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Evidence for ~12-h ultradian gene
programs in humans
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Mice andmanymarine organisms exhibit ~12-h ultradian rhythms, however, direct evidence of ~12-h ultradian
rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral
white blood cells from three healthy humans. All three participants independently exhibited robust ~12-h
transcriptional rhythms in molecular programs involved in RNA and protein metabolism, with strong homology
to circatidal gene programs previously identified in Cnidarian marine species.

Our understanding of biological rhythms is expanded in part by alternative,
non-circadian rhythms discovered in lower organisms. Coastal marine
organisms, such as the sea anemone A. diaphana, exhibit ~12-h ultradian
rhythms, entrainedby the twice dailymovements of the tides1. Inmice, ~12-h
rhythmsof gene expression involved inmRNA,protein and lipidmetabolism
are establishedbyanXBP1-dependentoscillator independentof the circadian
clock or cell cycle2,3. Oscillation of some physiological metrics at an ~12-h
interval in humans suggests the possible existence of 12-h rhythms in
humans4–9. However, evidence for ~12-h rhythms at the molecular level in
humans is lacking.

We studied three healthy males (Table 1) who self-reported a regular
nighttime sleep schedule anddidnot engage innighttime shiftworkor other
sleep-disrupting activities andwhohad a bodymass index between 23.3 and
24.4 kg/m2. Participants were admitted for a 1-day acclimatization period
prior to 48 h of blood sampling at a 2-h sampling interval (Fig. 1A), a
frequency that allowed detection of oscillationswith periods of 6 h or longer
with high confidence10,11. The protocol reflected our aim to sample with
sufficient frequency and duration to detect ~12-h rhythms within indivi-
duals. We also sought to mimic free-living conditions by providing a diet
similar in caloric content to their typical intake and encouraging main-
tenance of their routine sleep/wake cycles. Overnight, blood was collected
via a long intravenous line from outside the room to avoid exposure to light
or sleep disruption.

We performed bulk mRNA-Seq in buffy coat fractions prospectively
collected at 2-h intervals for 48 h (24 samples/participant) (Fig. 1A) (Table S1).
To identify genes cycling with a period ranging from 6 to 32 h, we applied the
RAIN algorithm to each participant’s temporal transcriptome12. Compared to
alternative methods like JTK_CYCLE, RAIN detects rhythms with arbitrary

waveforms and therefore more robustly uncovers ultradian rhythms11,13,14. As
shown in Fig. 1B, we observed inter-individual variability in the number of
genes cycling at different periods. Specifically, the first individual exhibited
dominant oscillations cycling at the period between 20 and 24-h, with a
secondary population detected at the ultradian periods of 10–12 h. These
10–12-h oscillations were more evident in the first 24 h, with dampening of
ultradian rhythms on the second day, despite there being no obvious phy-
siological perturbation or difference between the first and second day of
sampling (Fig. 1B). Aside from oscillations between 18 and 24 h, the second
participant exhibited ultradian rhythms cycling at periods of 6 and 12-h
(Fig. 1B). The third individual also exhibited oscillations cycling at 6-h, 12-h,
andat~20-hwith fewergenesobservedcyclingat24-h(Fig. 1B).Theobserved
inter-individual variabilityof transcriptomes cyclingat~24-h isnot surprising,
as inter-individual variations in the number, period, phase and amplitude of
circadian genes were also observed in a prior study where participants were
maintained in a semi-recumbent position under dim light and constant
temperature and humidity during 40 h of sleep deprivation (Fig. S1A, B)15.

To increase statistical power to detect oscillations common to all three
individuals, we performed a meta-analysis and generated a combined
p-value for each gene at periods from 6–32-h using Fisher’s method. This
method has been extensively used inmedical and genetic research tomerge
results from independent tests, each with the same null hypothesis16. In our
study, each participant was distinct and studied at a different time, however
the null hypothesis was the same: the absence of rhythms. Using combined
p-values (herein referred to as meta p values) with an alpha of 0.05, we
observed two major populations of oscillations cycling at the periods of 12
and18–26-h,with the largest numberof genesobserved cycling at theperiod
of 20-h (Fig. 1B). Using the Benjamini-Hochberg procedure to further
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adjust for the false discovery rate on meta p values (meta adj-P value or
FDR), we uncovered 653 genes with periods between 10–14-h and 5453
genes with periods between 22–26-h genes with an FDR less than 0.05
(Fig. 1C) (Table S2).

