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BACKGROUND: Diabetes, as a significant disease affecting public health, requires early detection for effective management and
intervention. However, imbalanced datasets pose a challenge to accurate diabetes prediction. This imbalance often results in
models performing poorly in predicting minority classes, affecting overall diagnostic performance.
OBJECTIVES: To address this issue, this study employs a combination of Synthetic Minority Over-sampling Technique (SMOTE) and
Random Under-Sampling (RUS) for data balancing and uses Optuna for hyperparameter optimization of machine learning models.
This approach aims to fill the gap in current research concerning data balancing and model optimization, thereby improving
prediction accuracy and computational efficiency.
METHODS: First, the study uses SMOTE and RUS methods to process the imbalanced diabetes dataset, balancing the data
distribution. Then, Optuna is utilized to optimize the hyperparameters of the LightGBM model to enhance its performance. During
the experiment, the effectiveness of the proposed methods is evaluated by comparing the training results of the dataset before and
after balancing.
RESULTS: The experimental results show that the enhanced LightGBM-Optuna model improves the accuracy from 97.07% to
97.11%, and the precision from 97.17% to 98.99%. The time required for a single search is only 2.5 seconds. These results
demonstrate the superiority of the proposed method in handling imbalanced datasets and optimizing model performance.
CONCLUSIONS: The study indicates that combining SMOTE and RUS data balancing algorithms with Optuna for hyperparameter
optimization can effectively enhance machine learning models, especially in dealing with imbalanced datasets for diabetes
prediction.
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INTRODUCTION
Diabetes is a major global health issue, projected to affect ~48% of
the population by 2045 [1]. This disease arises from pancreatic
dysfunction, which may result from insufficient insulin production
or inadequate cellular response to insulin, thereby impacting
various bodily functions. Alarmingly, about 30 to 50% of diabetes
patients worldwide remain undiagnosed [2], underscoring the
critical need for predictive diagnosis. Early predictive diagnosis is
essential for timely intervention, treatment, and disease manage-
ment, as it can help control disease progression and reduce
complications. Therefore, researching predictive diagnostic meth-
ods and technologies for diabetes is crucial. Timely identification
of high-risk individuals can significantly improve treatment
outcomes and enhance overall quality of life.
El-Hafeez et al. [3] demonstrate the efficacy of machine learning

in identifying synergistic combinations of FDA-approved cancer
drugs, offering novel approaches to cancer treatment. In
addressing the global challenge of Hepatitis C Virus (HCV)
prediction, Farghaly et al. [4] employed machine learning
techniques on real-world data from Egypt, showcasing the
potential of such methods in early disease detection and
management. In exploring the progress in disease prediction,

CNN robot learning and Grey Wolf Optimizer heuristic optimiza-
tion algorithm were used to classify monkeypox skin lesions,
which can diagnose monkeypox skin lesions faster and more
accurately, which has important implications for controlling and
preventing monkeypox outbreaks [5]. Omar and El-Hafeez [6]
introduce a new approach to enhance seizure recognition,
emphasizing the importance of optimizing model performance
through deep learning, which includes advanced preprocessing
techniques such as feature scaling and discard layers for more
accurate diagnosis and treatment of epilepsy. In a recent study by
Hady and El-Hafeez [7], machine learning models were developed
to predict pelvic tilt and lumbar angle in women experiencing
urinary incontinence and sexual dysfunction, highlighting the
potential of AI in enhancing diagnostic accuracy and treatment
strategies for pelvic floor dysfunctions. In addressing the challenge
of class imbalance in cyberbullying datasets, Khairy, Mahmoud,
and Abd-El-Hafeez [8] explore various oversampling and under-
sampling techniques to enhance classification algorithms’ perfor-
mance. Automatic hyperparameter tuning greatly improves the
performance and versatility of the model [9]. Recent research by
Hassan, El-Hafeez, and Shams [10] delves into optimizing disease
classification through advanced language model analysis of
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symptoms, utilizing Medical Concept Normalization-Bidirectional
Encoder Representations from Transformers (MCN-BERT) models
and a Bidirectional Long Short-Term Memory (BiLSTM) model,
each optimized with distinct hyperparameter optimization meth-
ods to predict diseases from symptom descriptions. Sneha and
Gangil [11] determined that the decision tree algorithm and
random forest are the best classification methods for analyzing
diabetes data by leveraging the important feature attributes of the
diabetes dataset. Bej et al. [12] proposed a novel method for
identifying and characterizing sub-populations of Type-2 diabetes
patients in India using an unsupervised machine learning
approach, revealing significant heterogeneity in socio-
demographic and lifestyle characteristics. Thomas et al. [13]
proposed a novel method for identifying and characterizing sub-
populations of Type-2 diabetes patients in India using an
unsupervised machine learning approach, revealing significant
heterogeneity in socio-demographic and lifestyle characteristics.
LightGBM is a gradient boosting decision tree framework that is

