed this label distribution across areas. A visual
neuron is typically defined as selective if it shows high activity to some
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images more than others (Fig. 3b, i), as quantified by an ANOVA test
(high F-ratio values indicates that the variability of responses across
images was higher than within multiple presentations of the same
image). We measured this F-ratio while controlling for the placement
of the stimulus relative to each site’s RF, since the stimulus could
not be centered in every unique RF simultaneously. We expected that
selective sites would show a larger F-ratio value, plus a negative rela-
tionship between F-ratio and increasing RF-stimulus distance. Sites
without an RF were treated as having one centered at the point of
fixation (0,0)°.

Thenumber of image-selective sites variedby cortical region,with
V4 having the highest percentage of selective sites, PBC having none,
and vlPFC arrays an intermediate value (Supplemental Table 2). The V4

population showed an F-ratio range of 0.4–12.1 and a negative corre-
lation between RF location and stimulus distance of −0.47 (Pearson
coefficient, p <0.001). The PBC population showed an F-ratio range of
0.6–2.1 with no significant correlation between RF location and sti-
mulus distance (−0.01, Pearson, p =0.61). The vlPFC populations
showed an F-ratio range of 0.6–3.3 (Monkeys C and D: 0.6–3.1 and
0.6–3.3), and both showed a statistically reliable correlation between
RF location and stimulus distance (−0.24, p <0.001 and −0.07,
p <0.001). In short, as a population, vlPFC neurons were con-
ventionally selective for images, though not as numerous as V4.

For what visual attributes were these neurons selective? As a
reminder, the stimulus set was chosen to include many monkeys,
animals, and faces, so the most common GCV labels (Fig. 3a, i) across
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Fig. 2 | Receptive fields. a Interpolated heatmaps of RF examples from V4 and
vlPFC multiunits, with yellow signaling higher firing rates. Dashed white lines indi-
cate horizontal and vertical meridians of the experimental monitor. b Schematic of
RF properties as a function of array geometry. Array sites with significant RFs
denoted by shadows, and more peaked plots demonstrating stronger RFs. The
arrangement of the RF heatmaps reflects the electrode geometry of the Microp-
robes Inc.’s floating microelectrode array (FMA). c Location of RF centers with

respect to the monitor. Solid black lines denote horizontal and vertical meridians.
Red points correspond to individual V4 sites (all fromMonkey C), while blue points
indicate vlPFC sites (dark blue from Monkey C; light blue from Monkey D). Point
opacity scales with effect size (F-statistic), with more solid points indicating stron-
ger values. d RF size as a function of eccentricity from the fovea. Marker colors and
transparency same as (c). Source data are provided as a Source Data file.
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all images were Terrestrial animal (0.05%), Primate (0.04%), Snout
(0.04%), Macaque (0.04%), Rhesus macaque (0.03%), Plant (0.03%),
Wildlife (0.03%), and Fur (0.03%). If we had selected the images to
perfectly alignwith neuronal selectivity, wewould expect that the label
distribution of each site’s preferred images should be statistically
similar to this baseline distribution (Fig. 3a, ii-iii). In fact, V4 and vlPFC
sites were not so predictable in their tuning (Fig. 3b-d, iii-iv).

We focused this analysis on sites that hadRFs situatedwithin 5° of
stimulus center (where the image was typically 10°-wide). For each site
per experiment, we identified its toppreferred image and collected the
Google Cloud labels given to that image, then examined the frequency
of labels. We found that across the V4 sites, there were 47 unique
labels, most prominently showing information related to Carnivore
(i.e., cats and other animals, 0.12%), Grass (0.09%), Whiskers (0.09%),
Dog breed (0.09%), and Plant (0.06%). For the vlPFC sites in monkey C,
therewere 26unique labels, includingCat (0.06%),Felidae (0.06%), Fur
(0.06%), Japanese macaque (0.06%), and Paw (0.06%) — briefly, many
animal-related shape and texture information. For the vlPFC sites in
monkey D, there were 16 unique labels: Arachnid (0.10%), Spider
(0.10%), Tangle-web spider (0.10%), Widow spider (0.10%), and Body
jewelry (0.05%). Example images are shown in Fig. 3b–d, Supplemental
Table 2). In short, vlPFC and V4 sites showed a disproportionate

selectivity for animal features and textures, many of which are present
in monkeys or primates, but other animal orders as well.

Common knowledge is that anterior IT and PFC neurons that are
visually responsive tend tohave largeRFs. So, given thatmost PFC sites
did not seem to have local RFs, we considered the possibility that their
RF was “everywhere” (i.e., they had RFs as big as the monitor). This is
also in line with the hypothesis of PFC neurons functioning more like
output units in ANNs. In this scenario, neurons without a measurable
RF would still show selectivity to images. To test this possibility, we
looked for sites with F-ratio values that were large but for which
we could not estimate classic RFs.We first analyzed array V4, which we
knew had classical localized RFs. We found that V4 sites that were 10°
away from the stimulus center showed a median F-ratio of 1.10
(0.96–1.32, 25–75%ile). Of these, only 0.20% of 1046 recordings had p-
values below a significance threshold of 0.01. These are low values, so
we considered them noise arising from the use of multiple compar-
isons and many recordings. We found the same results in both vlPFC
populations: sites that were 10° away from the stimulus center showed
a median F-ratio of 1.03 (Monkey C: 0.92–1.15, 25–75%ile; Monkey D:
0.91–1.11). Of these, 0.05% of 1192 recordings (Monkey C) and 0.04%of
681 (Monkey D) had p-values < 0.01. So, we found no strong evidence
that any vlPFC sites were selective over the entire screen.
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shown are substitutions that resemble those used in the actual experiment,
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found in our Github page (see Data Availability section). Source data are provided
as a Source Data file.
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In short, we found that vlPFC contained neurons that were con-
sistent with those in the ventral stream, having RFs (Fig. 2) and image
selectivity (Fig. 3). Yet, we also noted that as in V4, these vlPFC sites did
not show selectivity that aligned strongly with one or two simple
semantic categories. In the ventral stream, this indicates that neurons
are not categorical, but instead tuned to lower-level visual attributes.
Currently, the most effective way to determine if a neuron is tuned to
lower-level features is to use image synthesis; the efficacy of this image
generation technique stems from its use of images that initially lack
form and cannot be assigned to any category, and thus can only be
driven by a basic affinity to shapes, colors, and textures. So, could
vlPFC neurons drive the synthesis of highly activating images?

