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Abstract

Intracellular ions, including sodium Na+ , calcium Ca2 + , and potassium K+ , etc., accumulate 

slowly after a change of the state of the heart, such as a change of the heart rate. The goal 

of this study is to understand the roles of slow ion accumulation in the genesis of cardiac 

memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac 

arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular 

myocytes under normal and diseased conditions, which exhibit memory effects and complex APD 

dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics 

of Na+, Ca2 +  and APD and use it to uncover the underlying dynamical mechanisms. The 

development of the IM model is informed by simulation results under the normal condition. 

We then use the IM model to perform linear stability analyses and computer simulations to 

investigate the bifurcations and complex APD dynamics, which depend on the feedback loops 

between APD and intracellular Ca2 +  and Na+ concentrations and the steepness of the APD 

response to the ion concentrations. When the feedback between APD and Ca2 +  concentration 

is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness 

of the APD response to the ion concentrations increases. The negative feedback loop between 

APD and Na+ concentration is required for the Hopf bifurcation. When the feedback between 

APD and Ca2 +  concentration is negative, period-doubling bifurcations leading to high periodicity 

and chaos occurs. In this case, Na+ accumulation plays little role in the dynamics. Finally, we 

carry out simulations of the detailed action potential model under two diseased conditions, which 

exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations 

leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic 

APD dynamics occur, depending on the strength of the ion pump—Na+ − Ca2 +  exchanger. 

Using functions reconstructed from the simulation data, the IM model accurately captures the 

bifurcations and dynamics under the two diseased conditions. In conclusion, besides using 

computer simulations of a detailed high-dimensional action-potential model to investigate the 

effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex 

APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-
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dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the 

underlying mechanisms.

I. INTRODUCTION

The heart rhythms exhibit rich nonlinear dynamics, which have been widely investigated 

[1–5]. These dynamics may be precursors or causes of lethal cardiac arrhythmias [6,7]. The 

normal heart rate is around 60 to 100 beats per minute, corresponding to periods of 0.6 to 1 

s. If everything recovers fast enough, changes occurring within a heartbeat do not affect the 

behavior of the next heartbeat, and thus there is no memory effect. However, many processes 

exhibit much longer timescales, and a temporal change may take many beats or a much 

longer time to recover. This long recovery process is called cardiac memory. Memory in 

the heart may last seconds to minutes, which is called short-term memory, or hours to days, 

which is called long-term memory [8]. A direct effect of memory is that it affects the rate 

dependence [9] of the action-potential (AP) properties. For example, as shown in Fig. 1(a), 

a sudden change in heart rate takes more than 1 min for the AP duration (APD) to reach a 

new steady state in the human heart [10]. It has been widely shown that short-term memory 

affects cellular AP and excitable wave dynamics [11–20].

There are two major sources of short-term memory. The first one is slow ion channel 

recovery which has a timescale of several hundred milliseconds to seconds. For example, 

the recovery time constant of the potassium K+  channel can be a couple of seconds [21]. 

It has also been shown that there is a very slow component of the recovery of the L-type 

calcium Ca2 +  current (ICa, L) [22–24]. The second source is intracellular ion accumulation 

which has a timescale of several seconds to minutes. In cardiac myocytes, as well as 

in many other types of excitable cells [25], ion concentration gradients across the cell 

membrane are required for a negative (polarized) resting potential and excitability. The 

major ions [Fig. 1(b)] are the sodium ion Na+ , potassium ion K+ , and calcium ion Ca2 + . 

Their concentrations in the extracellular space (denoted as Na+
o
, K+

o
, and Ca2 +

o
) are 

roughly Na+
o

= 140 mM, K+
o

= 4 mM, and Ca2 +
o

= 1.5 mM, and in the intracellular 

space (denoted as Na+
i
, K+

i
, and Ca2 +

i
 are roughly Na+

i
= 10 mM, K+

i
= 150 mM, 

and Ca2 +
i
= 0.1 μ M. The ion gradients between the intracellular space and extracellular 

space are primarily maintained by ion pumps, namely, the Na+ − K+ ATPase (NKA) and 

the Na+ − Ca2 +  exchange (NCX). During an AP, Na+ and Ca2 +  enter the cell via the 

voltage-gated Na+ channels and Ca2 +  channels, respectively, and K+ exits the cell via the 

voltage-gated K+ channels. These ions are extruded out or brought into the cell by the 

ion pumps, forming an inside-outside cycle of the ions. In addition to the inside-outside 

cycle, Ca2 +  exhibits an intracellular cycling loop [Fig. 1(b)]. Ca2 +  is mainly stored in 

