
CANCER RESEARCH | COMPUTATIONAL CANCER BIOLOGY AND TECHNOLOGY 

Transient Differentiation-State Plasticity Occurs during 
Acute Lymphoblastic Leukemia Initiation 
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�
 ABSTRACT 

Leukemia is characterized by oncogenic lesions that result in a 
block of differentiation, whereas phenotypic plasticity is retained. 
A better understanding of how these two phenomena arise during 
leukemogenesis in humans could help inform diagnosis and 
treatment strategies. Here, we leveraged the well-defined differ-
entiation states during T-cell development to pinpoint 
the initiation of T-cell acute lymphoblastic leukemia 
(T-ALL), an aggressive form of childhood leukemia, and 
study the emergence of phenotypic plasticity. Single-cell 
whole genome sequencing of leukemic blasts was combined 
with multiparameter flow cytometry to couple cell identity 
and clonal lineages. Irrespective of genetic events, leukemia- 
initiating cells altered their phenotypes by differentiation and 
dedifferentiation. The construction of the phylogenies of in-
dividual leukemias using somatic mutations revealed that 
phenotypic diversity is reflected by the clonal structure of 
cancer. The analysis also indicated that the acquired pheno-
types are heritable and stable. Together, these results dem-
onstrate a transient period of plasticity during leukemia 
initiation, where phenotypic switches seem unidirectional. 

Significance: A method merging multicolor flow cytometry 
with single-cell whole genome sequencing to couple cell identity 
with clonal lineages uncovers differentiation-state plasticity in 
leukemia, reconciling blocked differentiation with phenotypic 
plasticity in cancer. 
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Introduction 
Cancer cells exploit phenotypic plasticity to switch between dif-

ferent states (1), such as epithelial and mesenchymal (2), stem-like 
and differentiated (3), or drug-sensitive and drug-resistance (4), 
thereby posing significant challenges in cancer treatment (5). 
Characterizing phenotypic switching between stem-like and differ-
entiated cell states is technically complex because the characteristics 

of the cell of origin are not necessarily equivalent to the phenotypic 
characteristics of the cancer stem cell (CSC; ref. 6). 

Somatic mutations shared between different cells of the same 
individual can be used to trace clonal lineages retrospectively (7). 
This approach allows for timing past events during cancer devel-
opment in primary human cancer samples. The dynamics of phe-
notype switching in human cancers can be studied by integrating 
clonal lineage information with cell identity. For this, adaptations of 
single-cell transcriptome sequencing protocols that allow for the 
combined assessment of the cellular state and the clonal composi-
tion of cancers have been reported (8, 9). In addition, lineage 
trees instructed by single-cell ATAC sequencing have revealed 
the stability of transcriptomic cell states in cancer (bioRxiv 
2022.12.28.522128; ref. 10). However, the number of informative 
genetic variants is low and mainly relies on CNAs or a limited 
number of cancer driver mutations, which are subjected to selection 
(9, 11). Ideally, neutral passenger mutations are used as a genetic 
barcode to trace the clonal lineages of individual cells. To identify 
these passenger mutations, single-cell whole genome sequencing 
(scWGS) is required. Clonal expansions have been used to obtain 
sufficient DNA from a single cell (12–14). However, not all cells, 
such as leukemic blasts, can clonally expand in vitro. Alternatively, 
whole genome amplification using strand displacement polymerases 
can be used to obtain sufficient DNA of a single cell. Still, this 
technology is notorious for introducing amplification biases, arti-
facts, and allelic dropouts (15). Recently, primary template-directed 
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amplification (PTA; ref. 16) and complementary bioinformatic ap-
proaches (17) improved the accuracy of scWGS and enabled the 
study of somatic mutagenesis and retrospective lineage tracing of 
cells with limited proliferation potential in vitro (17). 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive 
childhood leukemia characterized by genomic rearrangements 
resulting in a blocked differentiation at specific stages of the T-cell 
development (18, 19). T-ALL blasts often do not express a T-cell 
receptor (TCR) on the membrane. However, the clonal V(D)J re-
combination of the different TCR chain loci is detected in 86% of 
T-ALL patients (20). These irreversible genetic marks point to the 
extent of cellular differentiation as each TCR chain is recombined in 
a different T-cell developmental stage (21). Interestingly, leukemic 
blast populations spanning different developmental stages are de-
scribed in ALL (22, 23) and AML (8). Although in AML, pheno-
typically immature cells are shown to be CSCs (24), CSCs are not 
identified in ALL. Instead, cells of distinct phenotypes display a 
leukemia-initiating potential in xenotransplantation experiments 
(25, 26). Despite the phenotype, these cells reconstitute a pheno-
typically heterogeneous leukemia in mice (25, 26). However, it re-
mains unclear to what extent lineage plasticity plays a role in human 
ALL progression. 

Therefore, we used T-ALL as a model disease to study phenotypic 
plasticity and leukemic differentiation stage arrest. We show that 
diverse mutational processes or driver mutations do not drive 
phenotypic diversity. Instead, the phylogenetic analysis indicates a 
brief period of plasticity at leukemia initiation, where cells acquire a 
variety of phenotypes, which then become fixed. This short period 
of plasticity could also be detected at relapse initiation. Our work 
provides insight into the in-situ initiation and plastic progression 
of ALL. 

Materials and Methods 
Samples 

Pediatric thymic tissues from nonleukemic patients undergoing 
cardiac surgery were obtained. The patient’s parents or legal 
guardians provided written informed consent to use leftover ma-
terial according to the study protocol TCbio-18-181 approved by the 
ethical committee and the biobank of the Utrecht University 
Medical Center (the Netherlands) and in accordance with the 
Declaration of Helsinki. Briefly, thymus biopsies were mechan-
ically disrupted in an RPMI-1640 medium (#21875034, Gibco) 
supplemented with fetal bovine serum (#A4766801, Gibco) to 
obtain a single-cell suspension of thymocytes and immediately 
used for the flow cytometry analysis. Contaminating red blood 
cells were removed using an RBC lysis buffer (#420301, BioL-
egend) per the manufacturer’s protocol. If indicated, the cell 
suspension was partially depleted of the CD4/CD8 double-positive 
(DP) thymocyte subsets by magnetic bead separation. For this, 7 �
10̂7 cells were stained for 30 min on ice with 20 μL CD4 
MicroBeads human (#130-045-101, Miltenyi Biotec), 20 μL CD8 
MicroBeads human (#130-045-201, Miltenyi Biotec), and 20 μL 
CD3 MicroBeads human (#130-050-101, Miltenyi Biotec). Cells 
were added to LS columns (#130-042-401, Miltenyi Biotec), and 
flow through was used for the subsequent flow cytometry 
experiments. 