Stable visual encoding in vlPFC without training, category, or
semantics
To investigate if vlPFC selectivity reflected neuronal tuning for cate-
gorical or semantic information, or if this selectivity was driven by
simpler visual attributes like shape, color, or texture, we implemented
a closed-loop method for generating highly activating visual stimuli
(Fig. 1f). In this approach, neurons guide generative networks to
reconstruct images containing their preferred visual attributes. Each
experiment starts with the sampling of abstract textures synthesized
by the generator (each texture corresponding to amodel input vector),
which are then presented within a site’s RF. Along with their corre-
sponding input vectors, neuronal responses to each texture are pro-
pagated into an evolutionary search algorithm (covariance matrix
adaptation evolutionary strategy or CMA-ES), which seeks to find new
candidate input vectors whose images could maximize the site’s firing
rate. These new vectors are then converted into images and presented
within the site’s RF. This process continues with dozens of iterations,
and with each iteration, more highly activating visual motifs are found
and preserved, while less highly activating motifs are screened out.
Over time, cortical neurons drive the real-time generation of their own
visual stimuli, which typically elicit higher firing rates from a neuron
than any pre-selected stimulus. We have called this algorithm XDream
and the reconstructed image a prototype. We consider an experiment
to be successful if the adaptive generator finds visual attributes
that elicit significantly higher firing rates than initial images during the
first ten iterations of the XDream cycle. XDream experiments were
conducted on sites that both demonstrated an RF that session and
exhibited an excitatory response after image presentation. In total, we
conducted over 145 XDream experiments under guidance of vlPFC
neurons (65 experiments for Monkey C; 80 experiments for Monkey
D), targeting 19 unique vlPFC sites across both subjects (8 sites in
Monkey C; 11 sites in Monkey D). XDream experiments could target
distinct single units within a given site, or instead use input from the
whole channel (multiunit/hash). We also included reference images,
including photographs known to elicit strong responses from the sites,
to control for changes in signal isolation.

V4prototypes. First, we confirmed that the image-synthesis technique
worked in V4, even with neurons having more eccentrically located
receptive fields than we had ever previously tested34,35. Thirty-one of
the 32 V4 sites showed reliable RFs and visually evoked activity; these
were subsequently tested for the ability to generate prototypes. Of
these sites, 29 V4 sites (93.5% of tested sites; 90.6% of all sites) suc-
cessfully guided prototype generation. Out of 54XDreamexperiments
led by V4 sites, 43 reliably converged on visual attributes that drove a
site’sfiring rate significantly above the initial (non-optimized) textures,
for an overall success rate of 79.6% across 29 unique V4 sites (Fig. 4c).
Single units, multiunits, and whole-site hash in V4 could all drive suc-
cessful prototype synthesis (see Supplemental Tables 3-4). Addition-
ally, 35 of the 43 successful experiments also demonstrated a
significantly higher firing rate to the synthetic images than the natural

reference photographs (81.4% of successful experiments; 65% of all
experiments).

vlPFC prototypes. We found vlPFC sites in both animals that led to
prototype generation. As noted in previous sections, there were vlPFC
sites with RFs (MonkeyC, 8/32 sites,MonkeyD, 11/32 sites),whichwere
subsequently investigated with synthesis experiments. Between
25–55%of vlPFC siteswith RFs led to prototype generation, converging
on visual motifs that drove the site’s firing rate to a value significantly
higher than the initial 10 blocks of synthetic images (Monkey C, 2/8 RF
sites, 6% of all vlPFC sites in the array; Monkey D, 6/11 RF sites, 18.8% of
all vlPFC sites). All evolving sites were within the previously identified
RF clusters. Parsing these results by experiment, between 11–34% of
individual sessions led to successful prototypes (Monkey C, N = 65
experiments, Monkey D, N = 80, Fig. 4a-c). There was no systematic
dependency of evolution success on signal type: in Monkey C, most
successful XDream experiments were driven by single units (85.7% of
all evolutions, all of which originated from the same site, and located
within the RF channel cluster) and the rest by multiunits, distinctly
separable from the hash (Fig. 4g; Supplemental Table 4). InMonkey D,
all successful XDream experiments were driven by either distinct
multi-units (85.2% led bymulti-unit activity) or whole-site hash (14.8%).
The fact thatmulti-unit andhash signals could yieldprototypes hints at
a functional organization in vlPFC — face- and color-tuned fMRI pat-
ches have been observed in this area17,28. Often, we found that sites
showed higher firing rates to synthetic images over real-world pho-
tographs: in Monkey C, this was present in seven successful evolution
experiments (42.9%, all cases driven by the vlPFC single unit), while for
Monkey D, this occurred in 20 successful evolution experiments
(74.1%) across four unique sites. Overall, these results suggest that the
generator was well-suited to capture visual representations encoded
by given vlPFC sites, despite the use ofmuch simpler visualmotifs than
typically used to probe vlPFC neurons outside of a task context.

Prototypes produced under vlPFC guidance were simple, not
unlike those found in V4. Upon visual inspection, most prototypes
generated by vlPFC sites appeared to feature dark bounded forms
against cleared, lighter backgrounds (Fig. 4d, e); this clearing is present
in the ventral stream and canbemeasured using information-theoretic
metrics34. These vlPFC prototypes appeared remarkably stable across
days. To measure the stability of repeated prototypes from the same
unit, we used a series of morphological operations to remove small
artifacts from the image while preserving the global form of the pro-
totype — more precisely, a segmentation mask per prototype. We
computed segmentation masks for all final prototypes from a given
vlPFC site isolating the bounded features from around the cleared
background. After vectorizing each segmentationmask, we computed
the distance in correlation space (one minus the Pearson correlation),
in which shorter distances indicate higher correlation between masks
(Fig. 4e). We found that prototype masks derived from a given vlPFC
site were generally more similar to each other (distance of 0.73 ± 0.01,
mean±SEM) than to 1) prototype masks from other vlPFC sites (dis-
tance of 0.97 ±0.01, mean±SEM), 2) prototype masks from V4 sites
(distance of 0.95 ± 0.01), and 3) masks from shuffled versions of the
prototypes under investigation (i.e., randomly permuting the proto-
type on the pixel level, then generating a segmentation mask of
the shuffled prototype; distance of 0.96 ± 0.01, mean±SEM, Fig. 4f).
The first two comparisons control for any fundamental biases of the
adaptive generator, while the third controls for pixelwise responses
independently of global form. To determine whether the observed
vlPFC mask similarity was likely to be obtained through chance, we
conducted a randomization test and found that the vlPFC mask simi-
larity was highly unlikely to be due to chance alone (p =0.001). In
summary, we found that vlPFC single- and multiunits could drive
synthetic image generation stably across months, providing a