the intracellular organelle called the sarcoplasmic reticulum (SR), and Ca2 +  in the SR is 

released into the cytosolic space via the Ca2 +  release channels on the SR membrane called 

ryanodine receptors (RyRs). Since the intracellular ion concentrations affect ionic currents 
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via ion channels and pumps, and the ionic currents affect the ion concentrations, feedback 

loops form between voltage and the ion concentrations. Moreover, the recovery of different 

types of ion channels and the accumulation speed of different types of intracellular ions 

exhibit different timescales. The feedback loops and the multiple timescales can result in 

very complex dynamics, such as bursting behaviors seen in many biological cells, including 

neurons [26–28], pancreatic β cells [26], and cardiac cells [29–31].

In recent studies [19,20,32,33], complex AP dynamics caused by ion accumulation and the 

feedback loops between voltage and ion concentrations in periodically paced ventricular 

myocytes have been investigated. We have developed low-dimensional iterated map (IM) 

models that account for the different timescales and feedback loops [18–20]. The IM models 

can accurately capture the complex dynamics of the high-dimensional AP models and 

reveal the underlying mechanisms and bifurcations for complex APD dynamics, including 

bistability, Hopf bifurcations to oscillation, and period-doubling routes to chaos. In this 

study, we extend our previous work [20] to include a detailed description of the development 

of the IM model and its validation against simulations of the detailed AP model. We 

simulate the AP model under two diseased conditions to demonstrate the bifurcations and 

complex APD dynamics. Specifically:

1. We carry out simulations using a detailed AP model [34] under normal condition 

to inform the development of the IM model, i.e., the formulation of the IM 

equations and functions. We use the IM model to simulate the memory effects 

observed in the AP model under the normal condition as a first validation of the 

IM model. The results are presented in Sec. III A.

2. We perform linear stability analyses and carry out computer simulations of the 

IM model to reveal the dynamical mechanisms and the roles of ion accumulation 

and the feedback loops in the genesis of complex APD dynamics. The stability 

analyses and simulations show that besides the requirement of a steep response 

of APD to the change of the ion concentrations, the feedback loops between 

APD and Ca2 +
i
 and Na+

i
 play important roles. When the feedback between 

APD and Ca2 +
i
 is positive, a Hopf bifurcation leading to periodic oscillatory 

behavior occurs. The negative feedback loop between APD and Na+
i
 is required 

for the Hopf bifurcation. When the feedback between APD and Ca2 +
i
 is 

negative, a period-doubling bifurcation leading to high periodicity and chaos 

occurs. In this case, Na+ accumulation plays little role in the bifurcations and 

dynamics. The results are presented in Sec. III B.

3. To validate the theoretical predictions of the IM model, we investigate the 

roles of ion accumulation in the genesis of complex APD dynamics using 

the detailed AP models under two diseased conditions that exhibit high risk 

of arrhythmias and sudden cardiac death. The first condition is relevant to 

long-QT syndrome (LQTS) [35,36] and heart failure [37], in which APD is 

lengthened due to increase of inward currents (mainly Na+ and Ca2 +  currents) or 

decrease of outward currents (mainly K+ currents). A well-known phenomenon 
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under LQTS is a behavior called early afterdepolarizations (EADs) [Fig. 

2(a)], which are abnormal depolarizations during the AP plateau. Theoretical 

studies have shown that EADs are also a result of bifurcations caused by 

dynamical instabilities [38–39]. Alterations of ionic current properties in LQTS 

or heart failure promote EADs [40–42] and EAD-related complex nonlinear 

dynamics, including alternans and chaos [7,38,43–45], which are related to lethal 

ventricular arrhythmias [7,46]. The second condition is relevant to a disease 

called Brugada syndrome [47,48]. A potential mechanism of arrhythmias for 

Brugada syndrome is called phase-2 reentry, which is known to be caused by 

an AP phenomenon called spike-and-dome morphology [Fig. 2(b)] [49–55]. It 

has been shown that complex APD dynamics, including alternans and chaos, 

can occur due to the spike-and-dome AP morphology [19,54,56,57]. Under both 

diseased conditions, an all-or-none behavior (to or not to exhibit an EAD or a 

spike-and-dome morphology) gives rise to steep APD responses to the change 

of ion concentrations, which are necessary for the complex APD dynamics as 

predicted in the IM model. Under both conditions, we can change the NCX 

activity to change the feedback properties between APD and Ca2 +
i
 to result in 

different bifurcations leading to either oscillatory dynamics or high periodicity 

and chaos. The results are presented in Secs. III C and III D.