Primary blasts from 33 T-ALL patients were included in this 
study (Supplementary Table S1). The patient’s parents or legal 
guardians provided written informed consent to use leftover diag-
nostic material for research, with approval from the institutional 

review board of the Erasmus MC Rotterdam and in accordance with 
the Declaration of Helsinki (MEC-2004-203, MEC-2012-287). 
Leukemia cells were harvested from blood or bone marrow biopsies 
and enriched to a purity of at least 90%, as described previously 
(19). Genetic subtypes were reported previously (19). 

High-parameter flow cytometry 
Experiments were performed using the Bio-Rad ZE5 (Bio-Rad). 

Hereto, 500,000 cells were washed with PBS and stained for viability 
for 30 min (Zombie NIR Fixable viability kit, #423105, BioLegend). 
Then, the cells were stained in Brilliant Stain Buffer (#563794, BD 
Biosciences) with a cocktail of antibodies for 30 min on ice. Com-
pensation and initial data analysis were performed using FlowJo 
v10.7.1 (RRID:SCR_008520). 

Antibodies used for 17-parameter flow cytometry were as follows: 
CD4-PE/Cyanine7 (1:500, clone OKT-4, BioLegend Cat# 317414, 
RRID:AB_571959), CD3-BUV496 (1:500, clone: UCHT1, BD Bio-
sciences #745740, RRID: RRID:AB_2743211), CD11c-BUV661 (1: 
200, clone: B-ly-6, BD Biosciences Cat# 565067, RRID: 
AB_2744275), CD5-BUV737 (1:500, clone: UCHT2, BD Biosciences 
Cat# 564451, RRID:AB_2714177), CD44-BV510 (1:1,000, clone: 
IM7, BioLegend Cat# 103044, RRID:AB_2650923), CD123-BV605 
(1:200, clone: 6H6, BioLegend Cat# 306025, RRID:AB_2562115), 
CD14-BV650 (1:500, clone: M5E2, BD Biosciences Cat# 563419, 
RRID:AB_2744286), CD8a-BV711 (1:500, clone: RPA-T8, BioL-
egend Cat# 301043, RRID:AB_11218793), CD7-BV786 (1:500, 
clone: MT701, BD Biosciences Cat# 740964, RRID:AB_2740589), 
CD25-BB515 (1:200, clone: 2A3, BD Biosciences Cat# 564467, 
RRID:AB_2744340), CD56-BB700 (1:500, clone: MY31, BD Bio-
sciences Cat# 566574, RRID:AB_2743411), CD1a-PE (1:1000, 
clone HI149, BioLegend Cat# 300105, RRID:AB_314019), CD19- 
PE/Dazzle594 (1:500, clone: HIB19, BioLegend Cat# 302251, 
RRID:AB_2563559), TCRα/β-PE/Cyanine5 (1:1000, clone: IP26, 
BioLegend Cat# 306710, RRID:AB_314648), TCRγ/δ-APC (1:500, 
clone: 11F2, Miltenyi Biotec Cat# 130-113-500, RRID: 
AB_2733463), CD45-AF700 (1:1000, clone: 2D1, BioLegend Cat# 
368513, RRID:AB_2566373), and Zombie NIR (1:6000, BioLegend 
Cat# 423105). 

Index sorting 
Blast populations were purified on an SH800S Cell Sorter (Sony, 

RRID: SCR_018066). Populations were identified using the follow-
ing surface markers: DNearly: CD7+CD4�CD8�CD1a�, DN3: 
CD7+CD8�CD4�CD1a+, iSPCD4: CD7+CD8�CD4+CD1a+, DP: 
CD7+CD8+CD4+, SPCD4: CD7+CD8�CD4+CD1a�, and SPCD8: 
CD7+CD8+CD4�. Single-cell blasts were sorted into DNA low-bind 
plates, each well-containing 3 μl of PTA cell buffer according to 
manufacturer’s protocol (ResolveDNA V1 Consumables, #100180, 
Bioskryb Genomics). 

Antibodies used for the index sort panel were as follows: CD8a- 
BV421 (1:400, clone: RPA-T8, BioLegend Cat# 301036, RRID: 
AB_10960142), CD4-FITC (1:200, clone: VIT4, Miltenyi Biotec Cat# 
130-098-160, RRID:AB_2660912), CD1a-PE (1:400), CD7-PE/Cya-
nine7 (1:200, clone: M-T701, BD Biosciences Cat# 564019, RRID: 
AB_2738545), CD16-APC (1:200, clone: 3G8, BioLegend Cat# 
302012, RRID:AB_314212), TCRγ/δ (1:200), and AnnexinV-APC 
(1:200, BioLegend Cat# 640920, RRID: AB_2561515). 