Article https://doi.org/10.1038/s41467-024-51441-3

Nature Communications |         (2024) 15:7002 6



functional organization scale for previous fMRI-level observations of
visual feature encoding in vlPFC.

We performed additional simulations to determine if we could
recover simpler prototypes by combining the selectivity of single units
with different complex preferences (Supplemental Fig. 3), but this did
not seem to be the case. Further, to examine the differences in pro-
totypes across areas, we focused on variability. We began by

measuring the variability of the vlPFC andV4 sites during the evolution
experiments using the Fano factor—the variance divided by mean of
every site’s spike-rate response distribution. Because every synthetic
image was presented only once, we conducted this analysis using the
reference images, which were shown once per generation. Themedian
Fano factor values per area were 11.1 ± 0.3 (V4, Monkey C, ±SE, inter-
quartile range 7.38, sample size N = 558), 12.0 ± 0.4 (vlPFC, Monkey C,
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Fig. 4 | Prototype synthesis experiments. a Firing rate trajectory during a suc-
cessful vlPFC prototype experiment. The black trace shows themean firing rate for
synthetic images, while the green trace shows the mean firing rate for natural
images (mean ± SEM). b Stimuli presented during the experiment in (a). Repre-
sentative firing rate trajectory toward synthetic images produced by the closed-
loop generator (top row) against fixed reference photographs (bottom row).
c Population figure of the mean change in firing rate to natural images (x-axis)
against synthetic images (y-axis), per experiment. Red markers mark prototype
experiments targeting V4 sites, while blue markers denote vlPFC sites (dark
blue=Monkey C; light blue=Monkey D). Marker shape represents unit type: trian-
gles for single-units (SU), squares for distinctmultiunits (MU), and circles forwhole-
site hash. Large markers indicating successful experiments. Each point shows a
standard error of the mean change, computed via bootstrap (N = 77 total experi-
ments, see Supplemental Tables 3 and 4). d Segmentation masking of a prototype.
e Final prototypes from a vlPFCmultiunit isolated for over sevenmonths (top)with

their respective segmentation masks (bottom). f Within-site prototype similarity
(“stability”) across the population of successful vlPFC prototypes. For a given site,
distances between all prototype masks were computed in correlation space, with
shorter distances signaling higher correlation between masks. Colors differentiate
individual vlPFC sites across both subjects, with the multiunit from (e) in purple.
Distances between prototype masks from each vlPFC site (e.g., between site 1
prototypes from sessions 1 through 3) were compared against, 1) prototypes from
all other vlPFC sites (e.g., distances between site 1/session 1 and all other non-site 1
prototypes generated by vlPFC sites), 2) prototypes from V4 sites (e.g., site 1/
session 1 and all prototypes generated by V4 sites), and 3) shuffled versions of
successful prototypes from the targeted vlPFC site (e.g., site 1/session 1 prototype
and the same prototype randomly permuted pixelwise).Median distances denoted
by large black markers. Triple asterisks denote statistical significance at p <0.001
by way of randomization test. g Prototypes plotted as a function of signal type.
Source data are provided as a Source Data file.
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±SE, interquartile range 10.56, sample size N = 838), and 11.0 ± 0.2
(Monkey D, ±SE, interquartile range 8.89, sample size N = 960). These
values varied reliably across areas: a Kruskal-Wallis test revealed a
difference in the median dispersion among the groups, H(2) = 11.89,
p = 2.6x10-3. Yet, performing a two-sample test between V4 and vlPFC
(Monkey D) shows a p-value of 0.24, showing no statistical difference
between these groups. This suggests that the difference in Fano factor
across areas is due toMonkeyC vlPFC sites; as a group, theyweremore
variable in their visual responses, and notably, this is a region that also
showed more mixed auditory-visual selectivity than the Monkey D
vlPFC sites.

Next, we asked if there were differences in the variability of pro-
totypes themselves, as a function of area. Based on one of our previous
publications, we know that the input codes to the generator (the latent
codes or image “genes”) map closely to image space, such that nearby
points in the latent space correspond to similar images in pixel space.
We leveraged this information to ask: how variable were the proto-
types produced by V4 vs. those produced by vlPFC? Wemeasured the
dispersion of latent vectors as a function of closed-loop iteration
(generation). Dispersion was computed by obtaining the covariance
matrix of all genes per generation (N = 40) and measuring the trace of
the covariancematrix (the sum of the individual dimension variances).
We saw that genetic dispersion started high at generation 2, then
decreased and settled around the 30th generation. To quantify this
relationship, we fit an exponential decay function to these curves of
the form yðxÞ=A*eb*x + c to estimate the slope value b. We found that
mean slope valuesweredifferent: for V4, −0.135 ± 0.001, and for vlPFC,
−0.130 ±0.001 for both monkeys. This means that V4 sites were faster
about reducing the variability in their prototypes, which we interpret
to be a property of their stronger visual selectivity. We performed a
randomization test to estimate the probability of that the observed
difference could arise from the same distribution and found this was
p = 3.2x10-2 (see Methods). So, we conclude that V4 reduced the sto-
chastic variability in prototype creation faster than vlPFC did. How-
ever, this did not mean that the final prototypes in vlPFC were more
reliably more stochastic than those in V4: the median prototype dis-
persion after responses converged was 22279 ± 22 for V4, 22468 ± 18
for vlPFC (Monkey C), and 22172 ± 17 for vlPFC (Monkey D). A Kruskal-
Wallis test revealed a statistical difference among the groups,
H(2)= 133.29, p = 1.1 x 10–29. So, the V4 and vlPFC Monkey D proto-
types were both less variable than the vlPFC monkey C sites, and this
was likely related to the Fano factor result fromabove. So,we conclude
that the prototype variability was stable, but it depended on the rela-
tive variability of individual sites, even to natural images.