4. To quantitatively capture the bifurcations and complex APD dynamics, we use 

the simulation data of the AP model under the two diseased conditions to 

reconstruct IM functions and then carry out simulations of the IM model. Under 

both conditions, the IM model can accurately capture the bifurcations and APD 

dynamics of the AP model. The results are presented in Secs. III C and III D.

The general conclusions from this study are that ion accumulation can play important 

roles in the genesis of arrhythmogenic complex APD dynamics in cardiac diseases. 

The bifurcations and complex dynamics, as well as the corresponding physiological and 

dynamical mechanisms, can be accurately revealed using low-dimensional IM approaches.

II. COMPUTATIONAL MODELS AND METHODS

A. The AP model

We carry out single-cell simulations using a human ventricular AP model developed by ten 

Tusscher et al. in 2004 [34], and we abbreviate it as the TP04 model. The AP model contains 

multiple differential equations with complex functions to describe the dynamics of voltage 

V , intracellular ion concentrations, as well as multiple gating variables regulating ionic 

currents. The differential equation for V  is

Cm
dV
dt = − Iion + Isti,

(1)
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where Cm = 1 μ F/cm2 is the membrane capacitance and Isti is the stimulus current density, 

which is a 2-ms square pulse of amplitude 26 μ A/cm2. Iion is the total ionic current density, 

which is composed of the following individual ionic currents, i.e.:

Iion = INa + IK1 + Ito + IKr + IKs + ICa,L + INCX + INaK + IpCa + IpK + IbCa + IbNa .

(2)

The ionic currents are functions of V , gating variables, and ion concentrations. The gating 

variables are also described by differential equations in the form of the Hodgkin-Huxley 

formulation [58]. The ion concentrations are determined by the balance of the corresponding 

ionic currents. The differential equation for Na+
i
 is

d Na+
i

dt = − INa + IbNa + 3INaK + 3INCX
V cF ,

(3)

where V c is the cell volume and F  is the Faraday constant. The differential equation for K+
i

is

d K+
i

dt = − IK1 + Ito + IKr + IKs − 2INaK + IpK + Isti
V cF

(4)

For Ca2 +
i
, the differential equation for the total Ca2 +

i
Ca2 +

itotal
 is

d Ca2 +
itotal

dt = − ICa,L + IpCa + IbCa − 2INCX
2V cF + Ileak − Iup + Irel,

(5)

where Ca2 +
itotal

 includes both free cytosolic Ca2 +  concentration Ca2 +
i
 and buffered 

cytosolic Ca2 +  concentration Ca2 +
ibufc

, i.e., Ca2 +
i
= Ca2 +

itotal
− Ca2 +

ibufc
, and 

Ca2 +
ibufc

=
Ca2 +

i
× bufc

Ca2 +
i
+ Kbufc

. Similarly, for SR Ca2 +  concentration, the differential equation 

for the total Ca2 +
SR

Ca2 +
SRtotal

 is

d Ca2 +
SRtotal

dt = V c
V SR

−Ileak + Iup − Irel .

(6)
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One can then calculate the free SR Ca2 +  concentration Ca2 +
SR

 as the 

total SR Ca2 +  concentration minus buffered SR Ca2 +  concentration, i.e., 

Ca2 +
SR

= Ca2 +
SRtotal

− Ca2 +
SRbufc

.

For definitions of variables and parameters, detailed mathematical formulations of the ionic 

currents, as well as the differential equations of the other variables, one is refered to the 

original article by ten Tusscher et al. [34]. For numerical simulations of the differential 

equations, an adaptive time step of Δt = 0.005 to 0.05 ms is used.

B. Model modifications for the EAD case

To generate EADs, we make the following modifications to the TP04 model [20]: Ito and IKr

are removed, the maximum conductance of IKs is reduced, i.e., GKs = 0.125 mS/cm2, and ICa, L

is substituted by the formulation by Huang et al. [59]. We vary the maximum NCX activity 

(kNCX) to result in different AP dynamics. Figure 2(a) shows an AP without EADs at a lower 

ICa, L conductance and an AP with an EAD at a highr ICa, L conductance. EAD is an all-or-none 

behavior which causes discontinuous changes of APD during the transiotions between an AP 

without EAD and an AP with EAD. Except for Fig. 2(a), GCa, L = 0.00014 cm3/ μ F/s is used 

in all simualtions for the EAD case.

C. Model modifications for the case of spike-and-dome AP morphology

For the case of spike-and-dome AP morphology, we substitute Ito in the original TP04 

model with Ito, f by Mahajan et al. [60]. Other parameter changes of the original TP04 

model include decreasing GCa, L, i.e., GCa, L 0.89GCa, L, and increasing GKr, i.e., GKr 1.45GKr. 