Flow cytometry data analysis 
Flow cytometric .fcs files were loaded in R using the ReadFCS 

function from the FlowCore package (RRID:SCR_002205). At first, 
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quality control was performed on raw flow cytometry data using the 
package flowAI. After that, manual gates were used to remove 
debris (FSC-A vs. SSC-A), doublets (FSC-A vs. FSC-H and SSC-A 

vs. SSC-W), dead cells (ZombieNIR+), and CD45� cells. The CD45+ 

population was used in further bioinformatic analysis (Supple-
mentary Figs. S1A and S1B). 
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Figure 1. 
Thymocyte developmental stages identified by multiparameter flow cytometry. A, Schematic overview of the thymocyte development and stages of active V(D) 
J recombination. Epitope markers used to identify the respective cell types are listed. B, Conventional two-dimensional gating strategy to identify the main 
thymocyte maturation stages. Percentages are based on the parent population, as indicated by the arrows. Cells of the representative sample (Thy070) are 
shown. C, Left, cell types found per sample by semiautomatic gating as the proportion of the total CD45+ cells. Right, cell types found per sample after partial 
depletion of CD4/CD8 DP cells. cDC, conventional dendritic cell; DN, CD4/CD8 double-negative T-cell; DP, CD4/CD8 double-positive T-cell; iSP CD4, immature 
single positive CD4 T-cell; pDC, plasmacytoid dendritic cell; SP CD4, single positive CD4 T-cell; and SP CD8, single positive CD8 T-cell. D, Uniform manifold 
approximation and projection (UMAP) for dimension reduction of t-lineage cell types identified in samples of nine nonleukemic donors. Bar plot of cell types 
assigned using our semiautomatic gating strategy. Per sample, 5,000 cells were plotted. 
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Figure 2. 
T-ALL blasts are immunophenotypically heterogeneous. A, Two-dimensional gating plots of six representable T-ALL primary diagnostic samples. Non-T lineage 
cells were excluded prior to plotting. B, Bar graph of 28 primary diagnostic T-ALL samples. Colors represent the proportion per assigned cell type after excluding 
non-T lineage cells. Samples were sorted on their oncogenic driver identified at diagnosis. C, Proportions of cell types found in CITE-seq data set vs. flow 
cytometry from the same nonleukemic thymus sample. D, Proportion of cell types found in data sets acquired with CITE-seq and flow cytometry from the same 
T-ALL patient. E, Differential gene expression of phenotypic subpopulations per sequenced patient. Columns represent cells, whereas rows represent the top five 
differentially expressed genes per subpopulation. 
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First, outliers were removed by excluding each channel’s top 
and bottom 0.1% signal. After that, data were biexponentially 
transformed according to standard flow jo settings using the 
flowjo_biexp function of the flowWorkspace package (RRID: 
SCR_001155; channelRange ¼ 4096, maxValue ¼ 300,000, pos ¼
4.33, neg ¼ 1, widthBasis ¼ �10). Data were randomly down- 
sampled to 5,000 cells per replicate. Cell types were determined by 
applying semiautomatic gating using manually assessed cut-off 
values (Supplementary Tables S1B and S2A). Additionally, di-
mensional reduction was done using uniform manifold approxi-
mation and projection for dimension reduction. Code and 
descriptions are available here: https://github.com/ToolsVanBox/. 
Results were confirmed in two independent data sets for patients 
for which data were available. First, the EuroFlow diagnostics data 
(n ¼ 6) and expression of epitopes overlapping in both the flow 
cytometry panel and EuroFlow panel (9/17) were assessed. Addi-
tionally, data were compared with the expression data from our 
Cellular Indexing of Transcriptomes and Epitopes sequencing 
(CITE-seq) data set. 

CITE-seq library generation 
CITE-seq was performed using 10� Genomics Immune Pro-

filing, including V(D)J amplification for human T-cells kit V3 
(1000699, 10� Genomics) according to the manufacturer’s pro-
tocol. We used TotalSeq-C lyophilized antibody cocktail for epi-
tope recognition, including 204 antibodies (Biolegend; 
Supplementary Table S3). Thymus samples were prepared fresh, 
and T-ALL samples were thawed. When viability was <90%, dead 
cells were removed using the Dead Cell Removal Kit (Milteny). 
Single-cell libraries were sequenced using NovaSeq 6000 (Illu-
mina). The Cell Ranger software pipeline (10� Genomics, v5) was 
used to demultiplex cellular barcodes, map reads to the human 
genome (GRCh38), and transcriptome using the STAR aligner and 
produce a matrix of gene counts versus cells V(D)J sequences and 
CITE-seq counts. 

CITE-seq data analysis 
Low-quality cell filters were set to exclude cells with <300 genes, <500 

UMIs, and <40% mitochondrial reads. Antibody aggregates with 
>50,000 antibody reads/cell genes in less than three cells were removed. 
Subsequently, the RNA expression was log-normalized, and the epitope 
expression was CLR-normalized (setting margin ¼ 2) using Seurat v4 
(RRID:SCR_016341). Phenotypic subpopulations were identified using 
the same funnel principle as used for flow cytometry (Supplementary 
Fig. S1C). Differential expression analysis was performed using the 
Seurat v4 option FindAllMarkers. Before dimensional reduction, cell 
cycle genes and mitochondrial genes were removed from the dataset. 
Endocytosis score was based on the Gene Set Enrichment Analysis 
(RRID:SCR_003199) endocytosis gene list: https://www.gsea- 
msigdb.org/gsea/msigdb/cards/KEGG_ENDOCYTOSIS. 

Shannon diversity index 
Shannon diversity index was calculated for the number of an-

notated T-cell populations (CD7+) per sample using the R package 
vegan (RRID:SCR_011950). The cut-off value for high or low 
Shannon index was determined using the R package “cut-off.” 

Germline controls 
Mesenchymal stromal cells (MSC) were cultured from the bone 

marrow samples in DMEM-F12 medium (#31053044, Gibco) 

supplemented with 10% FBS (Gibco) and 1% GlutaMax (#35050061, 
Gibco). MSCs could be harvested when confluent (after approxi-
mately 3 weeks). 

If MSCs did not grow out, we used sorted innate cells (CD14+ 

or CD16+) as an alternative for germline control. Because we are 
only comparing leukemic cells among each other, mutations 
acquired early in hematopoiesis are not important for our 
analysis. 

DNA isolation and library generation 
Bulk DNA was isolated, as previously reported (27). PTA single- 

cell whole genome amplification was performed according to the 
manufacturer’s protocol (#100180, BioSkryb Genomics) and as 
previously reported (17). The libraries were sequenced at a depth of 
15� for single-cell samples and 30� for bulk samples. 