widely used in machine learning for handling large-scale
imbalanced datasets [14, 15]. Wang et al. [16] enhanced diabetes
mellitus early warning and factor analysis accuracy by employing
ensemble Bayesian networks coupled with SMOTE-ENN and
Boruta algorithms. Bakry et al. [17] developed a framework called
automatic suppression based on XGBoost for anti-money launder-
ing (ASXAML), enhancing the detection of financial crimes by
reducing false positives through the integration of recursive
feature elimination with cross-validation and hyperparameter
tuning using the Optuna framework. Feng et al. [18] proposed
an enhanced coarse aggregate shape classification method
leveraging the Per-Optuna-LightGBM model, demonstrating
improved accuracy and efficiency in classifying aggregate shapes.
Gu et al. [19] introduced a 5CV-Optuna-LightGBM regression
prediction model for data prediction, achieving a 99.433%
accuracy rate, which demonstrated superior prediction accuracy,
higher modeling efficiency, and better fitting compared to other
models.
Currently, despite the existence of various diabetes prediction

methods, enhancing prediction accuracy, handling imbalanced
datasets, and achieving early predictive diagnosis remain impor-
tant research challenges in the field. Existing literature on diabetes
prediction primarily focuses on improving the accuracy of
prediction models, with less attention given to the issue of
imbalanced datasets. This imbalance, where one class has
significantly fewer samples than the other, can lead to inadequate
predictive performance for the minority class. Although some
researchers have attempted to address the imbalance issue by
combining different classifiers or employing data resampling
techniques, efficiently integrating data preprocessing and model
training processes while maintaining high prediction accuracy and
low computational costs remains a critical challenge.
Since the number of diabetic patients is significantly smaller

than that of non-diabetic patients, the diabetes prediction
problem is modeled as an imbalanced binary classification
problem from a machine-learning perspective. First, a combina-
tion of SMOTE oversampling and RUS undersampling is used to
address the class imbalance in the diabetes dataset, allowing the
model to better learn the features of the data. Then, Optuna is
employed to automatically search for the optimal hyperparameter
combination for the LightGBM model to achieve better predictive
performance. Finally, the LightGBM algorithm is used to train the
dataset, improving the prediction accuracy for diabetic patients.
The rest of this article is organized as follows: Section 2 introduces
the mathematical description, architecture, and methods of the
diabetes prediction model. Section 3 covers data preprocessing,
including data cleaning, data splitting, and data augmentation.
Section 4 presents the experiments conducted on the dataset,
providing performance metrics evaluation, analyzing the predic-
tive effectiveness of the proposed method, and comparing the

proposed method with other methods. Finally, Section 5 offers a
brief conclusion.

SUBJECTS AND METHODS
In this article, we combined the efficient learning algorithm of
LightGBM with the automated hyperparameter optimization
capability of Optuna to form a diabetes prediction framework.
This section mainly introduces the mathematical description,
architecture, and methods of this model.

Mathematical description
Diabetes prediction can be viewed as a binary classification
problem. Given a dataset D ¼ xi; yið Þf gNi¼1, where xi is the feature
vector of the ith sample, and yi 2 0; 1f g is the corresponding label.
The goal is to train a model f xð Þ to predict the label of unseen
samples.

LightGBM Model. LightGBM is a tree-based learning algorithm
that optimizes many aspects of traditional Gradient Boosting
Decision Trees (GBDT) [20]. LightGBM, when handling large-scale
datasets and complex models, can train models faster and more
efficiently than traditional GBDT algorithms while maintaining
high prediction accuracy. The prediction value f xð Þ of a LightGBM
model can be represented as the weighted sum of multiple
decision trees:

f xð Þ ¼
XK

k¼1
wkhk xð Þ (1)

where K is the number of decision trees, hk xð Þ is the prediction
result of the kth decision tree, and wk is the weight of the kth tree.
The key to LightGBM lies in its optimized approach to data

handling and decision tree construction. It employs a histogram-
based algorithm to accelerate the training process and reduce
memory consumption, and uses a leaf-wise growth strategy to
enhance model accuracy.

Optuna hyperparameter optimization. Optuna is an automated
hyperparameter optimization framework, whose core is to search for
the optimal parameter combination by defining an objective function
to minimize or maximize its value [21]. In the LightGBM model,
Optuna can be used to find the optimal hyperparameters, such as
num_leaves, max_depth, learning_rate, and others. In the Optuna-
LightGBM-based diabetes prediction model, the hyperparameter
combination with the highest cross-validation score is selected.

best�params ¼ argmax CVScore paramsð Þ (2)

Where best�params is the parameter set that maximizes the cross-
validation score CVScore . CVScore paramsð Þ is the cross-validation
accuracy score given a parameter set. The params represents
the parameter set of the model, including but not limited to
num_leaves, max_depth, and learning_rate.
During the optimization process of Optuna, it automatically

tests multiple different parameter combinations. Each set of
parameters is evaluated based on its cross-validation score, and
the evaluation results determine which set of parameters can
provide the best model performance. This process is based on the
results of previous experiments to guide the direction of
subsequent searches so that the optimal parameter configuration
is to be found in the shortest possible time.