Polysensory tuning of vlPFC sites
Neurons in vlPFC are often polysensory, responding to images and
sounds36,37. Here, we asked if our sampled vlPFC sites showed these
properties as well. Visual cortex neurons show poor tuning to stimuli
that are not images, thereforewe considered the hypothesis that vlPFC
neurons with strong visual encoding (i.e., capable of driving image
synthesis or encoding prototypes) might also show poor responses to
non-visual stimuli. Alternatively, we considered the hypothesis that
vlPFC neurons might combine prototype encoding as well as respon-
siveness to sounds, at least in multiunit signals. To test these hypoth-
eses,weused a simple experimental design: in a given trial, themonkey
held fixation for a fraction of a second, then a stimulus—either an
imageor a sound—waspresented for 100ms (Fig. 1g). If the animal kept
fixation during the stimulus, they got a liquid reward. In each trial, each
image could be a photograph, line shape, Gabor function, or a sine-
wave with a given frequency. We then measured the change in activity
for a given neuronal site from the first 50msafter stimulus onset to the
window of 60–200ms (change in activity was defined as responsive-
ness). We found that our choice of images and soundswere effective at
driving activity in sites in either V4, CPB, or vlPFC: in V4, 75% of 32 sites

responded to images with a median response was 17.3 ± 2.3 events/s
(p < 0.02 per Wilcoxon sign rank paired test, after false discovery rate
correction using the Benjamini and Hochberg procedure). While none
of the V4 sites showed increased activity to sounds, as a population
they were suppressed weakly by sounds (median response −1.3 ± 0.2,
see Supplemental Fig. 4a, b). No individual V4 site was responsive to
both modalities. In CPB, 62.5% of 32 sites showed amedian increase in
response of 5.0 ± 1.6 events/s and 0% of 32 sites showed reliable
changes inmedianfiring rate to images (2.0 ± 0.4 events/s); as in V4, no
site was responsive to both modalities. Thus, while visual cortex sites
were driven primarily by images and auditory cortex sites by sounds,
intermingled sites in both cortices also showed a bit of responsiveness
to the other stimulus type. This type of polysensory crosstalk has been
described in sensory cortex before38.

Compared to sites from visual and auditory cortex, vlPFC sites
were more likely to respond to both images and sounds. vlPFC sites
reliably showed image-related modulation of at least a few events
per second (Monkey C, 71.9% of 32 sites were responsive to images at a
P-threshold of 0.02, showing a median response of 5.0 ± 1.0 events/s;
Monkey D, 18.8%, median response 2.2 ± 2.1 events/s). Many of these
sites also showed sound-related activity of at least a few events
per second (Monkey C, 75.0% of 32 sites, median response 3.5 ± 0.8
events/s; Monkey D, 6.2% of 32 sites, though the median response was
−0.5 ± 0.4, so many sites were also suppressed). In both animals, there
were sites that were statistically responsive to both images and sounds
(18/32 channels in Monkey C, 2/32 channels in Monkey D). When not-
ing the relative activity of sites in response to the images and sounds,
we found that the sites in vlPFC that could reliably drive image
synthesis fell within the distribution of V4 sites (Supplemental Fig. 4c).
Thus, we conclude that vlPFCmultiunit sites can drive image synthesis
even if they show some tuning to other stimulus modalities.

Discussion
Neurons in vlPFC are strongly interconnected with neurons in the
ventral stream, and lesion studies have shown that this is important for
visual processing25. Yet what do vlPFC neurons do exactly to improve
information processing in the ventral stream? Here, we defined the
properties of vlPFC neurons to explore the importance of their feed-
back to the ventral stream, and to determine if computational models
of the visual system should implement PFC-like modules as convolu-
tional layers or more complicated modules. While vlPFC neurons are
known to show stimulus-position tuning suggestive of classic RFs13 and
image selectivity7,8,17,28,39 in the absence of task training12, not all of
these properties have been previously and thoroughly conducted in
the same neuronal sites and across sensory cortices using targeted
imagedeconstruction.We foundapopulation of vlPFC siteswith visual
encoding in linewith ventral streamneurons: subsets of vlPFC neurons
demonstrate stable position-based tuning, which also encode specific
low-level visual motifs.

RFs from vlPFC sites were a bit larger and more eccentric than
those from V4 sites. RFs throughout the brain tend to be larger in size
in more anterior, later stages along the ventral visual stream, while RF
size also scaled as a functionof eccentricity from the fovea; as such, the
vlPFC RF sizes may reflect either or both of these organizational
properties. These RFs, like V4 RFs, could best be aligned on retinal
coordinates, rather than allocentric positions on the monitor. Addi-
tionally, these RFs were associated with selectivity: sites responded
differentially across diverse images presented at the center of their
RFs.While photographs were effective stimuli, we found evidence that
these responses could not be accounted for entirely by affective,
motivational, or extraretinal processes, as vlPFC neurons could suc-
cessfully guide adaptive generators — models that create textures
lacking objects or other familiar patterns. Though firing rates to syn-
thesized images significantly rose throughout successful experiments,
the responses to real-world photographs decreased, suggesting both
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V4 and vlPFC sites otherwise show adaptation to repeated stimuli.
Visual attributes in the synthesized images were consistent with attri-
butes contained in preferred real-world images. Arguably, the syn-
thetic imageswere simpler than otherswe have observed in the ventral
stream34, although this is probably due, at least in part, to the eccentric
RFs of these sites: the visual system has lower acuity at the periphery
than foveal vision does. Finally, as in visual cortex, these representa-
tions were stable across months.