Mutation calling and filtering 
Somatic mutation calling samples were performed as previously 

reported (27). Thereafter, our in-house developed pipeline PTATO 
(RRID:SCR_025353) was applied to call high-quality somatic mu-
tation calls, as well as indel and structural variants with low PTA- 
induced artifacts (17). Full code and description are found here: 
https://github.com/ToolsVanBox/. 

Driver events 
Potential driver events were identified as previously reported 

(27) and filtered against previously reported events in ALL ge-
nomic cohorts (18, 28). All driver SNVs and indels were validated 
by hand using the Integrative Genomics Viewer (IGV; RRID: 
SCR_011793). 

Mutational load and mutational pattern analysis 
Mutation load, single base substitution, and indel counts were 

normalized to GATK (RRID:SCR_001876) CallableLoci’s CALL-
ABLE length. The baseline data from previous publications were 
used (12, 27–29). Mutations were normalized for age by 
(number_of_mutations–baseline_intercept)/baseline_slope. Muta-
tional pattern analysis was performed as previously reported (27) 
using MutationalPatterns v3.0.1 (RRID:SCR_024247). We identi-
fied only signatures previously reported in COSMIC (RRID: 
SCR_002260). 

Constructing phylogenetic trees 
Tree shapes were generated using the CellPhy package (30) 

based on the most likely path, and then manually checked. 
Thereafter, high-confident somatic variants were assigned to each 
branch. 

For this, filtering was slightly adjusted compared with previous 
analyses. The root comprised all mutations identified in the bulk 
sample and missed in <2 single cells. Mutations annotated to sub-
branches had to be found in all cells per branch �1. Clonal muta-
tions unique to one sample at the exterior branch were additionally 
filtered to be absent in all other samples or n � 1, where 1 is the sub- 
clonal presence in one other sample. All shared mutations were 
manually inspected in IGV, and false-positive results were 
filtered out. 

The relative contributions of phenotypic subpopulations are 
calculated by multiplying the mean variant allele frequency (VAF) 
of mutations by two and multiplying by the proportion of the 
subpopulation, as detected by flow cytometry at diagnosis. This is 
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Figure 3. 
Assessing somatic mutations in the genomes of single T-ALL blasts. A, Schematic overview of sorting and sequencing strategy. B, Relative contribution of 
the COSMIC mutational signatures found per cell of pt2229, pt2322, and pt2283. X-axis labels are colored by cell phenotype. C, Base substitutions found per 
T-ALL cell plotted on the age line of HSC, näıve T cells, and memory T cells. Each dot represents a single cell, whereas the squares represent the bulk WGS 
samples. HSCs2 are hematopoietic stem cells published by Osorio colleagues (12), HSCs1, T-Näıve, and T-memory were published by Machado and col-
leagues (29). D, Quantification of observed mutations in T-ALL patient cells vs. expected mutations in nonleukemic cells corrected for their respective age. 
Populations were compared using a one-way repeated-measures ANOVA and Bonferroni corrected t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 
P < 0.0001; ns, not significant. E–G, Oncoplot showing potential driver structural variants, indels, and SNVs previously described in ALL found per sequenced 
T-ALL cell. 
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then normalized to the total sample by dividing by the sum of the 
contributions. 

Recall rate 
The recall rate was calculated by assessing the presence of true 

positive variants, VAF > 0.15 in bulk ALL sample, in single cell PTA 
samples. We corrected for subclonal diversity by assessing whether a 
variant was missed by specific branches, where variants that were 
missed by a complete branch, but were present in another, were 
labeled as true negatives. 

This calculation was not possible for single-cell pt2283- 
TALL12 as this blast harbored mostly unique mutations; there-
fore, the lack of mutations could not be confidently called a true 
negative. 

V(D)J recombination analysis 
For V(D)J recombination calling, MiXCR v4.3.2 (RRID: 

SCR_018725) was used with -RNA full-length analysis option, 
—species hsa —dna to identify reads containing CDR3 regions, 
their relative abundances, and specific V(D)J gene usage. False 
positives were filtered out by removing the clone fraction < 0.02 
for delta, gamma, and beta sequences. For alpha sequences, the 
variants were manually checked using BAF and copy number 
plots. CDR3 sequences with large insertions or deletions (repre-
sented as “_”) or premature stop codons (represented as “∗”) are 
denoted as nonfunctional. Code and descriptions are available 
here: https://github.com/ToolsVanBox/. 

Statistical testing 
Unless stated otherwise, all statistical testing procedures were 

performed in R using the following packages: rstatix (RRID: 
SCR_021240), ggpubr (RRID:SCR_021139), and ggstatsplot. 

Data visualization 
If not specified otherwise, all data visualizations were performed 

using ggplot2 (RRID:SCR_014601) and ggpubr. 

Data availability 
Raw flow cytometry data are available through FlowRepository.org 

at Repository ID: FR-FCM-Z5TV (thymocyte subtyping data) and 
Repository ID: FR-FCM-Z5UY (T-cell leukemia immunophenotyping 
data). 

The WGS data and CITE-seq data are available through The 
European Genome-phenome Archive (EGA; https://ega- 
archive.org/) at EGAS00001007446 and EGAS50000000358. All 
code and pipelines used are available through https://github.com/ 
ToolsVanBox. Additional code is available from the lead contact 
and will be provided upon request. 

Results 
Assessing T-lymphoid differentiation stages in pediatric 
nonleukemic donors 

To quantify the differentiation states of T-ALL cells, we first 
established an immunophenotypic reference dataset of nonleukemic 
thymocytes. For this, a 17-parameter flow cytometry panel, in-
cluding myeloid and lymphoid cell markers, was developed and 
tested on thymocytes of nine independent infant donors (Fig. 1A; 
Supplementary Table S1A). Using this panel, we identified all 
conventional T-cell populations by manual gating, although some 

populations are sparse (<1% of the total population; Fig. 1B; Sup-
plementary Fig. S1B). 