Spike-and-dome AP morphology is an AP property induced by Ito: spike-and-dome AP 

occurs at intermediate Ito and spike AP occurs when Ito is large [Fig. 2(b)]. Spike-and-dome 

AP morphology is also an all-or-one behavior which causes discontinuous changes of APD 

during the transitions between a spike AP and a spike-and-dome AP. Except for Fig. 2(b), 

Gto = 0.19 mS/cm2 is used in all simulations for the spike-and-dome case.

D. Definitions of the variables, parameters, and units for the IM model

In the IM model, we use APD an , diastolic concentrations of Ca2 + cn  and Na+ sn  as 

variables [see Fig. 2(c)]. APD is defined as the time duration in which V > − 75mV . cn and 

sn are the corresponding concentrations at the time right before each beat. In the IM model 

and the relevant functions, the units of T  and an are milliseconds (ms), and the units of cn and 

sn are millimolars (mM). For Ca2 +  concentration in the SR cSR , the unit is also mM. The 

values of the parameters in the IM model are chosen according to this set of units and the 

units of these parameters are not explicitly listed in this paper.

E. Plotting the simulation data

For ion concentrations, the unit mM is used, but for labeling purpose, micromolar μM  is 

used for cn in all plots. For the bifurcation diagrams in this paper, we drop up to 1000 beats 
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to get rid of the transient process and then plot the recordings from the following 500 to 

2000 beats for each T  or kNCX.

III. RESULTS

A. Memory effects due to intracellular ion accumulation

To show the memory effects of ion accumulation on APD, we use the same pacing protocol 

as in the experiments shown in Fig. 1(a). We first pace the cell at T = 1 s for 1000 s (or 

1000 beats) for the cell to reach its steady state, and then suddenly switch the pacing period 

to = 0.5 s. After 2000 beats, we switch it back to = 1 s. Figure 3(a) shows an, cn, sn, and 

pn (diastolic K+
i
 right before each beat) versus n. After switching T  from 1 to 0.5 s, it 

takes more than 2000 beats to reach the steady state, and an changes from 270 to 230 ms. 

Note that the time taken to reach the steady state is much longer than that from the human 

heart shown in Fig. 1(a). To distinguish the contributions of intracellular Ca2 + , Na+, and 

K+ accumulation, we clamp K+
i
 and Na+

i
 at constants separately. Clamping K+

i
 at a 

constant exhibits only very small effects on APD, Na+
i
, and Ca2 +

i
 Fig. 3(b)]. However, 

clamping Na+
i
 at a constant exhibits large effects on APD, K+

i
, and Ca2 +

i
 [Fig. 3(c)]. 

After the sudden switch of T , APD only exhibits a 5-ms change, from 263 to 258 ms, much 

smaller than that in the free-running case. Ca2 +
i
 changes from 0.072 to 0.12 μ M, which is 

also smaller. Note that during the 2000 beats faster pacing time window (from n = 1000 to 

n = 3000), K+
i
 changes from 140 to 125 mM, but APD only changes less than 1 ms and 

a very small change occurs in Ca2 +
i
, indicating again that K+

i
 only exhibits very small 

effects on APD and Ca2 +
i
. Therefore, in this study, we do not include K+

i
 in the IM 

model and will clamp K+
i
 in certain simulations of the AP model as clarified later.

B. Development of the IM model

As shown in previous studies [18–20,32,33], ion accumulation can induce complex APD 

dynamics. In our recent study [20], we developed an IM model incorporating the ion 

accumulation to describe the APD dynamics. Here, we describe in detail the process of 

developing the IM model [see Fig. 2(c) for the definition of the variables used in the 

IM model]. Since K+
i
 exhibits little effects on APD dynamics (Fig. 3), we ignore its 

contribution in the IM model.

1. Formulating the IM equations for cn and sn—We first seek to formulate the IM 

equations for cn and sn. Based on simulation data of the AP model [Figs. 4(b) and 4(c)], for 

fixed T  and APD, sn decays exponentially and cn decays biexponentially. If sn is also fixed 

( Na+
i
 clamped), cn then decays exponentially. Based on this observation, we describe cn and 

sn by the following IM equations:
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cn + 1 = cn − βc cn − c‾ ,

(7)

sn + 1 = sn − βs sn − s‾ ,

(8)

where c‾ and s‾ are the steady-state concentrations, and βc and βs are two parameters 

determining how fast cn and sn approach their steady states. These two parameters describe 

the accumulation rates of the two ions. One can rewrite Eqs. (7) and (8) as

cn + 1 − c‾ = 1 − βc cn − c‾ ,

(9)

sn + 1 − s‾ = 1 − βs sn − s‾ .