Together, these results suggest visual processing beyond the
traditional ventral visual stream, with vlPFC potentially functioning as
a concurrent or additional stage of convolutional processing for visual
recognition. Because visual RFs from V1 to IT are implemented as
convolutional operations, these results would suggest that a PFC-like
layer should also be partially convolutional. At this point, it would not
be convincing to argue that vlPFC neurons show visual properties that
are uniquely sophisticated or beyond the capabilities of the ventral
stream itself. However, as this line of investigation is extended to
incorporate other tasks, properties might emerge, justifying a more
heterogenous computational model of the ventral visual stream.
Future studies will need to be conducted to determine whether the
described visual cortex-like vlPFC neurons are recruited for visual
recognition tasks, or are necessary for multisensory integration, the
performance of visually-guided behaviors, and/or social communica-
tion, allowing themerging of theories of adaptive coding in PFC40 with
stable, naturalistic functions. One interesting possibility is that the
purpose of visual encoding in PFC facilitates visually driven-action
selection: studies such as Rushworth et al.41 have shown that ven-
trolateral and orbital PFC are important for linking spatially localized
visual information (e.g., object identity) with motor response
selection42. In PFC, it might be more efficient to select actions when
visual features are spatially associated with the response. We found
that subsets of neurons in vlPFC encoded for coarse shapes indepen-
dently of task training, suggesting that these neurons reflect a natural
association between this specific visual shape and a motor movement
—most likely a saccade—since the vlPFC neurons’ receptive fields were
eccentric.

Limitations of the study
One major limitation in our conclusions is the interpretation of the
cluster of sites with reliable RFs. It is a possibility that this cluster
reflects the border between two areas. While the literature shows no
clear consensus on the areal borders within the region anterior to the
arcuate sulcus and posterior/ventral to the principal sulcus, Petrides
and Pandya (2001) illustrated that this area holds the confluence of
area 8A, 45A, and 45B. The more dorsal aspect of this region encroa-
ches onto the frontal eye field (FEF), although we doubt that our
recordings pertain this area, as FEF lies more along the anterior wall of
the arcuate sulcus43–45. We also conducted a brief (three-day long) pilot
experiment with microstimulation following the parameters and
designof Schwedhelmet al.46, but didnot observe any eyemovements.
Because our primary goal was to understand the visual encoding of
vlPFC neurons, not map out cortical areas, this is a limitation that was
built into our design, although the finding invites further investigation.

Another limitation of this study is that we had access to only
32 sites in vlPFC, and consequently we found a small number of vlPFC
sites demonstrating visual responses, particularly for understanding
systems-wide implications. However,weare encouraged thatwe found
similar results in two monkeys (even though all two-monkey experi-
mental designs are underpowered if one attempts to claim a species-
level finding)47 and across single- and multiunits.

Methods
All procedures received ethical approval by theWashington University
School of Medicine and the Harvard Medical School Institutional Ani-
mal Care and Use Committees and conformed to NIH guidelines

provided in the Guide for the Care and Use of Laboratory Animals. All
relevant ethical regulations for animal and non-human primate testing
and research were followed. Because only male monkeys were avail-
able, sex could not be considered in the study design. Animals were
purchased through a federally approved vendor.

Animal handling
Before experiments, the monkeys were trained using long periods of
operant conditioning, as we have found that this pays off in years of
calm and enthusiastic cooperation with by the animals. First, investi-
gators spent two weeks teaching them to track/follow/touch a short
stick for fruit and treats. Then the animals were encouraged to permit
short stick contact with their collars for rewards ( ~ 1-2 weeks) and then
to allow a leash to be placed on the collar ( ~ 2 weeks). The monkey
chairs were present throughout training for familiarization. Once
comfortablewith the leash, the chair was then secured against the cage
entrance and the leash is loosely guided into the chair: the animals
were taught that the cage door may open while they have a leash.
Rewards were provided when they showed relaxed behavior. After 3-4
days, they were gently but firmly guided into the chair using the leash,
and the door closed behind them.After 1-2 days of repeating this in the
vivarium, they were moved to the laboratory where they spend time
watching TV shows with investigators. For collar placement and ima-
ging, chemical restraint was used (ketamine and dexmedetomidine).

Experimental setup
Experiments were run in two identical experimental rigs, each con-
trolled by a computer running MonkeyLogic (NIMH)48. Stimuli were
presented on ViewPixxmonitors (ViewPixx Technologies, QC, Canada)
at a resolution of 1920 × 1080 pixels (120Hz, 61 cm diagonal); subjects
were positioned 58 cm from the monitor during all experiments.
Images were presented at the screens’ maximum resolution after
rescaling to match the size of the image in degrees of the visual field.
Eye position was tracked using ISCAN infrared gaze tracking devices
(ISCAN Inc., Woburn MA). In all experiments, the animals performed
simple fixation tasks (i.e., holding their gaze on a 0.25°-diameter circle,
within a ~1.2–1.5°-widewindowon the center of themonitor for 2–3 s to
obtain a drop of liquid reward (water or diluted fruit juice, depending
on the subject’s preference). Rewards were delivered using a DARIS
Control Module System (Crist Instruments, Hagerstown, MD).

Neuronal profiles
Two male rhesus monkeys (C and D, Macaca mulatta, 14–15 kg, 9-10
yearsof age)were each implantedwith two32-channel chronicfloating
microelectrode arrays in the left cortical hemisphere. Both monkeys
were implanted with one 32-channel array in the prefrontal gyrus
inferior to the arcuate sulcus and anterior to the principal sulcus
(vlPFC); Monkey C had a second array implanted on the prelunate
gyrus (visual area V4), while Monkey D had a second array implanted
on the upper banks of the superior temporal sulcus, along the caudal
parabelt, a region recognized as part of auditory association cortex.
Based on standard anatomical descriptions, we refer to these sites as
ventrolateral prefrontal cortex (vlPFC), V4, and caudal parabelt (CPB),
respectively. Array locations were chosen solely based on sulcal land-
marks and on local vasculature, resulting in an unbiased sample of
neurons.Weuse the term site to refer to both single- andmulti-units; in
all experiments, sites were mostly multi-units and hash, with some
transient single units across days.