Model architecture
In this article, the diabetes prediction dataset from ‘kaggle’ was
used, which contains 9 attributes and 100,000 records. The
detailed description of the dataset is provided in Table 1.
The nine attributes are gender, age, hypertension status, history

of heart disease, smoking history, BMI, glycated hemoglobin level,
blood sugar level, and the output result. The output result
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represents the diabetes status of each individual data point, while
the other variables are independent feature variables. Among the
100,000 samples, there are 8,500 patients with diabetes and
91,500 patients without diabetes. The proportion of patients with
diabetes is only 8.5%, significantly lower than the 91.5% of non-
diabetic patients, making the dataset highly imbalanced.
For effective improvement of the prediction performance of the

unbalanced diabetes prediction dataset, Optuna is used to
optimize the LightGBM performance parameters, The detailed
process of Optuna-LightGBM model is depicted in Fig. 1.
In the Optuna-LightGBM-based diabetes prediction model,

data preprocessing, which includes data cleaning, feature
engineering (feature selection, feature transformation, etc.),
and missing-value processing, is performed first to ensure data
quality and improve model performance. Then, data resampling
technique (SMOTE+ RUS) is used to deal with the data
imbalance. Next, a hyperparameter search is performed to
automate the search for the optimal hyperparameters of the
LightGBM model with Optuna, a step that is achieved by defining
the search space, the optimization objective and the cross-
validation strategy. Finally, model training, which uses Optuna-
optimized hyperparameter settings to train the model with the
LightGBM algorithm, and evaluates the model performance with
cross-validation methods to select the optimal Optuna-LightGBM
model for prediction.

The proposed method of Optuna-LightGBM
When utilizing Optuna for hyperparameter optimization, the first
step is to define the search range for each hyperparameter, such

as setting the range of values for parameters like learning rate and
maximum tree depth. Next, an objective function is designed to
measure the performance of the model given the hyperpara-
meters by evaluating the performance metric, accuracy, on the
validation set. Through this target function, Optuna can explore
the hyperparameter space, iteratively trying different parameter
combinations, and adjusting its search strategy based on
performance feedback to ultimately determine the best hyper-
parameter configuration that optimizes model performance.
LightGBM parameter settings are shown in Table 2.
When training the LightGBM model, the model is initialized

according to the optimal parameter settings provided by
Optuna. To solve the problem of data imbalance, the SMOTE+
RUS balancing technique was adopted for resampling the
training data to improve the data distribution during model
training. Subsequently, the LightGBM model was trained on the
adjusted data, and a series of decision trees were constructed
step by step using the gradient boosting technique to minimize
the prediction error. Finally, the performance of the model is
evaluated through cross-validation, which uses metrics such as
accuracy, recall and F1 score to assess the prediction accuracy of
the model.
The proposed model’s workflow diagram is shown in Fig. 2. The

sharing of parameters between different modules in the diagram
enables the model to learn global features better, thereby improving
model prediction efficiency and generalization ability. With the
aforementioned methods, the diabetes prediction model based on
Optuna-LightGBM achieves high accuracy in predicting diabetes risk,
which provides a strong support for clinical decision-making.

Table 1. Data description of the diabetes prediction dataset.

Dataset properties Descriptions Value range

Gender Gender of subjects Male/Female

Age Age of subjects 0.08–80

Hypertension Prevalence of hypertension 1/0

Heart_disease History of heart disease 1/0

Smoking_history Smoking history of the subjects Never/Ever/Former/Not current/Current/No info

Bmi Body mass index (BMI) 10.01–95.69

HbA1c_level Glycated hemoglobin level 3.5–9

Blood_glucose_level Blood glucose levels 80–300

Fig. 1 Overall design of the proposed model.
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The algorithm flow for balancing the dataset using SMOTE and
random under-sampling, followed by training and optimizing the
LightGBM model with Optuna, is given as follows.
Algorithm 1. Pseudocode of the Improved LightGBM.

Data preprocessing
In machine learning, the quality of input data has a significant
impact on the output results, and it is necessary to preprocess the
existing dataset before making predictions. Therefore, we need to
clean the data to avoid inaccurate prediction results and reduce
the misclassification rate of the predictive model. Furthermore, it
is also essential to analyze the distribution of the dataset and
process the unbalanced dataset through data balancing algo-
rithms that increase the model’s perception of the few categories
of data and improve its robustness.