(10)

If c‾ and s‾ are constant, then the solution of Eq. (9) or Eq. (10) takes the following 

form: yn − y‾ = 1 − β n y0 − y‾ = enln 1 − β y0 − y‾ . When βc = 1 or βs = 1, cn or sn instantaneously 

reaches its steady state, c‾ or s‾. When βc = 0 or βs = 0, cn or sn will never reach its steady 

state, which corresponds to the case of holding the concentration constant or being 

clamped. Therefore, the values of βc and βs are between 0 and 1. One can calculate β
using data from simulations of the AP model under voltage-clamp conditions as in Fig. 

4(a). For instance, using the data and the fitting functions (cn = 0.000 094 − 0.000 028e−n/8.1

and sn = 13.26 − 1.71e−n/124.2) shown in Figs. 4(b) and 4(c), one obtains βc and βs as 

follows: ln 1 − βc = − 1/8.1, giving rise to βc = 0.116, and ln 1 − βs = − 1/124.2, giving rise 

to βs = 0.008. In the computer simulations of the IM model, we set βc and βs close to these 

values. Since the accumulation speed of Na+
i
 is much slower than that of Ca2 +

i
, βs is 

much smaller than βc, i.e.,

0 < βs ≪ βc < 1 .

(11)

2. Determining the dependence of c‾ and s‾ on an and T—When T  and an are fixed 

in the voltage-clamp protocol, c‾ and s‾ are constants. However, their values are different 

with different T  and an. In other words, c‾ and s‾ are functions of T  and an. Moreover, c‾ also 

depends on Na+
i
, which is mainly determined by the NCX activity. Therefore, we assume 

that c‾ is a function of T , an, and sn, i.e.,
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c‾ = u T , an, sn .

(12)

Theoretically, s‾ may also depend on Ca2 +
i
; however, we ignore this dependence and 

assume that s‾ is a function of T  and an, i.e.,

s‾ = w T , an .

(13)

There are two reasons for this assumption. First, due to intracellular Ca2 +  cycling, we 

cannot clamp Ca2 +
i
 at a constant to determine the dependence of s‾ on Ca2 +

i
. Second, 

Ca2 +
i
 equilibrates much faster than Na+

i
βs ≪ βc ; the beat-to-beat influence of Ca2 +

i
 on 

Na+
i
 is small, i.e., a large change in Ca2 +

i
 may only cause a very small change to Na+

i

due to very slow response. For example, in Fig. 4(b), in the presence of varying cn, sn still 

decays exponentially.

To reveal the dependence of c‾ and s‾ on T , an, and sn, we use the voltage-clamp protocol 

shown in Fig. 4(a) in which we can either fix or vary T  and an (as parameters) to observe the 

responses of Ca2 +
i
 and Na+

i
. We can also clamp Na+

i
 to observe the response of Ca2 +

i

alone.

a. Dependence of c‾ on sn.: To determine this dependence, besides fixing T  and an, we 

also clamp Na+
i
 at different levels to obtain c‾. As shown in Fig. 4(d), c‾ increases almost 

linearly with the clamped Na+
i
. Similar linear relationships are obtained under the EAD 

and the spike-and-dome conditions. Note that the steady-state SR Ca2 +  concentration c‾SR

also increases linearly with the clamped Na+
i
, indicating that c‾ is linearly proportional to 

c‾SR. Since Ca2 +
i
 accumulates much faster than Na+

i
 does, c‾ can quickly adjust to the 

Na+
i
 change, and thus we assume the following c‾ formulism: c‾ = u T , an + δ sn − Δ .

b. Dependence of c‾ and s‾ on T .: Here we use the voltage-clamp protocol with a fixed 

an. Figure 5 shows the simulation results for the three cases: The original TP04 model [Fig. 

5(a)], the EAD case [Fig. 5(b)], and the spike-and-dome case [Fig. 5(c)]. Since we fix 

an = 300 ms, we scan T  starting at 320 ms to cover the short diastolic interval dn = T − an

range. The simulation data indicate that for large T , both c‾ and s‾ exhibit inverse relations 

with T  in the form A
T + T0

+ B. For short diastolic intervals, one observes 1 − e− T − an /τ . We 

give the specific functions fitted from the simulation data for each case in the Fig. 5 caption, 

which are in the following form: 
A 1 − e− T − an /τ

T + T0
+ B.