To better represent the sparse cell populations, the CD4+/CD8+ 

DP population was partially depleted using magnetic beads (Fig. 1B 
and C). As the epitope densities of CD4 and CD8 combined are 
higher on DP cells than on SP cells, DP cells were more efficiently 
depleted. This led to a reduction of 81% of the DP population with 
an average proportion of 0.17 (range, 0.02–0.47) DP cells left. 
Correspondingly, the proportions of CD4–CD8� double-negative 
(DN), γδ T-cell, and immature SP CD4 (iSP CD4) populations, as 
well as non-T lineage cells, were enhanced (Fig. 1C). 

To automate differentiation stage annotation for leukemic cells, 
we developed a semiautomatic gating strategy assigning cell anno-
tations in healthy thymocytes using a funnel principle (Supple-
mentary Fig. S1C; Materials and Methods). We compared the 
semiautomatic gating results with manually gated populations to 
test the reliability of this approach. The overall accuracy of our 
semiautomatic gating strategy was 90.45% (CI, 90.43%–90.47%). If a 
cell was misclassified, the misclassified cell was most likely to de-
crease into the population preceding or directly following the actual 
population in the developmental hierarchy (Supplementary Table 
S1C). Dimensional reduction analysis shows a continuum of dif-
ferentiation with cell types transitioning toward the next (Fig. 1D; 
Supplementary Fig. S1D), which suggests that the biological effect of 
misclassification is likely to be small. 

T-ALL harbors multiple phenotypic subpopulations at 
diagnosis 

Next, we used the same flow cytometry panel to analyze 
33 blast-enriched primary peripheral blood (PB) or bone mar-
row samples of pediatric T-ALL patients (>85% blasts). Patient 
information is available in Supplementary Table S2B. Exami-
nation of the expression of the T-lymphocyte development 
epitopes showed inter-patient differences and partial positivity 
for CD1a, CD4, and CD8 (Fig. 2A). Our semiautomatic gating 
strategy was used to classify the differentiation states of all 
CD7+ cells in the samples (Supplementary Fig. S2A). Of note, 
patient samples showed a continuum of gradual transitions of 
blasts over T-cell development stages (Fig. 2A), which was 
overlooked in our annotation strategy. Following the median blast 
count of 98% (IQR ¼ 94–99), we define immunophenotypic subpop-
ulations as populations with a size of >10%. Intratumor phenotypic 
heterogeneity was observed in 26 out of the 31 T-ALL patients (83.8%), 
with an average of 2.4 subpopulations per sample (SD 0.99; Fig. 2B). 
Patients with only one phenotypic blast population had a T-ALL with 
an immature phenotype (n ¼ 4) or a γ/δ T-cell phenotype (n ¼ 1). 
This lack of heterogeneity could be because of the limited epitope 
markers used to differentiate between immature and 
γ/δ-developmental stages. The other 26 patients harbor two to four 
T-lymphoid developmental stages (Fig. 2B). Interestingly, the most 
immature “DN-like” immunophenotype was found in all samples, 
suggesting that developmental hierarchy was maintained. Unexpect-
edly, we also noticed intrapatient heterogeneity among patients with 
the same genetic subtype (Fig. 2B). 

Additionally, the major subpopulation in each sample was asso-
ciated with their respective maturation stages as previously defined 
by Liu and colleagues (Supplementary Table S2; Supplementary Fig. 
S2B; ref. 18). Diversity in phenotypic populations was higher in 
patients with cortical and postcortical maturation stages (Supple-
mentary Fig. S2C) and did not predict survival outcomes (Supple-
mentary Fig. S2D). Interestingly, intratumor heterogeneity was 
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inversely correlated with age in the preand postcortical maturation 
stages, but increased with age in cortical patients (Supplementary 
Fig. S2E). Our results were validated using EuroFlow diagnostic 
panels (31) and the CITE-seq dataset, which showed similar results 
(Supplementary Fig. S3). 

To further characterize the heterogeneity in phenotypic cell 
states, CITE-seq data were generated for eight T-ALL patients and 
three nonleukemic thymocyte donors. Phenotypic subpopulations 
were annotated by applying the same funnel principle to the epitope 
data set (Supplementary Fig. S1C), and comparable phenotypes 
were found in CITE-seq data for the thymocyte and T-ALL samples 
(Fig. 2C). Notably, γδ T-cell populations were not found in the 
thymocytes CITE-seq data (Fig. 2C) likely because of the encap-
sulation method used to generate the libraries. Moreover, “iSP CD4- 
like” populations were more often found in the patient samples 
when analyzed with flow cytometry (Fig. 2D). Reassuringly, the 
expression of epitope markers in T-ALL patients accompanied the 
expression of the respective gene (Supplementary Fig. S4A). Unlike 
nonleukemic mature T-cells, when plotted in a high-dimensional 
space, most T-ALL cells do not overlap with developing T cells. This 
suggests that the intensity and the coexpression of certain epitopes 
differed from T-ALL to healthy developing T cells (Supplementary 
Fig. S4B). Similar outcomes were observed between chromatin ac-
cessibility of T-ALL and T-cell precursors (32). Endocytosis gene 
scores were at basal levels and did not increase in more immature 
cell types (Supplementary Fig. S4C), excluding aberrant endocytosis 
as an underlying mechanism for the promiscuous expression of 
epitope markers. 

Differential expression analysis of subpopulations across patients 
revealed mostly patient-specific differences (Supplementary Fig. S4D). 
Moreover, patient-specific differential expression analysis showed 
minimal transcriptional heterogeneity in immunophenotypic sub-
populations (Fig. 2E), albeit immature subset harbor expression of 
genes found in immature thymocytes KLRB1 and FXYD2 in 
“DNearly-like” cells and CD1A-D and ALDH1A2 in “DN3-like” cells. 
Likewise, PTCRA, ELOVL4, and IL7R were highly expressed in the 
more mature “DP-like” and “SPCD4-like” cells and NKG7 and CCL5 
in the “SPCD8-like” cells. We then extracted a differentiation stage 
gene set from the thymocyte reference for each subpopulation. Gene 
set scoring showed a clear correlation between phenotypic subpop-
ulations and their respective differentiation stage in pt2283, pt335, 
pt1975, and pt10138 (Supplementary Fig. S4E). However, this cor-
relation could not be observed for the other four patients. This could 
be because of the T-ALL subtype differences as NKX2.1 and TAL1 
subtypes correlate, and LMO2 and TLX3 subtypes do not. 