Data cleansing. Data cleansing, a crucial step in the data
preprocessing phase, is instrumental in achieving data integrity. It
involves addressing missing values, eliminating duplicates, and
correcting inconsistencies or errors. With it we can significantly
reduce the likelihood of biased or inaccurate results in our analyses.
An initial check for missing values in the dataset was

performed. By carefully evaluating the presence of “No info”
values and making decisions regarding predictors with a high
proportion of missing values, we aim to maintain the integrity
and quality of the dataset. This approach ensures more reliable
analysis and accurate interpretation. The distribution of the
cleaned dataset is shown in Fig. 3.
Figure 3 presents the kernel density distribution plots for each

attribute of the diseased and non-diseased categories along the
main diagonal. The upper triangle shows scatter plots of each
attribute’s distribution for the two categories, while the lower
triangle displays marginal kernel density plots (contour plots) for
the attributes of the two categories. It can be observed that in
the cleaned dataset, the kernel density distribution trends for
diabetic and non-diabetic samples are quite consistent for
attributes such as age, hypertension, heart disease, and BMI.
However, the distribution differences are more pronounced for
HbA1c levels and glucose levels. In the scatter plots and marginal
kernel density plots, there is a certain degree of overlap between
the samples of the two categories, but overall, the boundaries of

the distribution areas for the two categories are relatively clear.
This indicates good separability, which is beneficial for training
and predicting with the diabetes prediction model.

Data splitting. The performance of machine learning models
largely depends on data quality and data strategies [22].
Therefore, it is important to evaluate the impact of data splitting
on the performance of machine learning models. The data
splitting methods used in this article include K-fold cross-
validation and random splitting using the train-test split method.
K-fold cross-validation is a statistical technique used to

evaluate the performance of machine learning models. This
method divides the dataset into K equally sized subsets. Among
these K subsets, each subset is used in turn as the test set, while
the remaining K-1 subsets are combined to form the training set
for model training. This process is repeated K times, with each
iteration selecting a different subset as the test set and the rest
as the training set. Ultimately, performance evaluation results
for K models are obtained. This process iterates based on the
number of folds. The model’s generalization performance is
estimated by averaging the obtained scores [23], as shown in
Fig. 4a.
The train-test split method divides the dataset into random

training and testing subsets. This approach depends on the size
of the dataset [24], as shown in Fig. 4b.

Correlation analysis. A correlation matrix is used to analyze the
relationships among various attributes in the cleaned dataset by
statistically calculating the connections or relationships between
two or more variables in the dataset. This relationship is measured
numerically, with higher values indicating a closer relationship
between the inputs and desired outputs. The correlation matrix of
the diabetes prediction dataset is shown in Fig. 5.
From the correlation matrix heatmap in Fig. 5, it can be seen that

HbA1c levels, glucose levels, and age have a closer relationship
with the output results in the cleaned dataset. In the diabetes
prediction dataset, the attributes do not show a clear tendency to
covary with each other, and there is no high correlation of strong
covariance. Additionally, a low correlation of a feature only means
that the feature is not useful in the presence of other features, but
it does not imply that the feature is unimportant for predicting

Table 2. Parameters setting of the LightGBM.

Parameter Meaning Range of settings Values after Optuna
optimization

n_estimators Number of boosting estimators (trees). 50–200 142

learning_rate Boosting learning rate. 0.01–0.3 0.015

num_leaves Maximum number of leaves per tree. 2–50 12

max_depth Maximum depth of each tree. 3–12 5

min_data_in_leaf Minimum number of data points in a leaf node. 10–100 23

min_child_weight The minimum sum of weights of all observations required in a
child (leaf ).

0.001–1 0.0965

subsample The subsample ratio of the training instance. 0.6–1.0 0.6504

colsample_bytree The subsample ratio of columns when constructing each tree. 0.6–1.0 0.7115

min_child_samples Specifies the minimum number of samples (or observations)
which are required in a leaf node.

5–100 34

reg_alpha L1regularization term. 0.001–10.0 0.2165

reg_lambda L2 regularization term. 0.001–10.0 0.0431

min_split_gain The minimum gain to perform a split. 0.001–1.0 0.1653

bagging_fraction Fraction of data to be used for bagging. 0.6–1.0 0.7096

subsample_freq The frequency for bagging. 1–10 8

bagging_freq Specifies the frequency for bagging. 1–10 7
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diabetes. In conclusion, the predictors in the diabetes prediction
dataset did not show a significant correlation. Therefore, there is no
need to worry about high correlations affecting model perfor-
mance or introducing bias.

Data augmentation. In the diabetes prediction dataset, the data
for diabetic patients accounts for only 8.5%, which is <10%,
indicating a highly imbalanced state. To balance the class
imbalance in the existing dataset, a combination of SMOTE