Wang et al. Page 9

Phys Rev E. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c. Dependence of c‾ and s‾ on an.: We fix T  but vary an to obtain the dependence of c‾
and s‾ on an (lower panels in Fig. 5). For large an, c‾ and s‾ exhibit linear dependence on an, 

i.e., A + Ban. For small an, they follow 1 − Ce− an + D /τ . We give the specific functions fitted 

from the simulation data for each case in the Fig. 5 caption, which are in the following form: 

A + Ban 1 − Ce− an + D /τ . However, for simplicity and arguments mentioned below, we set 

C = 1 and D = 0 for the functions we construct. This choice allows that when an 0, c‾ and s‾
approach their quiescent state values (see below).

Based on the information above, we construct the following explicit functions for c‾ and s‾:

c‾ = u T , an, sn = γc0 + γcan
T + T c

1 − e−an/τac 1 − e− T − an /τdc + δ sn − Δ + c0,

(14)

s‾ = w T , an = γs0 + γsan
T + Ts

1 − e−an/τas 1 − e T − an /τds + s0,

(15)

When T ∞, or an 0, or dn = T − an 0, c‾ δ s0 − Δ + c0 and s‾ s0, which correspond 

to the steady-state values of Ca2 +
i
 and Na+

i
 of a quiescent cell. Equations (14) and (15) 

will be used for simulations of the IM model in this study.

3. Determining the dependence of an on cn and sn—We then seek the functional 

dependence of an on cn and sn. In general, one can define an = g dn − 1, cn, sn , i.e., APD depends 

not only on ion concentrations but also on diastolic interval. Here, we assume that at slow 

pacing, the ion channels completely recover at each beat, and thus an is independent of dn − 1

but only a function of cn and sn, i.e.,

an = g cn, sn .

(16)

Since g cn, sn  is a two-variable function depending on both cn and sn, it becomes nontrivial 

to be defined. To gain insights into how an depends on cn and sn, we carry out simulations 

using random initial conditions for sn, cn, and cSR, and measure the quantities many beats 

later to avoid transient effects. We plot an (color map) versus cn and sn in Fig. 6(a), an versus 

sn in Fig. 6(b), and an versus cn in Fig. 6(c). Although the plots are scattered, as shown in 

the color map, the boundaries between two color scales (iso-APD contour lines) are almost 

linear, indicating that cn and sn are constrained with a linear relationship. Therefore, one can 

introduce a variable zn with the following linear transformation:

zn = sn + αcn,

(17)

Wang et al. Page 10

Phys Rev E. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and then use this transformation to reduce the two-variable function Eq. (16) into a one-

variable one, i.e.,

an = g zn .

(18)

Figure 6(d) replots the data in Figs. 6(a)–6(c) using the transformation zn = sn + 43000cn, 

which causes the data points to fall in a very narrow band. A linear fit of the transformed 

data gives rise to an = 402 − 9.2zn. Therefore, with the linear transformation, we can reduce 

the two-variable function into a one-variable function, and we will show later that the linear 

transformation works well under the diseased conditions.

Note that cn is the diastolic Ca2 +
i
 before each beat, and APD is affected by the Ca2 +

transient, which is more related to the peak and duration of the Ca2 +  transient. These 

properties are more causally related to SR Ca2 +  level and the Ca2 +  release channels 

(RyRs). One may also seek the functional relation of APD with SR Ca2 +  concentration 

cSR . Using the same data, if one plots cn against cSRn, they exhibit a linear relationship [Fig. 

6(e)]. Therefore, one can use a similar linear transformation, i.e., zn = sn + αcSRn to transform 

the two-variable function into a one-variable function, as shown in Fig. 6(f).

4. Feedbacks between Ca2 +
i
 and APD and between Na+

i and APD—

Because APD affects both Ca2 +
i
 and Na+

i
, and Ca2 +

i
 and Na+

i
 affect APD, feedback 

loops form between APD and the ion concentrations. Here we describe the feedback loops 

based on our simulations of the AP model under the three conditions.

a. Feedback between APD and Ca2 +
i
.: In previous studies [61–66], the couplings 

between Ca2 +
i
 and APD were referred to as Ca2 + -to-APD coupling and APD-to-Ca2 +

coupling. The APD-to-Ca2 +  coupling and Ca2 + -to-APD coupling form a feedback loop, 

and depending on the signs of the couplings, the feedback can be negative or positive. For 

instance, for the original TP04 model, the APD-to-Ca2 +  coupling is positive since longer 