Assessing somatic mutations in the genomes of single T-ALL 
blasts 

We next questioned whether genetic determinants drive the 
immunophenotypic diversity in the T-ALL patients. To address this, 
we performed WGS of single blasts of the various immunopheno-
typic populations (Fig. 3A). For this, we used PTA to obtain enough 
DNA of a single blast for the WGS analysis with nucleotide reso-
lution without the need for in vitro clonal expansion (16). We se-
lected three patients that were driven by the commonly identified 
TLX1, LMO2, and TAL1 structural variants (i.e., pt2229, pt2322, 
and pt2283, respectively; ref. 28). In all three patients, multiple 
phenotypic subpopulations were identified (Fig. 2B). We single-cell 
sorted four distinct phenotypic subpopulations per patient and 
analyzed two to three cells per immunophenotypic subpopulation 
per patient (Supplementary Fig. S5A). In total, we performed a WGS 

analysis of 34 single cells. Our in-house developed machine 
learning-based PTATO tool was used to effectively filter PTA arti-
facts and obtain accurate catalogs of base substitutions, indels, and 
structural variants (SV; ref. 17). We observed an average of 823.2 
(SD ± 221.6) SNVs in each cell of pt2229 and 651.5 (SD ± 121.7) 
somatic variants in pt2322 (Supplementary Fig. S5B). The higher 
mutation load in TLX1 T-ALL was in concordance with previous 
studies (28). Moreover, the contribution of the distinct PTA artifact 
signature (33) was low (average of 4.3%, SD ± 5.08), indicating a low 
fraction of false-positive artifacts introduced by PTA (Fig. 3B). We 
performed a WGS analysis on the bulk T-ALL sample to calculate 
the recall rate of somatic mutations in each assessed single cell. The 
median recall rate was 95.8% (IQR ¼ 85.1–97.6), 95.5% (IQR ¼
91.7–96.7), and 96.0% (IQR ¼ 95.1–96.9) for pt2229, pt2322, and 
pt2283, respectively (Supplementary Fig. S5C). Additionally, the 
mutation load in these PTA samples was comparable to the muta-
tion load previously reported in T-ALL samples (Supplementary 
Fig. S5D). We found comparable mutational load and mutational 
signature to clonally expanded memory and näıve T-cells (Fig. 3B– 
D; ref. 29). Taken together, these comparisons validated the reli-
ability of our PTA-based WGS data. 

Immunophenotypic subpopulations do not harbor additional 
genetic drivers or distinctive mutational loads 

First, we assessed if genetic heterogeneity explains the phenotypic 
heterogeneity we observed. Besides SVs, 112 additional missense and 
truncating mutations were identified, of which, mutations in 
NOTCH1, PHF6, BCL11B, MLLT6, MHS2, and DNM2 were previ-
ously reported as driver genes in T-ALL (Supplementary Fig. S5E–G; 
Supplementary Table S4). Importantly, these mutations in known 
driver genes were mostly clonally present in the T-ALL and not 
unique to one blast or a subgroup of blasts (Fig. 3E–G). A notable 
exception was NOTCH1, in which two independent driver mutations 
were found in the two major T-ALL subclones of pt2322. This phe-
nomenon indicated convergent evolution and underlined the strong 
selective pressure on acquiring NOTCH1 mutations during T-ALL 
leukemogenesis (34). However, because all cells of this T-ALL harbor 
an activating NOTCH1 mutation, we deemed it unlikely that 
NOTCH1 (alone) drives the phenotypic diversity we observed here. 

Moreover, a subclonal MSH2 mutation was found in pt2322 
(Supplementary Fig. S5F). However, this mutation did not result in 
a complete loss of the encoding protein, and we found no evidence 
of a mismatch repair-deficient mutational signature in the mutated 
cells (Fig. 3B). Therefore, it is unlikely that this specific mutation 
plays a role in the progression of this T-ALL. In this regard, no 
differences in mutational signatures (Fig. 3B) and mutational load 
(Supplementary Fig. S5B) were observed between the subpopula-
tions. In summary, the driver mutations identified in pt2229, 
pt2322, and pt2283 were mostly clonal, suggesting a nongenetic 
mechanism for phenotypic switching. 

Combining phylogenic and phenotypic information reveals 
differentiation state heritability 

To elucidate when phenotypic heterogeneity was introduced and 
how plastic leukemic cells were, we generated phylogenetic trees 
from the scWGS data to integrate cell state heterogeneity with the 
cancer evolution model (Fig. 4; refs. 12, 13, 35). 

For pt2229, 893 clonal mutations were detected in all single cells 
and the bulk ALL. These mutations made up the root of the tree 
(Fig. 4A; Supplementary Fig. S6A). The subsequent subclonal 
branches (branch A & branch B) harbored fewer shared mutations 
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Figure 4. 
Lineage tracing reveals heritable differentiation states of leukemic blasts. A–C, Phylogenetic tree of T-ALL single blasts of respective patient. Length of the branches 
indicates the number of somatic base substitutions. Colors indicate the phenotypic subpopulation. Letters address the different branches. D–F, VAF contribution of 
branch-specific mutations in sorted bulk populations normalized to the ALLBULK. Differences in VAF per variant in each population were compared using a one-way 
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(48 and 88, respectively). This particular evolution shape corre-
sponded to a punctuated evolution model and was also observed in 
pt2283 (36). This model suggests that the most recent common an-
cestor (MRCA) started expanding after a relatively long latency. 

For normal T-cell differentiation, we expected a random distri-
bution of differentiation stages among branches because of continu-
ous gradual lineage-specific differentiation. In contrast, T-ALL blasts 
of the same phenotypes resided closely in the phylogenetic tree. This 
suggests that phenotypes are heritable, and that plasticity is a transient 
and early event in leukemia progression (bioRxiv 2022.12.28.522128). 