Fig. 2 Flowchart of the proposed method for prediction.
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oversampling and RUS undersampling methods is used.
The SMOTE algorithm is an improved solution based on the

random oversampling algorithm proposed by Chawla [25],
which is a method for oversampling synthetic minority class
samples. Since the random oversampling technique simply
duplicates samples to increase the minority class samples, it
may lead to overfitting issues, where the model learns overly
specific information and lacks generalization. The basic idea of
the SMOTE algorithm is to analyze the minority class samples
and synthetically generate new samples to be added to the
dataset.
In an imbalanced dataset, where the set of minority class samples

is denoted as Dminority , the core idea of SMOTE is to interpolate
between minority class samples to augment those with fewer data
points, thereby balancing the number of samples for different
labels. For each sample xi in Dminority , the k-nearest neighbors
method is used to find a sample xj .Then, for each pair of xi and xj ,
the difference vector d= xi–xi is calculated, and a new sample xnew
is generated. The expression for xnew is as follows:

xnew ¼ xi þ rand 0; 1ð Þ ´ xj � xi
� �

(3)

where rand 0; 1ð Þ represents a random number within the
range (0,1).
The SMOTE algorithm synthesizes new minority class samples to

increase the quantity of minority class samples, retaining the
information of the original data. However, it does not process the
majority class samples, which may result in the loss of some
majority class information. The RUS Random undersampling refers
to the process of removing some samples from the majority class
to reduce redundancy and achieve data balance.
If the set representing the majority class samples is denoted as

Dmajority , then the process involves calculating the number of
majority class samples to retain, denoted as M, typically
approaching or equaling the quantity of minority class samples.
Subsequently, M samples are randomly selected from Dmajority.
The combined use of SMOTE and RUS involves first applying

SMOTE to increase the number of minority class samples and then
performing RUS to decrease the number of majority class samples.
Assuming N is the desired number of new minority class samples,
the objective of this combined method is to create a new dataset
where the number of samples in the minority and majority classes
is more balanced.

Fig. 3 Distribution of cleaned datasets.
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Fig. 4 Data splitting methods. a Performing k-fold cross-validation. b The dataset is divided into two parts randomly with different ratios: 80:
20, 70:30, and 60:40 train/test split.

Fig. 5 Correlation matrix heat map.
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The process of combining SMOTE and RUS can be outlined in
the following steps:

1. Apply SMOTE to generate new minority class samples D0
minority until

the quantity reaches N.
2. Perform random undersampling from the majority class Dmajority to

obtain D0
majority .

The final synthesized dataset Dcombined is obtained by merging
D0
minority and D0

majority ’:

Dcombined ¼ D0
minority

[
D0
majority (4)

This combined approach allows fine-tuning of the class balance
of the new dataset by adjusting N and M.

Evaluation index
Given that the accuracy of predicting diabetic patients has a
greater impact than that of non-diabetic patients, this article uses
the confusion matrix and the receiver operating characteristic
(ROC) curve [26] as experimental evaluation metrics. Note that in
diabetes prediction, more attention is paid to the accuracy of
predicting diabetic patients, aiming to minimize false negatives
(predicting diseased as healthy). The evaluation metrics from the
confusion matrix are listed in Table 3.
The data in the confusion matrix are used to estimate a set of

statistically relevant performance indicators defined as follows.

Accuracy ¼ TPþ TN
TPþ FPþ FNþ TN

(5)

Precision ¼ TP
TP þ FP

(6)

Recall ¼ TP
TP þ FN

(7)

F1� Score ¼ 2TP
2TP þ FP þ FN

(8)

In the ROC curve, the true positive rate (TPR) is plotted on the
y-axis and the false positive rate (FPR) is plotted on the x-axis.

The TPR is mathematically the same as the recall rate, whereas the
FPR indicates how many false positives occurred out of all the
available negative samples during the testing period. The formulas
for calculating the TPR and FPR are as follows:

Truepositiverate ¼ TP
TPþ FN

(9)

Falsepositiverate ¼ FP
FPþ TN

(10)

RESULTS
This section includes four main experiments: data splitting
experiments, enhancement experiments with combined balancing
algorithms, model optimization comparison experiments, and
comparative experiments of different machine learning models on
the diabetes prediction dataset.

Data splitting experiments
Data splitting methods used in this article are k-fold cross-
validation and random splitting using train–test splits method.
Using the random splitting method, the dataset was divided into
two parts, with different ratios: 70:30 and 60:40 train/test split, in
contrast performing k-fold cross-validation using k= 5 and k= 10.
We have utilized all the features for different data partitioning
methods for diabetes dataset on Multi-layer Perceptron (MLP) [27],
Support Vector Machines (SVM) [28], Decision Tree [29, 30],
Random Forest (RF) [31, 32], eXtreme Gradient Boosting (XGBoost)
[33], and LightGBM on which comparative analyses were
performed.
Table 4 shows that different classifiers exhibit high accuracy

across various data splitting methods, with LightGBM and MLP
performing the best, consistently achieving accuracy above 96%.
The accuracy is not sensitive to changes in the training and testing
split ratios, indicating that the dataset is well-representative.
Additionally, the accuracy difference between 5-fold and 10-fold
cross-validation is minimal. For example, LightGBM achieves
97.05% accuracy with 5-fold cross-validation and 97.06% with
10-fold cross-validation, demonstrating high model stability.
Therefore, 5-fold cross-validation is chosen as the data splitting
method. The reason for choosing 5-fold cross-validation is that it
provides a good balance between computational efficiency and
model stability and is sufficient when the dataset size is not
exceptionally large.