To determine the soundness of our RNA-seq dataset, we compared
22–26-h cycling genes identified in our study with those uncovered by
Wittenbrink and colleagues15. In that study, thirteen genes exhibiting robust
circadian expression in peripheral white blood cells were utilized as a
training gene set topredict the circadianphases fromsingle timepoint blood
samples15. In our study, seven andnine (of the core set of 13 genes) exhibited
meta adj-P values less than 0.05 and 0.1, respectively, including canonical
circadian clock genes PER1, PER2, PER3, NR1D1, NR1D2 and CRY1
(Fig. 1D, E). Gene set enrichment analysis (GSEA) further indicated that the
forty circadian genes that cycled in at least 50%of the humanparticipants in
the study byWittenbrink et al.15, also exhibited oscillations cycling between
22–26 h with low meta p values in our study (Fig. 1F). These genes were
linked topathwaysofplatelet activation, regulationof actin cytoskeletonand
adhesions (Fig. 1G). Collectively, these results demonstrate the possibility of
detecting biologically relevant rhythms in human gene expression under
conditions designed to mimic free-living.

Oscillations cycling close to a 12-h period were the second most
abundant in all three individuals after the 22–26-h population (Fig. 1B).
Usingmeta adj-P values (FDR) as cut-off,we identified 653 and 2768 ~ 12-h
genes (with period between 10–14-h) with meta adj-P (FDR) less than 0.05
and 0.1, respectively (Figs. 1C, 2A). As observed with 22–26-h genes, inter-
individual variability was also observed for ~12-h ultradian rhythms. In the
first and second participants, the acrophases (time of gene expression peak)
were at 8 am and 8 pm, while ~12-h rhythms in the third individual peaked
around 4 am and 4 pm (Fig. 2A). Examples of genes that robustly cycled at
an ~12-h period in all three individuals include MYDGF, ICMT, RNF7,
TCEB1, MFF, and OXA1L (Fig. 2B). MYDGF encodes an endoplasmic
reticulum (ER)-localized protein with secreted forms from monocytes/
macrophages that promote tissue repair in a murine model of myocardial
infarction17,18. ICMT encodes a protein-S-isoprenylcysteine O-methyl-
transferase that also localizes to theERand is responsible for cellmembrane-
targeting of selective proteins19.RNF7 encodes an essential subunit of SKP1-
cullin/CDC53-F box protein ubiquitin ligases20 and TCEB1 protein is a
subunit of the transcription factor B responsible for transcription
elongation21. BothMFF andOXA1L aremitochondrial proteins localized to
outer and innermitochondriamembranes, respectively, andare essential for
mitochondria fission and assembly of respiratory complex I22,23.

One important question regarding ultradian rhythmicity is whether it
reflects “real’ rhythms with biological significance, or simply mathematical
artefact. This is particularly relevant for rhythms that cycle at harmonic
frequencies of the 24-h period, as non-sinusoidal circadian waveforms
(seesaw-like or square-shaped waveforms) often have superimposed ~12-
and ~8-h harmonic frequencies detected by spectral analytical methods
such as a Fourier transformation, eigenvalue/pencil, or wavelet
analyses13,24–26. We took several approaches to address this question. First,

12-h transcriptional oscillations did not cycle at the exact second harmonic
of the dominant 22–26-h period in any of the three participants: the first
harmonic periodswere 22, 18 and 20-h in the three individuals, and 20-h for
the meta-analysis (Fig. 1B). Second, if ~12-h oscillations are indeed har-
monics of the 22–26-h rhythm, then genes exhibiting both 22–26-h and
10–14-h ultradian rhythmicity should be detected at a higher frequency
than expected by chance. To test this, we generated a second set of 24-h gene
set using a 4-h interval subset of the original dataset (8am, 12am, 4 pm, etc.)
to achieve an equivalent number of data points per period—i.e. equivalent
sensitivity—and a meta-p cut-off of 0.05. Importantly, the new 24-h subset
showed a strong positive correlation with meta-p values obtained with the
original full 2-h interval dataset (Fig. S2A). After this adjustment to match
sampling interval to period ratios, 10–14-h genes were more prevalent than
24-h genes (Fig. 2C). Moreover, the expected and observed percentages of
genes having 24-h and/or 10–14-h rhythms were nearly identical (p = 0.73
by Chi-square test), indicating independent detection of these two different
rhythms (Fig. 2D). Third, we performedGeneOntology (GO) andGSEA to
compare biological pathways enriched in 22–26-h and 10–14-h genes. We
reasoned that if 10–14-h oscillations are mathematical harmonics of the
22–26-h rhythm, then these two groups of genes should share enriched
biological pathways. Both analyses revealed largely distinct pathways
associatedwith geneswith 22–26-h and 10–14-h rhythms (Fig. 2E and S2B).
While the formerwere enriched inplatelet activation, blood coagulation and
cell adhesion as previously demonstrated (Fig. 2E and S2B), the latter was
associated with fundamental biological processes of mRNA (such as spli-
ceosome and RNA splicing), protein metabolism (including ubiquitin-
mediated proteolysis, response to ER stress, protein folding and protein
transport in the ER and Golgi), and mitochondria complex chain assembly
(Fig. 2E and S2B). To study thepotential disease relevance of human10–14-h
genes,we further performedGSEAwithdisease gene sets. Consistentwith the
known causal roles of dysregulated proteostasis in proteinopathies27,28, and
impaired mitochondrial metabolism in metabolic syndromes29, 10–14-h
genes were strongly enriched in gene sets of neurogenerative disease and
nonalcoholic fatty liver disease (Fig. 2F). Enrichment of protein metabolism
and mitochondrial respiration genes is also in alignment with ~12-h gene
signatures in human dorsolateral prefrontal cortex30. Collectively, these
analyses support the identification of ~12-h biological rhythms; however,
these data do not establish the regulatory mechanism(s) of ~12-h rhythms,
which could include cell-autonomous oscillators, homeostatic responses to
environmental stimuli, or an “hour-glass“ timing mechanism31.