Microelectrode arrays
Arrays were manufactured by Microprobes for Life Sciences (Gai-
thersburg,MD). Eacharray consistedof a ceramic basewith 32working
electrodes (plus four reference/ground electrodes) made of platinum/
iridium, with impedance values of 0.7–1.2MΩ and lengths of
1.6–2.4mm (4mm for grounds and reference electrodes). For array
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implantation, the animals were initially anesthetized using ketamine
and dexmedetomidine, then maintained using isoflurane. All proce-
dures were conducted under aseptic conditions in accordance to
university policy andUSDA regulations. Intraoperatively, a craniotomy
was performed in the occipito-temporal skull region, followed by a
durotomy that allowed visualization of sulcal and vasculature patterns;
arrays were inserted into the cortical parenchyma at a rate of ~ 0.5mm
every three minutes, regulated by visual inspection of tissue dimpling.
Arrays were fixed in place using titaniummesh (Bioplate, Los Angeles,
CA) over collagen-based dural graft (DuraGen, Integra LifeSciences,
Princeton NJ), and cables protected using Flexacryl (Lang Dental,
Wheeling, Illinois). Omnetics connectorswere housed in custom-made
titanium pedestals (Crist Instrument Co., Hagerstown, MD). We used
microelectrode arrays because they are very stable in terms of elec-
trode drift, both within individual experimental sessions and across
weeks and months; stability is important for the closed-loop experi-
ments because any given synthetic stimulus is presented only once
during the evolution experiment. Because the single-unit data yield is
lower with chronically implanted arrays, most of our results are rele-
vant to cortical sites, not individual neurons, although every major
conclusion was replicated with both single units, multi-unit signals,
and visual hash.

Data preprocessing
Data were recorded using Omniplex data acquisition systems (Plexon
Inc., Dallas, Texas). At the start of every session, the arrays were con-
nected to Omniplex digital head stages; all channels underwent spike
auto-thresholding (incoming signals were recorded if they crossed a
threshold amplitude value, determined within each channel, such as
2.75 standard deviations relative to zero-volt baseline). Manual sorting
of units took place if the 2D principal component features of detected
waveforms showed clearly separable clusters; clusters not overlapping
with the main “hash” cluster were described as “single units” if they
showed a refractory period; all other signals were described as “multi-
units.” All subsequent analyses were performed using Matlab
(2020a-2023b).

Visual responsiveness. To determine whether each vlPFC site had a
significant change in firing rate in response to stimulation in different
regions of the visual field, we divided the first 200ms following image
onset into timewindows: the earlywindowcomprised thefirst 1–30ms
after image onset, while the late window period comprised 50–150ms.
We computed the mean firing rate in each time window per experi-
ment, then performed a two-sided Student’s t-test between the mean
firing rates during the baseline windows and the evoked windows for
each site. Finally, we corrected all resulting p-values for multiple
comparisons using false-discovery rate. We also repeated this analysis
with a longer time window for the baseline activity, collected over the
fixation period.

Position tuning experiments. To test if vlPFC sites showed position-
dependent responses to images, the animals performed a passive
fixation taskwhile a 5°-width imagewasflashed for 100ms at randomly
sampled locations within an invisible grid across the monitor, ranging
from (−20, 20)°. Initially, we tested stimuli ranging from 1° in width to
10°, observing that a 5° width typically elicited reliably robust
responses from vlPFC neurons and from then used it most frequently
(Fig. 1c). We included all experiments using a 5° stimulus to map any
potential receptive fields (RFs), and normalized response variability by
z-scoring the firing rate across sessions. Analyses. For each site,
stimulus-evoked responses were defined as themean spike rate during
the first 50–200ms after image onset (late window) minus the mean
spike rate during the first 1–30ms after image onset (early window).
The mean responses to each position were interpolated into a
(100x100)-pixel image (using griddata.m) and then fit using a 2-D

Gaussian function (fmgaussfit.m27). This fitted Gaussian allowed us to
estimate the center location (in Cartesian coordinates, where the ori-
gin corresponds to the locus of fixation) and approximate widths (in
degrees of visual angle) of anypotential RFs. A given recording sitewas
defined as positionally tuned if the firing rate were modulated by
image position per one-way ANOVA, with p < 0.05 after correction for
false discovery rate49.

Cluster analysis. Sites with reliable RFs appeared close to one another
within the layout of the array (Fig. 2b). To quantify this observation, we
calculated the mean distance (in μm) between channels with RFs, then
performed a permutation test to determine the probability of spatial
clustering arising from chance. Sites within the array were equidis-
tantly spaced 400μm apart in a honeycomb-like formation50, with the
entire array width spanning 4mm; therefore, more tightly con-
centrated sites would have shorter distances than a scattered- or salt-
and-pepper arrangement. For each array, we geometrically computed
the distances between all possible pairings of sites with significant RFs,
then calculated the mean distance across these sites. As there is an
absolute distanceof 400μmbetween any twoadjacent sites, wewould
expect to see mean distances of at least 400μm. To test whether the
observed distances could result due to chance alone, we implemented
a permutation test. We randomly resampled with replacement for the
same number of significant channels (Monkey C: n = 6 channels;
Monkey D: n = 12 channels) and computed the mean distances
between the randomly sampled channels, then replicated this process
for 1000 iterations. We then computed the probability of observing
the measured true distance by chance: to obtain a p-value, we divided
the number of instances where the mean distance across randomly
sampled sites measured less than or equal to the observed true mean
distance by the total number of distances (number of observed +
randomized).

Coordinate-transformation experiments. To determine the coordi-
nate system encoded by position-tuned vlPFC neurons, subjects per-
formed trials of active fixation while a 5°-width image was flashed for
100ms on randomly sampled locations within a proportional invisible
cartesian grid, as previously described. However, between trials, the
fixation point randomly shifted between three locations: monitor
center (as in previous experiments; cartesian coordinates (0°,0°), now
referred to as “center gaze”), as well as 5° (in visual angle) to the right
(“rightward gaze,” cartesian coordinates (5°,0°)with respect to center)
and left (“leftward gaze,” cartesian coordinates (−5°,0°) with respect to
center) of monitor center. Analyses. Inclusion criterion. We carried out
five experiments permonkey, estimating a site’s RF at each of the three
gaze directions, yielding three RF maps per site. These experiments
were done months after the arrays were implanted, so to control for
signal degradation, we had an additional inclusion criterion. We used
the independently collected RF-mapping data (from previousmonths)
to make sure the site still had a stable RF in the first place. Specifically,
we used the same data in the RF-mapping section to first generate a
reference RF per site (N = 27 experiments, Monkey C; N = 38, Monkey
D, sampled across the array’s lifespan). We then compared this refer-
ence RF with the center-gaze RF obtained in this new batch of
experiments: for each gain-field experiment, we generated RFs for
every site fromonly trials in the center-gaze condition, resulting in five
RFmaps per site. After interpolation into a 100x 100grid (as described
in theRF section), no furtherfittingwas performedon theRFmaps.We
then calculated the Pearson’s correlation between the site’s mean RF
and theRFmap for each of thefivegain field experiments, generating a
correlation value for each gain field experiment. An experiment was
considered for analyses when the RFmap during center gaze trials had
at least a 0.6 correlation to the mean RF for that site; this filtered out
sessions where the signal was completely obfuscated by noise. Center
gaze trials were only used to determine the inclusion criteria, and from
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then on were excluded from final analyses. For further analyses, we
averaged across the vertical dimension (y-axis) of the visualfield, as the
experiment only varied the gaze direction across the x-axis.