The same observation was made in the other two patients we 
assessed by scWGS (Fig. 4B and C; Supplementary Fig. S6B and 
S6C). Additionally, in pt2322, branch B with “iSPCD4-like” cells 
harbored a 1.3-fold higher mutation burden than the other blasts. 
Differences in mutational signatures could not explain this in-
creased mutation load (Supplementary Fig. S6D). In pt2283, we 
observed a small genetic subclone reflecting 16% of the ALL as an 
early split of branch A. The phenotypic heterogeneity at the end 
branches of branch B suggests that phenotypic plasticity occurred 
after branch A branched off. 

To confirm the structure of the phylogenetic trees and validate 
the nonrandom distribution of immunophenotypes across the 
branches, we performed bulk WGS on sorted phenotypic pop-
ulations. We determined what portion of these populations could be 
attributed to the various branches (Materials and Methods). In line 
with our single-cell WGS data, the phenotypically distinct bulk 
populations distributed across the different branches were highly 
biased (Fig. 4D–F). For example, the “DNearly-like” population in 
pt2229 could almost exclusively be attributed to branch A. In 
contrast, branch C predominantly contributed to the more differ-
entiated “iSP CD4-like” and “DP-like” populations (Fig. 4D). Ad-
ditionally, the relative contribution of each phenotypic 
subpopulation toward each branch was calculated by considering 
the proportions of the phenotypic subpopulations annotated by our 
semiautomated gating strategy (Fig. 4G–I). The bulk sequencing 

data confirmed that cells become restricted to their phenotype and 
seem blocked in different differentiation states. 

V(D)J recombination directs toward the MRCA 
As discussed above, we observed blocked differentiation of 

T-ALL blasts in diverse phenotypic cell states. However, knowing 
that the phenotypic cell state of the MRCA was essential to elucidate 
whether the observed phenotypic diversity was attributed to arrested 
differentiation or dedifferentiation. 

We, therefore, analyzed the clonality of V(D)J recombination to 
pinpoint the most likely differentiation stage of the MRCA. De-
veloping T-cells of the α/β lineage recombined four TCR gene loci 
during specific stages of T-cell development, namely, the TCR delta 
(TRD) in the DNearly stage, the TCR gamma (TRG) in the DN3 
stage, and the TCR beta (TRB) initiated in the DN3 stage and 
completed in the iSPCD4 stage. Lastly, TCR alpha (TRA) recom-
bination was completed in the DP stage (Fig. 1A; ref. 21). The TRA 
and TRD genes were located in the same region of chromosome 14, 
and as a result of TRA recombination, the TRD was spliced out (21). 
Because the chance of getting a productive TCR was ∼25% to 30%, 
many cells had a biallelic recombination (37). In lymphoblastic 
leukemia, VDJ recombination is often used for minimal residual 
disease testing and seems clonal (38). 

The WGS data were interrogated for productive and nonproductive 
VDJ recombination, as recombination serves as a proxy for the stage of 
the developmental arrest of the MRCA. In all patients, TRD, TRG, and 
TRB had monoclonal rearrangements among the single blasts and bulk- 
sorted populations (Fig. 5; Supplementary Table S5; Supplementary Fig. 
S6E–G). Interestingly, in pt2229, we observed unique rearrangements of 
the TRA for blasts 8, 9, and 10 with a “DP-like” phenotype and poly-
clonal TRA recombination in the bulk “DP-like” population (Fig. 5A; 
Supplementary Table S5). This indicates that the MRCA rearranged the 
TRD, TRG, and TRB loci before initiating leukemia, and that the 
phenotypic cell state of the MRCA was just before the DP develop-
mental stage. This shows that leukemic blasts can further differentiate to 
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generate unique TCR alpha receptors, similar to the continued IgH 
recombination described in B-ALL (39). 

In pt2322, monoclonal TRD, TRG, and TRB were found, and TRA 
recombination was absent, indicating that the MRCA was of an “iSP 
CD4-like” phenotype (Fig. 5B). This sample harbored an oncogenic 
TRAD-LMO2 structural variant, which may have prevented contin-
ued rearrangements. Erroneous V(D)J recombination was present in 
20% to 25% of T-ALL samples (40). The oncogenic rearrangement of 
LMO2 frequently occurred in DNearly developmental stages. How-
ever, secondary events were needed to fully transform cells. As a 
result, the MRCA was from the “iSPCD4-like” phenotype. Of note, 
the small polyclonal fraction in the “SPCD4-like” bulk population 
may result from contaminating nonleukemic SP CD4 T-cells, which 
could not be excluded entirely using our sorting strategy. 

In pt2283, polyclonal TRA recombination was found in a subset 
of leukemic cells. Interestingly, the rearranged TRA of the immature 
“DNearly-like” cell 1 and bulk populations suggests that cells can 

dedifferentiate from an “iSP CD4-like” phenotype to a more im-
mature phenotype (Fig. 5C). 

Single-cell sequencing of alpha and beta transcripts showed TCR 
transcripts in 5/8 T-ALL samples and confirmed a higher clonality in 
T-ALL samples compared with healthy thymocytes (Fig. 5D). The TCR 
clonality was lower in the alpha versus beta chains. Additionally, the 
TRB recombination was more clonal in the “DNearly-like,” “iSPCD4- 
like,” and “DP-like” phenotypes compared with more mature pheno-
types, “SPCD4-like” and “SPCD8-like” (Fig. 5E). 

The identification of the phenotypic cell state of the MRCA confirmed 
that immunophenotypic heterogeneity in T-ALL originated from plas-
ticity, allowing differentiation and dedifferentiation of leukemic cells. 