We next performed pathway analyses of the 10–14-h gene sets for each
individual participant.We either analyzed the data as a continuous 48-h time
serieswitha singledatapoint at each timepoint (RAINconti)oras a24-h time
series where data points collected at the same time on two consecutive days
were treated as biological replicates (RAIN dupli) (Figs. S3 and 4, and Table
S2). The RAIN duplicate approach revealed larger 10–14-h gene programs:
3462 genes (p value < 0.05, with FDR< 0.224), 7060 genes (p value < 0.05,
with FDR< 0.119) and 4807 genes (p value < 0.05, with FDR< 0.166) for the
three participants (Figs. S4A). As expected, 10–14-h genes common to all
three individuals also tended to have small meta-p values (Fig. S3E and Fig.
S4E). Pathways related to mRNA and protein metabolism emerged as sig-
nificantly enriched for 10–14-h rhythmgenes in eachparticipant regardless of
the inputs or thresholds for RAIN analysis (Figs. S3G and S4C, E).

To determine robustness to different analytic methods, we also per-
formed spectrum analysis with the eigenvalue/pencil method11,13,14,32–34,
which unlike statistical methods such as JTK_CYCLE and RAIN does not
require pre-assignment of period range, enabling unbiased identification of
multiple oscillations for any given gene11,13,14,32–34. Eigenvalue/pencil analyses
also revealed ~24-h and ~12-h oscillations in all three individuals (Figs.
S5–7, and Table S3). ~12-h gene programs were distinct from ~24-h gene
sets in all three individuals and enriched inmRNA and proteinmetabolism
pathways (Figs. S5J, S6J and S7J). Taken together, orthogonal analytical
methods and statistical thresholds suggested ~12-h rhythms of gene
expression implicated in mRNA and protein metabolism in human white
blood cells.

Table 1 | Participant characteristics.

Participant 1 Participant 2 Participant 3

Age (years) 20 22 28

Body mass index (kg/m2) 23.3 23.7 24.4

Vitamin D (ng/mL) 85 26 22

Glucose (mg/dL) 73 84 74

BUN (mg/dL) 10 18 14

Creatinine (mg/dL) 0.9 1.0 0.9

AST (U/L) 22 41 22

ALT (U/L) 10 28 22

TSH (mIU/L) 1.306 1.48 0.803
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To infer gene regulatory networks governing ~12-h rhythms, we per-
formed LISA35 and motif analysis on the top 500 10–14-h genes uncovered
by the RAIN method with the lowest meta-p values. We cross-referenced
enriched motifs with transcription factor genes that exhibited 10–14-h

rhythms (with meta-adjP<0.1), identifying XBP1, CREBZF, GABPB1/2,
NFYB, GMEB1, KLF16 as top candidates that were preferentially enriched
with 10–14-h genes compared to 22–26-h genes (Fig. 3A–D). XBP1,
CREBZF and CREB1 belong to the Basic Leucine Zipper (bZIP)