To measure potential gain effects of gaze direction for each cor-
tical site, we set out to investigate if a given channel’s RF changed in
retinotopic position or in peak magnitude as a function of gaze con-
dition. To do this, we compared each channel’s RF at one gaze con-
dition (−5,0) vs. another gaze condition ( + 5,0). However, this
comparison would only be valid if the channel had an RF in the first
place. To determine if a given channel had anRF, we used a third set of
trials where the gaze condition was at (0,0). For each gaze condition,
we performed a one-way ANOVA test (with stimulus position as the
sole factor), correcting theobservedp-values using false discovery rate
tests (mafdr.m). We limited our first pass of analysis to channels that
showed a significant RF (p ≤0.05 after FDR correction) during the
center gaze condition (24 V4 sites in Monkey C, four vlPFC sites in
Monkey C, and 13 vlPFC sites inMonkey D, for a total of 17 active vlPFC
sites), and then analyzed independent trials from the two remaining
gaze conditions.

For some sub-analyses, we estimated putative RF centers using
trials presented during center gaze direction. For sites exhibiting sig-
nificant position tuning during center gaze (one-way ANOVA, stimulus
position as sole factor, p < 0.05 after correction for false discovery
rate), we then selected all trials during which images were presented
within 2° vertically, across all horizontal positions, of the estimated RF
center. These trials were further indexed by each of the three gaze
directions. All stimulus positions were converted from absolute grid
coordinates to retinal coordinates by adding the x-coordinate of the
fixation location to the x-coordinates of each grid position. For
example, a trial presenting an image at (10°,0°) stimulates different
retinal positions depending on gaze direction; under center fixation,
the image appears at (10°,0°), while during the leftward gaze condition
(-5° from center), the image would appear at (5°,0°) with respect to
the retina. Following conversion to retinal coordinates, we fit 2-D
Gaussian functions to the evoked responses for each sampled stimulus
position for each of the three gaze directions. We then performed
permutation tests to determine the estimated RF center.

Stimulus selectivity. Subjects performed a fixation task while images
were flashed at the center of a given site’s RF. Image size was scaled
with estimated RF width, with most experiments conducted using
stimuli 5- to 10°-wide. Each image was presented for 100ms, followed
by a 100ms off period during which the subject had to maintain fixa-
tion; trials typically consisted of 4–6 images presented sequentially,
and images were presented for a minimum of four repetitions. Image
sets consisted of visually diverse photographs and artificial stimuli,
including images of conspecifics (e.g. macaque faces and full-body
macaques in nature), monkey social encounters (e.g., fear grins,
monkeys fighting), familiar and unfamiliar humans, foods/beverages
(e.g. fruit, water, juice), other animals (e.g. dogs, cats), familiar objects
(e.g. toys, caging), artificial stimuli (e.g. lines of different orientations,
Gabor patches), and randomly sampled images from the image repo-
sitory ImageNet51 (e.g. chairs, appliances). Analyses. We performed a
one-wayANOVA on vlPFC site responses at themapped RF, with factor
of stimulus identity, correcting for multiple comparisons using false
discovery rate.

Neuron-guided image synthesis experiments (XDream). vlPFC and
V4 sites exhibiting retinotopic tuning became candidates for closed-
loop neuron-guided image synthesis. In these experiments, images
were formed from random textures devoid of semantic interpretation,
guided by neuronal responses into acquiring shapes that best match
the neuron’s preferred stimulus features. We refer to stimuli synthe-
sized by a deep generative network under neuronal guidance as
prototypes34. To assess if vlPFC sites encoded prototypes, subjects

performed a fixation task while stimuli were presented for 100ms and
re-shaped using an optimization algorithm (covariance matrix adap-
tation evolutionary strategy, CMA-ES). Synthesized images and real-
world photographs (particularly of macaque faces, bodies, and social
scenes) were interleaved during trials. Experiments ran for dozens of
blocks (generations). Image synthesis experiments were considered
successful when they resulted in images that caused the firing rate to
significantly increase from the rate evoked by the first 10 blocks (right-
tailed Wilcoxon rank sum between responses to synthetic versus nat-
ural images,p <0.01). Additionally, responses to natural images served
as a control to ensure responses did not change due to artifactual
reasons, such as changes in signal isolation. Segmentation masks. To
relate prototypes to one another, we used segmentationmasks.Masks
were generated by calculating the local regional luminance minima of
each final prototype, using the morphological operations opening-by-
reconstruction and closing-by-reconstruction52. Prototypes were con-
verted from full-color images to grayscale, followed by morphological
opening, eroding, reconstructing, closing, dilating, and further
reconstructing with a disk-shaped structuring element of a 20-pixel
radius. Thesemorphological transformations allowed us to determine
global form in prototypes with limited intrusion by any uninformative
stochasticity introduced by the generator. After determining the low-
est pixel luminance (i.e., the local regional minima) present in the
reconstructed grayscale prototype, we generated a segmentation
mask by finding all pixels within the prototype having luminance
values of at least 70% of the local minima. This simplistic pixelwise
approach to segmentationmasking allowed for effective “foreground”
(darker pixels, frequently bounded forms) and “background” (lighter
pixels, like a cleared background that contrasted strongly with the
bounded forms) segmentation of visual motifs without clear semantic
labels. The distances between vectorized prototype masks (pdist2.m)
were measured in Pearson correlation space, yielding a correlation
matrix where shorter distances between prototype masks indicate a
higher correlation in their overlap. Randomization test. To determine
whether observed mask distances could have been obtained due to
chance,we conducted a randomization test that randomly shuffled the
mask correlation matrix indices to generate a distribution of rando-
mized mask distances from successful vlPFC prototypes. For each of
1,000 iterations, we shuffled the correlation matrix, saved the median
randomized distance of the shuffled correlation matrix per iteration,
and then calculated the probability of obtaining the observed vlPFC
mask distances through chance alone (number of instances where
randomized median distances were shorter than or equal to the
observed median mask distance, divided by the total number of
iterations and observations).