Preleukemic cell inducing relapse possesses phenotypic 
plasticity traits 

Next, we studied the clonal evolution and plasticity of paired diag-
nostic and relapse samples. The time between diagnosis and relapse was 
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Figure 6. 
Phenotypic subpopulations induced at relapse by preleukemic clone. A and B, Phylogenetic tree of T-ALL single cell blasts of respective patients. Length of branches 
indicates the number of somatic base substitutions. Colors indicate the phenotypic subpopulation. Letters address the different branches. C and D, VAF contribution plots of 
the branch-specific mutation in bulk-sorted phenotypic populations normalized to the diagnostic ALL bulk (Dx_Bulk) or relapse bulk (Rx_Bulk), depending on presence. 
Differences in VAF per variant in each population were compared using a one-way repeated-measures ANOVA and Bonferroni corrected t test. *, P < 0.05; **, P < 0.01; ***, 
P < 0.001; ****, P < 0.0001. E and F, The relative contribution of V(D)J clones per gene segment to sequenced bulk populations and single cells per T-ALL patient. 
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4 years for pt344 and 11 months for pt1180. Phylogenetic trees for both 
patients showed a stringent bottleneck because of therapy, whereafter 
cells rapidly expanded (Fig. 6A and B). This indicates that both relapses 
originated from a single cell. Phenotypic subpopulations identified at 
diagnosis and relapse were comparable, although the relapse of pt344 
contained more “DNearly-like” cells, and pt1180 had markedly less 
“iSPCD4-like” and “DN3-like” cells (Supplementary Fig. S7A and S7B). 

Interestingly, relapse cells showed minimal overlap in SNVs 
(Fig. 6C and D; Supplementary Fig. S7C and S7D) and VDJ recom-
bination (Fig. 6E and F) with the diagnostic, revealing a preleukemic 
cell present at very low frequencies at diagnosis to increase relapse. In 
both patients, the colocalization of phenotypically similar cells at diag-
nosis and relapse indicated that heterogeneity in relapse was induced in 
the same manner as in the first leukemia. Collectively, these results 
show that preleukemic cells have a phenotypic plasticity trait. 

Discussion 
In this study, we investigated the phylogeny of phenotypic 

subpopulations in pediatric T-ALL and gained valuable insights 
into the native fate of leukemic cells before diagnosis. By coupling 
immunophenotyping with WGS data generated from single-cell 
leukemic blasts, we could reconstruct the phylogenetic lineage tree 
of leukemia at diagnosis and relapse and reveal the heritability of 
immunophenotypes. More specifically, we identified a small win-
dow of phenotypic plasticity at leukemia initiation. Whereafter, 
the cells were fixed in their newly acquired phenotype. Addi-
tionally, we performed an analysis of the V(D)J status at the 
single-cell level, allowing for the identification of the phenotype of 
the MRCA and demonstrating the ability of MRCAs to undergo 
both dedifferentiation and differentiation. Furthermore, pre-
leukemic clones that induced relapse possessed the same plasticity 
traits. 

The dogma in leukemia has long been that genetic events produce 
a differentiation block at a developmental stage during hemato-
poiesis. However, here we show that similar to other leukemias (8, 
22), T-ALL recapitulates a differentiation hierarchy manifested as 
phenotypic intratumor heterogeneity upon diagnosis. Interestingly, 
immature subpopulations were observed in all samples and previ-
ously associated with poor outcomes and relapse (41, 42). However, 
there was no definitive evidence of CSCs in ALL. Instead, cells of 
diverse phenotypes grew out in xenograft models (25, 26, 43, 44). In 
line with these findings, we found immature cells restricted in their 
phenotypic potential. Furthermore, we did not observe a hierar-
chical arrangement or asymmetric cell divisions, suggesting CSCs 
are not present. 

The heritability of phenotypic cell states and dedifferentiation 
was previously reported in glioblastoma (10), supporting our 
findings. Correspondingly, our data showed that leukemic ex-
pansion was initiated by a differentiated cell, and the observed 
phenotypic diversity was not genetically driven. Moreover, the 
similarity of individual blasts to the bulk ALL population sug-
gested the fast expansion of the MRCA. The polyclonal V(D)J 
rearrangement of the alpha genes in cells with the CD4/CD8 DP 
phenotype indicated continued differentiation of leukemic blasts. 
This finding aligned with previous studies conducted in B-ALL 
and AML (39, 45). 

Furthermore, we found that the observed phenotypic diversity was 
predominantly nongenetic, suggesting that epigenetic differences 
among cancer cells contribute to the phenotypic plasticity. However, we 
were unable to detect these differences in the transcriptomic analysis. 

T-ALL transcriptome appeared relatively homogeneous, as previously 
reported (46). As the plasticity was initiated at leukemia initiation, the 
sampling timepoint for CITE-seq could be too late to detect tran-
scriptomic changes, as oncogenic transcription programs may have 
taken the upper hand. This notion was consistent with previous re-
search demonstrating disrupted epigenetic regulation driving lineage- 
switching in MLL/AF4 leukemia (47) and consistent with earlier work 
revealing an aberrant methylation profile in preleukemic cells (48). 

This study has potential limitations. The number of samples ana-
lyzed was limited. However, we sequenced T-ALL samples from dif-
ferent genetic subtypes to grasp the overall heterogeneity among T-ALL. 
In addition, the number of cells sequenced in the single-cell WGS 
approach was between 10 and 40. Using these numbers of cells, the total 
clonality could be underestimated. Nevertheless, this approach was 
sufficient to confidently reconstruct the root and subbranches of the 
tree, which was confirmed by a uniform clonal VAF distribution in the 
bulk sequenced samples. Moreover, bulk WGS of sorted phenotypic 
populations was used to validate the contribution of each phenotypic 
population to the phylogenetic tree. Furthermore, our observations 
need in vivo validation to confirm our findings. 

In conclusion, in this study, we developed a framework for un-
derstanding leukemogenesis, which provided biological insights into 
leukemia progression before diagnosis. The improved whole ge-
nome amplification and variant calling methods used in this study 
allowed for the direct measurement of the genomic variation within 
any human cell at an unprecedented level (16, 17). Utilizing this 
integrative model of somatic evolution and phenotyping will be 
particularly insightful in studying leukemias as well as the normal 
hematopoietic system. 
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48. Roels J, Thénoz M, Szarzyńska B, Landfors M, De Coninck S, Demoen L, et al. 
Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell 
acute lymphoblastic leukemia. Blood Cancer Discov 2020;1:274–89. 

AACRJournals.org Cancer Res; 84(16) August 15, 2024 2733 

Differentiation-State Plasticity during All Initiation 

https://aacrjournals.org/