Fig. 1 | Identification of inter-individual variability of ~24-h and ultradian
rhythms of gene expression in peripheral white blood cells of humans. AHuman
protocol and study schematic. B–DHistograms showing the period distributions of
all rhythmic genes uncovered from the three participants (with p value < 0.05) aswell
as the period distribution of rhythmic genes calculated by the meta p values (meta
p < 0.05). For the first individual, periods calculated from all 48 h of data, or the first
24 h of the dataset were both shown.CTable summarizing the number of ~24-h and
~12-h genes with different statistical cut-offs. D Table listing the meta P and meta

adj-P (FDR) values of thirteen ~24-h genes previously used as training datasets for
predicting ~24-h phase from human blood samples15. E Raw temporal expression
profile (dot) and spline fit (solid line) of five of the thirteen ~24-h genes. F Gene set
enrichment analysis (GSEA) showing enrichment of a previously identified set of top
forty robustly-cycling ~24-h genes in human white blood cells15 with robust ~24-h
rhythmicity in our study. G GO analyses of top KEGG pathways for ~24-h genes
with meta adj-P (FDR) less than 0.01.
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Fig. 2 | ~12-h gene expression rhythms are enriched in mRNA and protein
homeostasis pathways.AHeatmap and quantification of ~12-h genes fromall three
participants with meta adj-P (FDR) values less than 0.05 or between 0.05 and 0.1.
BRaw temporal expression (dot) profile and spline fit (solid line) of six ~12-h genes
with meta p values also shown. C Cumulative distribution of the number of ~24-h
and ~12-h genes with different meta p and meta adj-P cut-offs. The ~24-h data set
consisted of a 4 h sampling interval so that the period to sampling interval was

matched to the ~12-h data set. D Scatter plot comparing log-transformed meta p
values for each gene exhibiting ~24-h versus ~12-h rhythms. Both observed and
predicted percentage of genes (under the null hypothesis that ~12-h and ~24-h
genes are independently regulated) with meta p value smaller or larger than 0.05
are further shown. P value of 0.73 is calculated by Chi-square test. E GO analysis of
~24-h and ~12-h genes with different statistical cut-offs. F GSEA showing
enrichment scores of different gene sets for ~12-h (top) and ~24-h (bottom) genes.
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transcription factor family and are established transcription regulators of the
unfolded protein response (UPR) and adaptive stress response36–40.
GABPB1/B2 are ETS family transcription factors involved in mitochondria
biogenesis and oxidative phosphorylation41,42. NFYB encodes one of the
three subunits of nuclear transcription factor Y (the other being NFYA and
NFYC) and its DNA binding motif was recently shown to co-occur with
XBP1 in mouse type-2 T helper cells43. Several of these transcription factors
have previously been implicated in regulation of ~12-h rhythms inmice. For
instance, it was previously proposed that ~12-h rhythms are generally
established by a tripartite network comprising ETS, bZIP and NFY tran-
scription factors, whereas KLF transcription factors may control ~12-h
rhythms in a more tissue specific manner44. Enriched GMEB DNA binding
motifs were also observed in the promoters of hepatic ~12-h rhythms in

mice32. We next incorporated a recently published XBP1 ChIPmentation
dataset from mouse T helper cells into our analysis43. We found that XBP1
target genes—those genes directly bound by XBP1 and whose expression is
reduced in the absence of XBP1—were significantly enriched in the putative
10–14-h human gene set, but not in the 22–26-h gene set (Fig. S8A–C).
These results suggest XBP1, GABP and KLF transcription factor family
members as candidate transcriptional regulators of ~12-h rhythms, with
XBP1 a strong candidate given its previously identified role as a major
regulator of ~12-h transcriptional oscillations in the murine liver14.

Given representation of RNA metabolism and mRNA splicing path-
ways in ~12-h transcriptional rhythms, we tested whether such oscillations
would translate into a downstream functional effect in the form of altera-
tions inmRNA splicing.We interrogated the RNA-seq data for evidence of

Fig. 3 | Regulatory and functional dissection of human ~ 12-h rhythms. A Scatter
plot demonstrating the log normalized p values of motifs identified for top 500
(ranked by meta p values) ~12-h (x axis) versus the ~24-h genes using the LISA
program, with selective TFs highlighted. B Top motifs enriched at the promoters of
~top 500 12-h genes using the SeqPos motif tool in Galaxy/Cistrome. C A table
listing the TFswhosemotifs are enriched in the promoters of ~12-h genes andwhose