Combined balancing algorithm effect enhancement
experiment
Based on the optimal data splitting method obtained from the
data splitting experiments, this article chooses to use 5-fold cross-
validation. The dataset is balanced using SMOTE, RUS, and a
combination of SMOTE+ RUS, respectively, along with

Table 3. Model evaluation based on binary confusion matrix.

Confusion
matrix

Actual value Negative

Positive

Recognition
value

Positive True positive
(TP)

False positive
(FP)

Negative False negative
(FN)

True negative
(TN)

Table 4. Comparison of different classifiers using two data splitting methods in terms of accuracy.

Classifier Data splitting approach K-fold cross-validation

Train-test splits

80:20 (%) 70:30 (%) 60:40 (%) K= 5 (%) K= 10 (%)

RF 96.54 96.63 96.7 96.81 96.77

LightGBM 96.94 96.91 97.03 97.05 97.06

XGBoost 96.91 96.85 96.97 97.04 97

DecisionTree 94.73 94.78 94.78 95.03 95.03

MLP 96.96 96.92 97.03 97.05 97.04

SVM 96 95.96 96.07 96.18 96.19
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comparisons to the unbalanced data in terms of the accuracy of
the six machine learning models. The experimental results are
shown in Table 5.
According to the experimental results, the LightGBM classifier

demonstrates high performance on both unbalanced and
balanced datasets using SMOTE, RUS, and SMOTE+ RUS methods.
By comparing different balancing methods, we found that the
SMOTE+ RUS method significantly improves the accuracy of the
LightGBM classifier. Specifically, the accuracy of LightGBM under
the SMOTE+ RUS method reaches 97.07%, an increase of 0.02%
compared to the unbalanced condition. This indicates that the
SMOTE+ RUS method can achieve a better balance between the
majority and minority classes in the LightGBM classifier, thereby
enhancing the model’s generalization ability. Therefore, SMOTE+
RUS is chosen as the data balancing method.
To illustrate the usefulness of the combined SMOTE + random

downsampling balancing algorithm proposed in this article and
the performance of the classifier model on the balanced dataset,
t-SNE visualization technique [34] was applied to the datasets
before and after the balancing process. The t-SNE scatter plots of
the datasets in both states are shown in Fig. 6, where label 0
represents the samples without diabetes and label 1 represents
the samples with diabetes.
It can be seen that the original data without balanced

processing has a small proportion of the diseased category and
the distance between the data points of the two categories is
small, and there is also more overlap, which makes the separability
poorer. On the dataset processed by the combined balancing
algorithm, the proportion of data points of the two categories
tends to be balanced, the imbalance of the dataset is improved,
and the distance between the data points of the two categories is

further compared to that of the unbalanced dataset, with
enhanced separability.

Model optimization comparison experiments
In this section, we explore the role of the Optuna search method
for model hyperparameter optimization and compare it with two
traditional methods, random search and grid search. In random
search, hyperparameter values are randomly selected and iterated
over a specified number of search times. In grid search, a range of
discrete values for each hyperparameter is specified, and these
values are uniformly divided and combined. Each possible
combination is then tried one by one. The average results of
different parameter optimization methods on the standard
diabetes prediction dataset using 5-fold cross-validation under
the LightGBM model are shown in Table 6.
Table 6 shows that only the algorithm proposed in this article

achieves improvements in both accuracy and precision compared
to the unoptimized model, with the highest values obtained. The
Accuracy is increased by 0.04% to 97.11%, and the Precision is
increased by 1.82% to 98.99%. This indicates that the proposed
Optuna-LightGBM model can dynamically adjust the search space
based on the search history of each hyperparameter, and
intelligently explore potential optimal combinations. As a result,
it achieves more precise model construction on the data, leading
to higher prediction accuracy and effectiveness. In contrast, the
random search and grid search methods slightly underperform
the non-optimized model in terms of accuracy and precision. This
is because they do not consider prior knowledge or experience
and only sample hyperparameters randomly within the search
space, potentially overlooking some hyperparameter combina-
tions with latent advantages. In terms of time consumption for a

Table 5. Comparison of accuracy using different class balancing methods.