Variability inprototypes.We estimateddifferences in the variability of
prototypes as a function of area. For each evolution, wemeasured the
dispersion of latent vectors within each generation. Dispersion was
computed by obtaining the covariance matrix of all genes per gen-
eration (N ~ 40) and measuring the trace of the covariance matrix (the
sum of the individual dimension variances). We saw that genetic dis-
persion started high and then decreased and settled around the 30th
generation. To quantify this relationship, we fit an exponential decay
function to these curves of the form yðxÞ=A*eb*x + c to estimate the
slope value b. To determine if the differences in slopes across areas
could arise from the samedistribution, weperformed a randomization
test. Specifically, to estimate the probability that the difference in
slope between V4 and vlPFC could arise from the same underlying
distribution,we combined thedispersionvalues from theV4 and vlPFC
distributions, and then randomly sampled two groups from themixed
distributions, fitting each group with the exponential decay function,
andmeasuring the difference between both slope values.We repeated
this random re-sampling for 500 iterations and compared the actual
observed difference to this mixed distribution.

Article https://doi.org/10.1038/s41467-024-51441-3

Nature Communications |         (2024) 15:7002 11



Polysensory experiments. Subjects performed a fixation task. In
every experiment, the animal began each trial by fixating on a 0.15° red
circle placed at the center of themonitor. After holding fixation within
a 1°-radius window for 500ms, a stimulus was presented for 100ms,
followed by a blank screen for 150ms. If the animal held fixation for
that period, it received a liquid reward; breaking fixation led to a time
out. Trials for this task presented a single stimulus before dispensing a
drop of liquid reward. The stimulus could be an image or a sound. The
image set comprised 10–20 photographs and artificial stimuli includ-
ing Gabor functions, uniformly colored curved shapes, monkeys, or
photographs randomly sampled from the image repository ImageNet.
Image size scaled with estimated RF width, with most experiments
conducted using stimuli 5–10°-wide. Across experiments, the image
position was either the monitor center (0,0)° or placed in locations
where we had observed neuronal receptive fields, such as those in V4,
or vlPFC (seeRF section). The soundswere simple tones, the numberof
unique tones was matched to the number of unique combinations of
image/positions in the experiment (N). Per experiment, the set of
frequency values was a sample of N between 250 to 2000Hz, evenly
spaced within that range. All stimuli were presented for a minimum of
four repetitions each. The reward was water or juice, and its delivery
was always associated with an audible click of the dispensing valve
opening and closing. We conducted 14 experiments in Monkey C
(66 ± 4 unique stimuli per experiment, 20 unique images, 446 unique
sounds) and Monkey D (58± 6 unique stimuli, 18 unique images, 40
unique sounds). Analyses. The goal was to determine if a given array
site responded to images, sounds, or both. We had access to 32
channels in V4 (Monkey C), 32 in CPB (Monkey D), and 32 in vlPFC
(Monkeys C, D). For each experiment, we measured each site’s firing
rate activity after stimulus onset, transformed the peristimulus time
histogram from events/s into a z-score, and concatenated the z-scored
PSTHs across days; the z-score transformation was done to control for
day-to-day variability in thresholding). Responsiveness was defined as
the change in firing rate activity from the first 50ms after stimulus
onset, to the window of 60-200ms. Each responsiveness value was
concatenated across days. To determine if the mean site responsive-
ness increased reliably above zero, weperformed aWilcoxon sign-rank
test (paired, one-tailed, N = 11, 14 for Monkeys C and D) to define the
probability that the values arose from a distributionwithmean 0. All p-
values were corrected for false-discovery rate.

Statistics & reproducibility
Theoverall studydesign addressed reproducibility as follows:first, to
make a generalizable statement of about neurons in V4 and PFC,
neurophysiological recording sites were randomly sampled, Sam-
pling was achieved by placing chronic microelectrode arrays in
regions marked solely by sulcal patterns, which are practically uni-
versal markers for the macaque monkey, without any previous pre-
mapping via imaging. Next, we used two animals to confirm that all
major results could be replicated. If results were based on a single
animal, theywere explicitlymarked as such. Every site in an array was
tested and used for experiments if they showed physiological
responses. Each site was tested multiple times over months to make
sure some observations could be replicated over time. The robust-
ness of the statistical tests was informed by having at least 5-6
repetitions of each position in receptive-field mapping and in the
selectivity experiments. We used machine learning modeling to
confirm that our closed-loop image search algorithm had enough
statistical power to achieve high activations from hidden units and
then by neurons, for example, by having at least N = 40 images per
optimization iteration (“generation”). Sites were excluded from
analysis if they did not show visual responsiveness (determined by
measuring activity in a late time window after image onset). Every
animal and cortical site was used as both their own control and

treatment group (pre-optimization, and response-optimized).
Blinding could not be used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All correspondence and material requests should be addressed to the
corresponding author (C.R.P). Data generated in this study have been
deposited in the Zenodo database with https://doi.org/10.5281/zenodo.
12565507. The data are available under full access, access can be
obtained by downloading the.mat files. The raw data is under ongoing
analysis and available by request. The processed data is available at
Zenodo. The data used in this study is available in the Zenodo database
with https://doi.org/10.5281/zenodo.12565507. Source data are pro-
vided with this paper.

Code availability
Code and links to useful repositories that can be used to reproduce
most of the results and figures (see Data Availability statement) are
deposited in aGithub repository (https://github.com/PonceLab/visual-
PFC), 10.5281/zenodo.12566772.
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