gene expression also exhibit ~12-h rhythms with meta adj-P less than 0.1.
D Temporal expression of XBP1 in all three individuals. Criterions for IR are set as
T > = 20, J > = 1, FPKM > = 2 and NE score > =0.9. Heatmap (left) and quantifica-
tion (right) of temporal intron retention events, superimposed with the Z score
normalized temporal expression of splicing genes exhibiting ~12-h rhythms (E).
Statistics for IR and spicing gene expression ~12-h rhythms detection by RAIN (F).
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rhythmicity in intron retention (IR) events, predicting that if rhythmicity of
RNA splicing genes was functionally relevant, it would temporally correlate
with global IR. We applied a recently published algorithm iREAD45. Using
two different criteria to define retained introns, we identified 10–12-h
rhythms of global IR events in all three participants (with meta-p < 0.003)
(Fig. 3E, F and S9A–D). IR rhythms were synchronized to the expression of
mRNA splicing genes (Fig. 3E, F and S9A–D). We next performed GO
analysis on the set of transcripts in which we detected retained introns.
While GO terms associated with intron retention genes were largely con-
sistent at the morning and evening peaks, we also observed differential
enrichment in a subset. The morning intron retention gene sets were
enriched in immune functions, especially those involving the display of
intracellular peptide fragments to cytotoxic T cells via MHC class 1 com-
plexes (e.g., HLA-A/C/E and B2M), whereas the evening intron retention
gene sets exhibited greater heterogeneity across the three participants (Figs.
S10, 11). This data suggests synchronization of mRNA splicing gene pro-
grams to splicing functionality, consistent with a potential role for ~12-h
rhythms in RNA metabolism.

~12-h rhythms in coastal and estuarine animals suggest an ancient
evolutionary origin2,44,46–50 (Fig. 4A). To test for potential homology between
human ~12-h rhythms and circatidal genes in marine animals, we com-
pared themost robust 10–14-hhumangenes (meta-adjP less than0.10)with
the circatidal gene program uncovered in Aiptasia diaphana48, a sea ane-
mone specieswhich shares a eumetazoan ancestorwithHomo sapiens ~ 700
million years ago in the Cryogenian period51. In line with our human data,
themost enrichedbiological pathways amongstA.diaphana circatidal genes
are related to mRNA processing and protein metabolism, distinct from
those enriched in the circadian genes, which included pathways of carbo-
hydrate metabolism and detoxification48 (Fig. S12A). We found 404 ~ 12-h
genes common to both species, a number significantly higher than the
expected value of 263 if there was no evolutionary conservation (p = 4.6e-23
by Chi-square test) (Fig. 4B). This subset was also enriched in mRNA
splicing and proteostasis pathways (Fig. 4C, D). We further examined
potential conservation with two additional human 10–14-h gene sets: 653
gene set with meta-adjP values less than 0.05 (Fig. 1C), or the 851 gene set
shared in all three individuals depicted in Fig. S4B (Fig. S12B, C). Protein
processing in the ERwas themost consistently enriched GO term using the
different selection criteria for ~12-h genes (Fig. S12B, C). We also found
evidence of conserved ~24-h gene expression between human (with meta-
adjP value less than 0.10) and A. diaphana (p = 0.049 by Chi-square test),
with the 102 common genes enriched in carbohydrate metabolism and
detoxification pathways (Fig. S12D–F).

If the ~12-h gene program is conserved from coastal invertebrates to
humans, we reasoned that lower mammals like mice should also exhibit
oscillations in similar gene programs. We re-examined a previously pub-
lished temporal hepatic RNA-seq data set in mouse liver and found
666 ~ 12-h genes common to both human andmouse (p = 2.02e-21 byChi-
square test), againhighly enriched inmRNAsplicing andproteinprocessing
pathways (Fig. 4E–G).We identified 139 ~ 12-h genes common to all three
species: human, mouse, and A. diaphana, which exceeded the 97 expected
by chance (p = 1.41e-7 by Chi-square test) (Fig. 4H). These 139 genes are
enriched in protein processing in ER, spliceosome, and nucleocytoplasmic
transport, the three pivotal steps in central dogma informationflow. Specific
examples include DNAJA1, a heat shock protein 70 cochaperones52,
UGGT1 that serves as the predominant ER glycoprotein quality control
sensor53 andEIF2S1, encoding the alpha subunit of the translation initiation
factor eIF2 protein complex54 (Fig. 4I, J). These results are congruent with
our previous work in murine liver in identifying a regulatory function for
~12-h oscillator in central dogma information flow14.