Classifier Unbalanced SMOTE RUS SMOTE+ RUS

RF 96.81 95.7 92.66 96.41

LightGBM 97.05 97 93.53 97.07

XGBoost 97.04 96.95 93.45 97.01

DecisionTree 95.03 94.49 91.09 94.66

MLP 97.05 90.63 89.95 95.95

SVM 96.18 88.45 88.54 95.65

Fig. 6 Scatterplot of t-SNE dimensionality reduction of the dataset before and after treatment with the combined equilibrium approach.
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single search, grid search requires 1788 seconds, significantly
longer than other optimization methods. This is due to its inherent
characteristic of needing to exhaustively explore all possible
hyperparameter combinations. Consequently, as the number of
hyperparameters and their value ranges increase, the time
required grows exponentially. In the case of large or complex
search space, grid search is less applicable. The single search time
of the proposed model in this article is only 2.5 s, which is the
fastest among all the compared methods. This is because the
Optuna algorithm takes advantage of Bayesian optimization,
which determines the next hyperparameter selection in each
iteration based on prior knowledge and search history, and
estimates the potential maximum values of different hyperpara-
meter values for the objective function by modeling the available
data and basing the selection on the expectation of the different
hyperparameters. This probability-based approach can effectively
utilize the available information to improve the accuracy of the
next hyperparameter selection, thereby accelerating convergence
and improving search efficiency.
Figure 7 shows the confusion matrices of the prediction results

for the three search methods. The numbers above the confusion
matrix represent the predicted sample quantities, while the values
below represent the recall percentages. As can be seen from the
figure, the confusion matrix obtained after the optimization of the
algorithm in this article achieves 99.9% and 76.4% recall on non-
diabetic and diabetic respectively, which are higher than the other
two methods. Among them, the recall on the samples of the
diabetes category improves more, which is 4.9% higher than both
the random search and the grid search, which indicates that the
model has better prediction results for the diabetes category. The
comparison results reflect that the Optuna-LightGBM model
proposed in this article can intelligently adjust the search space
and effectively utilize the existing information, which is able to
mine the data features more deeply and reduce the probability of
incorrect prediction.

Comparative experiments of various machine learning
algorithms
In this section, we combine five classic machine learning
models—MLP, SVM, Decision Tree, RF, and XGBoost—with the
Optuna algorithm and compare them with the proposed

Optuna-LightGBM model to validate its prediction and general-
ization capabilities. The average test results for the six models
are shown in Table 7. Here, ‘Before’ represents the performance
of the models before Optuna hyperparameter optimization, and
‘Optimized’ represents their performance after optimization.
From the comparison of the six classifier models in Table 7, it

can be seen that most models show improved performance after
Optuna optimization, particularly in terms of accuracy and F1
score. This indicates that the optimization strategy enables the
models to better capture key features in the data, thereby
enhancing their generalization ability. For example, the accuracy
of the Decision Tree model increased from 94.66% to 97.08% after
optimization, and the Average F1-Score increased by 8.94%. This
significant improvement is attributed to Optuna’s capability to
optimize hyperparameters. By effectively exploring the hyperpara-
meter space using Bayesian optimization, Optuna identifies the
optimal hyperparameter combinations, significantly enhancing
the performance of the Decision Tree model. Decision Tree
models are particularly sensitive to hyperparameters such as tree
depth and minimum samples per split, which directly affect model
complexity and generalization ability.
In contrast, although the XGBoost algorithm performs super-

iorly in a number of tasks, it slightly underperforms the
LightGBM algorithm in terms of hyper-parameter optimization
efficiency and handling large-scale data. The Optuna-LightGBM
model proposed in this article exhibits the highest average
accuracy of 97.11% after optimization, as well as small
improvements in recall and F1-Score, and a single search time
of only 2.5 seconds, showing a good balance of efficiency and
performance. This improvement in accuracy is attributed to
LightGBM’s inherent ability to handle large-scale data and high-
dimensional features. By accelerating training through a
histogram-based decision tree algorithm, LightGBM’s key para-
meters are finely tuned, allowing the model to better capture
complex patterns in the data while avoiding overfitting. This
balance of efficiency and performance demonstrates that the
Optuna-LightGBM model can ensure high prediction accuracy
while significantly reducing training time, making it an efficient
and superior choice for handling this dataset.
To further demonstrate the superiority of the proposed model’s

performance, ROC curves of the six models were analyzed, as

Table 6. Performance of optimization methods.

Accuracy (%) Precision (%) Recall (%) F1-score (%) Time(s)

No optimization model 97.07 97.17 68.82 80.57 —

Random search optimization 97.02 96.28 68.95 80.35 46

Grid search optimization 96.97 94.94 69.35 80.15 1788

The algorithm in this article 97.11 98.99 68.03 80.55 2.5

Fig. 7 Confusion matrix of the model under three search methods. a Random search, b grid search, c Optuna.
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shown in Fig. 8. Among the area under the curve of each model in
the figure, the area under the curve of the Optuna-LightGBM
algorithm is the largest, reaching 0.9801, and the curve is closest
to the upper left corner. This indicates that the LightGBM
algorithm can achieve a higher rate of true cases under the same
threshold while maintaining a lower rate of false positive cases.
There are several reasons for the excellent performance of the
LightGBM algorithm. Firstly, LightGBM adopts a histogram-based
decision tree algorithm, which reduces computational complexity
and improves split-point selection accuracy by discretising
continuous feature values, so that the relationship between the
features and the target variables can be captured more accurately.
Secondly, the depth of the tree and the number of leaf nodes are
finely tuned by Optuna algorithm optimization to ensure that the
model can capture complex feature interactions while avoiding
overfitting, thus optimizing the true and false positive rates. In
addition, the LightGBM algorithm introduces gradient-based one-
sided sampling (GOSS), which selects high-gradient samples for
splitting, improves computational efficiency, ensures attention to
key samples, and enhances the ability of minority class identifica-
tion. These advantages enable the Optuna-LightGBM model
proposed in this article to capture the complex features of the
data while maintaining excellent generalization ability, which
creates its excellent performance in terms of AUC and overall
performance.