APD results in a higher Ca2 +
i
 [Fig. 5(a)], and the Ca2 + -to-APD coupling is negative since 

a higher Ca2 +
i
 gives rise to a shorter APD [Fig. 6(c)]. Therefore, the feedback between 

Ca2 +
i
 and APD is negative for the original TP04 model. As we will show later, we can 

change a negative feedback loop between Ca2 +
i
 and APD to a positive one by enhancing 

NCX, which then alters the dynamics for both the EAD and spike-and-dome cases. Note 

that the coupling relationship also depends on the pacing period T  [65], and we only focus 

on slow pacing in this study. Note that the Ca2 + -to-APD coupling determines the sign of α
in the transformation [Eq. (17)], i.e., for negative coupling, α > 0, and for positive coupling, 

α < 0. Because the APD-to-Ca2 +  coupling is always positive Ca2 +
i
 is higher for a longer 
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APD; see Fig. 5), then the sign of α determines the sign of the feedback loop, i.e., the 

feedback is positive if α < 0 and negative if α > 0.

b. Feedback between APD and Na+
i.: The feedback loop between Na+

i
 and APD is 

more complex since the dependence of Na+
i
 on APD is nonmonotonic. For the original 

TP04 and the spike-and-dome case, Na+
i
 first increases and then decreases with APD. 

Because we observe that in general APD decreases with Na+
i
 [e.g., Fig. 6(b)], therefore, 

when APD is small, the feedback is negative, but it becomes positive when APD is large. 

For the EAD case, Na+
i
 increases with APD, and thus the feedback is always negative. 

Note that the dependence of c‾ and s‾ on an shown in Fig. 5 are obtained under voltage-clamp 

conditions, and they may differ from those under free-running conditions.

5. Using the IM model to capture the memory effects of the original TP04 
model—As a first check of the IM model, we examine if the IM model can capture the 

memory effects of the TP04 model shown in Fig. 3. Figure 7(a) plots the dependence of c‾
and s‾ on T  and APD using Eqs. (14) and (15), which are similar to those in Fig. 5(a). Figure 

7(b) uses the IM model [iterating Eqs. (7), (8), (14), (15), and (19)] to simulate the decay 

of cn and sn using the same protocol as in Figs. 4(b) and 4(c), i.e., fixing an = 300 ms with 

free-running sn (upper two panels) and clamped sn (lower panel). The results are the same 

as those shown in Figs. 4(b) and 4(c). That is, for free-running sn, sn decays exponentially 

with n but cn decays biexponentially with n, and for clamped sn, cn decays exponentially with 

n. Figure 7(c) shows an, cn, and sn versus n for the pacing period switching from T = 1 s to 

T = 0.5 s and back to T = 1 s with free-running sn. The IM model gives rise to the same 

responses of an, cn, and sn as those in the original TP04 model shown in Fig. 3(a). After sn

is clamped at 12 mM, an and cn exhibit responses similar to those in Fig. 3(c). These results 

show that the IM model can well capture the properties of the detailed AP model, not only 

qualitatively but also quantitatively.

C. Bifurcations and complex dynamics revealed by the IM model

We use the IM model to perform stability analyses and carry out computer simulations to 

reveal the bifurcations and the mechanisms of the complex APD dynamics.

1. Linear stability analysis—Note that only two equations of the three equations are 

free, and one can eliminate an by substituting it in Eqs. (7) and (8) with Eq. (16) [or Eq. 

(18)]. The linearization of Eqs. (7) and (8) around the steady state is

Δ cn + 1 = 1 − βc 1 − ∂c‾
∂cn

Δ cn + βc
∂c‾
∂sn

Δ sn,

(19)
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Δ sn + 1 = 1 − βs 1 − ∂s‾
∂sn

Δ sn + βs
∂s‾
∂cn

Δ cn,

(20)

where ∂c‾
∂cn

= ∂u
∂an

∂an
∂cn

, ∂c‾
∂sn

= ∂u
∂sn

+ ∂u
∂an

∂an
∂sn

, ∂s‾
∂sn

= ∂w
∂an

∂an
∂sn

, and ∂s‾
∂cn

= ∂w
∂an

∂an
∂cn

. Using an = g zn

and zn = sn + αcn, one has ∂an
∂cn

= ∂g zn
∂zn

∂zn
∂cn

= α∂g zn
∂zn

 and ∂an
∂sn

= ∂g zn
∂zn

∂zn
∂sn

= ∂g zn
∂zn

. Denoting 

ua = ∂u
∂an

, us = ∂u
∂sn

, wa = ∂w
∂an

, and g′ = ∂g zn
∂zn

, then Eqs. (19) and (20) become

Δcn + 1 = 1 − βc 1 − αuag′ Δcn + βc us + uag′ Δsn,

(21)

Δsn + 1 = 1 − βs 1 − wag′ Δsn + βsαwag′Δcn .