Finally, we tested for synchronization between the ~12-h rhythms and
RNA splicing in mice by performing intron retention analysis of our pre-
viously published temporal RNA-seq data from mouse liver14. Like the
human data, we observed alignment between ~12-h rhythms in splicing
gene expression and global intron retention events peaking at CT2 and
CT14 (Fig. 4K). Liver-specific genetic ablation of XBP1 (a transcriptional

regulator of murine hepatic 12-h oscillations) weakened ~12-h rhythms of
splicing gene expression and intron retention rhythms, leading to constant
intron retention across the day (Fig. 4K). These collective data support
evolutionary conservation of a ~ 12-h gene program in humans related to
RNA and protein metabolism.

In this study, we discovered ~12-h gene programs related to funda-
mental processes of mRNA and protein metabolism in humans. Remark-
ably, pathways and specific gene orthologs exhibiting ~12-h circatidal
rhythms inmarine animals55 were also detected in humans.Our discovery of
one such ~12-h pathway, ‘mRNA splicing,’ provided an opportunity to
establish functional significance through identification of corresponding
~12-h rhythms in global intron retention events. While our study provides
evidence of ~12-h rhythms of gene expression in humans, it does not
establish causality, nor does it fully address their relationship with the cir-
cadian clock. At least three mutually non-exclusive mechanisms have been
proposed to explain the origin and regulatorymechanisms of ~12-h rhythms
in mice, namely that they are not cell-autonomous and controlled by a
combination of the circadian clock and environmental cues26,56,57, that they
are regulated by two anti-phase circadian transcriptional factors in a
cell-autonomousmanner58, or that they are establishedby a cell-autonomous
~12-h oscillator13,14,32–34,59. Future studies will be required to test whether
candidate 12-h regulatory factors are causal drivers of ~12-h gene expression
rhythms and any direct relationship with the circadian clock in humans.

How ~12-h rhythms in mRNA and protein metabolism confer an
evolutionary advantage to non-coastal terrestrial mammals is an open
question. One possibility is that ~12-h rhythms have been co-opted by
terrestrialmammals as anadaptive response to~12-hmetabolic stress cycles
that peak at critical transitions10. The absence of energy intake during sleep
crescendos to a peak of energy shortage at dawn. Conversely, at dusk, a
reduction in active energy expenditure coupled with cumulative energy
intake throughout the day, drives peak positive energy balance. Both ends of
the energy balance spectrum aremetabolically stressful and activate XBP1s,
thereby triggering the UPR44,60,61. Therefore, we speculate that mammalian
~12-h rhythms provide an anticipatory advantage to address twice daily
metabolic stress.

Methods
Human participants and study protocol
The study protocol was approved by the University of Pittsburgh Institu-
tional Review Board (Study 20020034; approval date: 6/4/2020) andwritten
consentwas obtained fromall study participants.We studied 3healthymale
participants, who were recruited through online advertisements. Inclusion
criteria consisted of individuals 18–35 years of age with a self-reported
regular nighttime sleep schedule and a body mass index between
18.5–24.9 kg/m2. Volunteers were excluded if they admitted to nighttime
shift work or other regular nighttime sleep-disrupting activities, if they had
any chronicmedical conditions, took anymedications or recreational drugs,
or used tobacco products. Potential volunteers presented for a screening
visit, inclusive of measurement of body weight, height, BMI, and laboratory
studies, including a comprehensive metabolic panel (electrolytes, kidney
function and liver function tests), complete blood count, 25-OHvitaminD,
and thyroid stimulating hormone level, to screen for potential subclinical
chronic diseases. We excluded participants with low hemoglobin/hemato-
crit, abnormal thyroid function and individuals with 25-OH vitamin
D < 20 ng/mL.

Qualifying study participantsmaintained a food diary, whichwas used
to estimate their daily caloric intake and subsequently presented to the
University of Pittsburgh Medical Center (UPMC) Clinical Translational
Research Center (CTRC) for a 3-day inpatient visit. On the morning of
admission, participants selected items from a foodmenu designed tomatch
their standard daily caloric intake with a uniform macronutrient compo-
sition of 55% carbohydrates, 25% fat, 20%protein per day. No interventions
were performed during the first 24-h period of acclimatization to the hos-
pital. Each study participant was housed in the same room in the CTRC,
which contained a window to the outside. The participants were not
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entrained to any specific environmental cues during the study. They were
encouraged to maintain their usual sleep-wake cycles; however, they
maintained control over the lighting in the room. They were free to
ambulate in the hallway of the CTRC; however, they did not leave the unit
during the 3-day stay. The three meals were delivered at roughly the same
time each day based on the standard CTRC schedule (8 A.M., 12 P.M.,
6 P.M.); however, there were no rules dictating the duration of their meals.