Feature importance analysis
In this section, we analyze feature importance in detail under the
Optuna-LightGBM model to understand which features play a key
role in diabetes prediction. Feature importance reflects how much
each feature influences the model decision and is an effective way
to assess the contribution of features.
The LightGBM algorithm measures feature importance by

counting the number of times a feature is used for segmentation
in the tree structure. Whenever a feature is used to segment the
data, it receives an importance score that accumulates over time.
In this way, we can visualize which features are used frequently in
the model and infer their importance.
In Fig. 9, HbA1c levels stand out as a critical predictor with an

importance score of 0.496, significantly higher than other
features. HbA1c provides a comprehensive assessment of an
individual’s blood sugar levels over the past 2 to 3 months,
placing it at the core of diabetes risk evaluation. Following
closely is blood glucose level, with an importance score of 0.301,
further confirming the crucial role of glucose levels in diabetes
diagnosis. Age has an importance score of 0.282, highlighting
the association between age and the risk of type 2 diabetes,
which is consistent with medical research. The BMI importance
score is 0.108, indicating that body mass index also plays an
important role in diabetes risk assessment. Although hyperten-
sion and heart disease have lower importance scores, they still
show some relevance, suggesting that these factors may play a
role in diabetes prediction.
Feature importance analysis indicates that HbA1c levels,

glucose levels, age, and BMI are the most critical features in
diabetes prediction. These findings not only align with medical
knowledge but also enhance our understanding of the model’s
decision-making process, helping to further optimize the model
and improve prediction accuracy and reliability. In practical
applications, these features can be monitored as key indicators to
facilitate early detection and intervention for diabetes.

DISCUSSION
As a major disease affecting public health, early detection of
diabetes is crucial. In this article, a data balancing method
combining SMOTE and RUS is proposed to address the category
imbalance problem of diabetes dataset, which effectively miti-
gates the negative impact of category imbalance on model
performance. And the improved LightGBM-Optuna model is used
to optimize the prediction performance. Experimental results
show that the method exhibits better prediction accuracy and
efficiency than the traditional method on the unbalanced diabetes
prediction dataset.

Fig. 8 ROC curves for four machine learning models.

Table 7. Comparison results before and after optimization of each model.

Model Accuracy (%) Recall (%) F1-score (%) Time (s)

MLP Before 95.95 75.71 76.76 –

Optimized 96.03 76.99 76.3 23.5

SVM Before 95.65 72.21 74.57 –

Optimized 96.04 74.42 76.85 171.2

Decision tree Before 94.66 74.58 71.19 –

Optimized 97.08 66.86 80.13 1.3

RF Before 96.41 71.12 77.66 –

Optimized 97.08 66.86 80.13 52.5

XGBoost Before 97.01 69.26 80.33 –

Optimized 97.08 66.99 80.18 9.4

The algorithm in this article Before 97.07 68.82 80.57 –

Optimized 97.11 68.03 80.55 2.5
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The experimental results demonstrate the superior performance
of the Optuna-LightGBM algorithm in terms of accuracy, time
efficiency and generalization capability. Specifically, the accuracy
improves from 97.07% to 97.11%, an improvement of 0.04, the
precision improves from 97.17% to 98.99%, an improvement of
1.82, and the time for a single search is only 2.5 seconds, which is
much faster than that of the traditional grid search method. In
addition, the model showed superior adaptability and robustness
across different datasets and conditions, and the feature
importance analysis was consistent with medical knowledge,
highlighting the importance of HbA1c levels and blood glucose
levels for diabetes prediction.
Despite the encouraging results, this study has some limitations.

Firstly, training and validation were based on the current dataset,
which may suffer from selection bias and does not fully reflect the
characteristics of all patients. Second, although the model
performed well on the current dataset, its generalization ability
still needs to be validated in a larger population and diverse
clinical settings. In addition, the model may not fully capture all
potential risk factors, especially those not recorded in the dataset.
Future studies should consider more predictive variables, such as
lifestyle and dietary habits, to further improve prediction accuracy.
Finally, model interpretability still needs to be improved to gain
trust and application by healthcare practitioners.
Overall, the Optuna-LightGBM model shows potential for early

diabetes prediction, but further research is needed to overcome
current limitations and validate the model’s effectiveness and
feasibility. Future studies could explore methods to integrate more
diverse data sources and validate the model’s generalization
ability across different populations, as well as develop more
transparent and interpretable models.
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