These measures were implemented to mimic free-living conditions. On the
morning of the second day, an intravenous (IV) line was placed to com-
mence blood collections at 8 A.M. and then every 2 h for 48 h (total
24 samples). Nighttime blood collection was performed through a long IV
line from outside the room so that the participant would not be exposed to
light or disturbedduring blood collection. Bloodwas immediately processed
in the Center for Human Integrative Physiology, two floors above the
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UPMC CTRC by a rotating study team, all of whom were trained in the
processing procedures for this study. Blood was centrifuged (1900 RCF x
10min) and the buffy coats were collected and immediately snapped frozen
in liquid nitrogen for storage at −80C.

RNA-Seq and data analysis
RNA was isolated from peripheral blood buffy coat samples on the auto-
mated Chemagic 360 (Perkin Elmer) instrument according to the manu-
facturer’s instructions. Extracted RNA was quantitated by Qubit™ RNA BR
Assay Kit (Thermo Fisher Scientific) followed by RNA quality check using
FragmentAnalyzer (Agilent). For each sample,RNAlibrarieswereprepared
from 100 ng RNA using the KAPA RNA HyperPrep Kit with RiboErase
(Kapa Biosystems) according to manufacturer’s protocol, followed by
quality check using Fragment Analyzer (Agilent) and quantification by
qPCR (Kapa qPCR quantification kit, Kapa biosystem) on the LightCycler
480 (Roche). The librarieswere normalized andpooled, and then sequenced
usingNovaSeq6000platform(Illumina) to anaverageof 40M101 bppaired
end reads per sample. Low-quality reads and adapter sequences were
trimmed from the raw sequencing data with Trimmomatic62. The
remaining reads were then aligned to human reference genome hg38 with
STAR aligner63. Gene counts were quantified with the STAR-quantMode
GeneCounts function. Fragments per kilobase of transcript per million
mapped fragments (FPKM) were quantified with Cufflinks64.

Identification of the oscillating transcriptome
Averaged FPKM values at each time were used for cycling transcripts
identification. Lowly expressed transcripts were removed by calculating the
background expression in each participant using the average expression of a
panel of 62 genes knownnot to be expressed in peripheral blood cells (Table
S2). Temporal transcriptomes were subjected to linear detrend prior to
identification of oscillations by either the eigenvalue/pencil or RAIN
methods. For the eigenvalue/pencil method11,13, a maximum of four oscil-
lations were identified for each gene. Criterion for ~24-h genes were: period
between20 h to 25 h forfirst and secondparticipants and24 h to 30 h for the
third participant, decay rate between 0.8 and 1.2; for ~12-h genes: period
between9.6 h to 13.6 h for the secondand thirdparticipants and10 h to14 h
for thefirst participant, decay rate between0.8 and1.2; for~8 hgenes: period
between 6 h to 8 h for the first participant and 7 h to 9 h for the second
participant, decay rate between 0.8 and 1.2; for ~16 h genes; period between
14 h to 18 h for the third participant. The relative amplitude was calculated
by dividing the amplitude by the mean expression value for each gene. To
determine FDR, we used a permutation-based method that randomly
shuffles the time label of gene expression data and subjected each permu-
tation dataset to the eigenvalue/pencil method applied with the same
criterion65. These permutation tests were run 5000 times, and FDR was
estimated by taking the ratio between themeannumber of rhythmic profiles
identified in the permutated samples (false positives) and the number of
rhythmic profiles identified in the original data. Analyseswere performed in
MatlabR2017A. RAIN analysis was performed as previously described in

Bioconductor (3.4) (http://www.bioconductor.org/packages/release/bioc/
html/rain.html) with either 48-h continuous data or 24-h data with biolo-
gical duplicates as input12.Genes exhibitingaperiod rangebetween10-hand
14-h and a period range between 22-h and 26-h are consideredas ~12-h and
~24-h genes, respectively. FDR was calculated using the Benjamini-
Hochberg procedure. Heat maps were generated with Gene Cluster 3.0 and
TreeView 3.0 alpha 3.0 using Z score normalized values.

For meta-analysis, we used Fisher’s method, which combines extreme
value probabilities from each test, commonly known as “p values”, into one
test statistic (X2) using the formula

X2
2k ¼ �2

Xk

i¼1

ln pi ð1Þ

where pi is the p value for the ith hypothesis test. Formeta-analysis of ~12-h
(10–14-h) and ~24-h genes (22–26-h), the smallest p value for each gene
within these period rangeswas used for each individual. For example,XBP1
was found to oscillate with periods of 12-h (p = 0.068), 12-h (p = 0.014) and
10-h (p = 0.049) in participant 1, 2, and 3, respectively, and themeta p values
for being a common ~12-h gene (cycling with a period between 10-h and
14-h) were calculated by “merging” the three respective p values (meta
p = 0.0029). The same procedure was also performed for genes cycling with
a period between 22-h and 26-h. This meta-analysis is feasible because the
statistical test for each gene in each individual shares the same null
hypothesis: absence of rhythms.

ForRAIN analysis on temporal IR events and splicing gene expression,
raw data was subjected to polynomial detrend (n = 2) before RAIN analysis.

Defining oscillating genes
The eigenvalue method can detect multiple superimposed oscillations.
Therefore, we defined a ~ 24-h gene as one that exhibited a ~ 24-h rhythm,
regardless of its amplitude relative to other superimposed oscillations.
Similar criteria were applied to other oscillations. As such, a gene can meet
criteria for both a ~ 24-h and ~12-h gene. By comparison, we define a
dominant ~24-h gene as one in which the superimposed ~24-h rhythm has
the largest amplitude among all oscillations.With this definition, dominant
~24-h and dominant ~12-h genes are mutually exclusive.

Intron retention detection
Intron retention events were detected by tool iREAD45. Intron retention
events are selected either with default settings T > = 20, J > = 1, FPKM>= 2
and NE score > =0.9 or more stringent settings where T > = 20, J > = 1,
FPKM>= 3 and NE score > =0.9.

Gene ontology analysis
DAVID (Version 2021)66 (https://david.ncifcrf.gov) was used to perform
Gene Ontology analyses. Briefly, gene names were first converted to
DAVID-recognizable IDs using Gene Accession Conversion Tool. The
updated gene list was then subject toGO analysis using all Homo Sapiens as

Fig. 4 | Evolutionary conservation of ~ 12-h gene programs. APhylogenetic tree of
select species for which ~12-h rhythms of gene expression have been demonstrated.
A. diaphana is themost distant fromH. sapiens.BVenn diagram comparing distinct
and shared ~12-h genes in human (meta adj-P < 0.1) and A. diaphana (reported
in48). Only genes expressed in human white blood cells (denoted by the grey circle)
are included in the analysis. Both observed and predicted number of genes (under
the null hypothesis that ~12-h genes are not evolutionarily conserved and thus
independently detected in these two species) are further shown. P value of 4.6e-23 is
calculated byChi-square test. Heatmap of temporal expression (Z score normalized)
of 404 circatidal genes in A. diaphana (C) and GO analysis of the top enriched
pathways (D). E Venn diagram comparing distinct and shared ~12-h genes in
human (meta adj-P < 0.1) and mouse liver (reported in ref. 14). Only genes that are
expressed in humanwhite blood cells (denoted by the grey circle) are included in the
analysis. Both observed and predicted number of genes (under the null hypothesis
that ~12-h genes are not evolutionarily conserved and thus independently detected

in these two species) are further shown. P value of 2.0e-21 is calculated byChi-square
test. Heatmap of temporal expression (log 2 normalized) of 666 ~ 12-h genes in
mouse liver (F) and GO analysis of the top enriched pathways (G).HVenn diagram
further comparing the overlap of commonly identified 404 ~ 12-h genes in human
and A. diaphana, and 666 ~ 12-h genes in human and mouse. Both observed and
predicted number of genes (under the null hypothesis that ~12-h genes are not
evolutionarily conserved and thus independently detected in all three species) are
further shown. P value of 1.4e-7 is calculated by Chi-square test. IGO analysis of the
top enriched pathways of 139 ~ 12-h genes commonly identified in all three species.
J Representative temporal expression of evolutionarily conserved ~12-h genes in
human, mouse, and A. diaphana.K ~ 12-h rhythms of intron retention events (top)
and RNA splicing genes expression (bottom) are attenuated by liver-specific loss of
function of XBP1 (Xbp1LKO: red), relative to control (Xbp1Flox: black) inmice. P values
calculated by RAIN for ~12-h rhythms.
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background and with Functional Annotation Chart function. GO_BP_-
DIRECT, KEGG_PATHWAY or UP_KW_BIOLOGICAL_PROCESS
were used as GO categories. Only GO terms with a p value less than 0.05
were included for further analysis.

Motif analysis
Motif analysis was performed with the SeqPos motif tool (version 0.590)
embedded in Galaxy Cistrome using all motifs within the homo sapiens
reference genome hg19 as background. LISA analysis was performed using
web tool (http://lisa.cistrome.org/).

Data availability
All raw and processed sequencing data generated in this study have been
submitted to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) under accession numbers GSE220120.
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