(22)

We rewrite Eqs. (21) and (22) into the vector form, i.e.,

Δcn + 1
Δsn + 1

= J Δcn
Δsn

,

(23)

where J  is the Jacobian matrix, i.e.,

J =
1 − βc + αβcuag′ βc us + uag′

βsαwag′ 1 − βs + βswag′ .

(24)

The stability of the steady state and bifurcations can be obtained by the properties of the 

eigenvalues of J  in Eq. (24). However, based on our simulations, there are limitations in 

choosing the parameters. As shown in Figs. 4 and 5, the values of βc and βs are between 

0 and 1 and βs ≪ βc [Eq. (11)]. The Na+-to-APD coupling is mainly negative [e.g., APD 

is a decreasing function of Na+
i
 as shown in Fig. 6(b)]. The Ca2 + -to-APD coupling can 

be either positive α < 0, promoted by high NCX activity; see Fig. 13 and Fig. 17) or 

negative α > 0, promoted by low NCX activity; see Fig. 14 and Fig. 18). The APD-to-Ca2 +

coupling is positive (red symbols in the lower panels in Fig. 5), i.e., c‾ depends positively 

on an, which indicates that ua > 0 . Ca2 +
i
 is proportional to Na+

i
, i.e., c‾ increases with sn

linearly, indicating that us = δ > 0 [Fig. 4(d)]. For the EAD condition, APD-to-Na+ coupling 

is positive [lower panel in Fig. 5(b)], i.e., s‾ increases with an, indicating wa > 0. In the control 

case [Fig. 5(a)] or the spike-and-dome case [Fig. 5(c)], s‾ increases and then decreases as 

an increases, which indicates that APD-to-Na+ coupling can be either positive wa > 0  or 
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negative wa < 0 . For βs ≪ βc, wa has little effect on the bifurcations and so does the sign 

of wa. Therefore, by applying these constraints, the major parameter that determines the 

dynamics in the AP model is Ca2 + -to-APD coupling, i.e., the magnitude and sign of α. 

The coupling conditions observed in the AP model are listed in Table I. We first perform 

a general stability analysis but also consider the information or conditions observed in the 

AP models. We then carry out simulations of the IM model by using the conditions of and 

functions reconstructed from the AP model to recapitulate the bifurcations and dynamics of 

the AP model. The corresponding bifurcations and figures of the results are listed in Table I.

Here, we perform a general stability analysis and discuss the bifurcations by considering the 

parameter information shown in Table I. Defining τ = tr J  and Δ = det J  to be the trace and 

determinant of J , then the two eigenvalues are

λ = τ ± τ2 − 4Δ /2 .

(25)

Using the stability criteria for IMs combined with the information of βc, βs, ua, us, wa, and 

g′ mentioned above, we obtain the bifurcations and the physiological conditions for the 

occurrence of the bifurcations as follows:

a. τ2 − 4Δ < 0, Hopf bifurcation.: In this case, the eigenvalues are a pair of complex 

conjugates, i.e., λ = τ ± i − τ2 − 4Δ /2. When λ = Δ > 1, instability occurs via a Hopf 

bifurcation, which leads to the following stability criterion, i.e., when

waβs 1 − βc + uaαβc 1 − βs − βsβcuswaα g′ > βc + βs − βcβs,

(26)

the steady state is unstable. Because βc and βs are between 0 and 1, then βc + βs > βcβs always 

holds, and thus the right side of Eq. (26) is always positive. This requires the left side of Eq. 

(26) to be positive to satisfy the stability criterion. Considering the fact that βs ≪ βc, one can 

simplify Eq. (26) to uaαβcg′ > βc or

uaαg′ > 1 .

(27)

Because ua > 0 and g′ < 0, α < 0 is required to satisfy Eq. (27). This implies that for the 

Hopf bifurcation to occur, a positive feedback between APD and Ca2 +
i
 is required. 

Theoretically, when βs is large and wa < 0, Eq. (26) can be satisfied when α ⩾ 0. In other 

words, when the feedback between APD and Na+
i
 is positive, a positive feedback between 

APD and Ca2 +
i
 may not be required.
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A limit case is when βs = 0, corresponding to Na+
i
 being clamped at a constant. Under this 

condition, the system is reduced from a two-variable system (both sn and cn) to a one-variable 

system (cn only). The stability criterion, Eq. (27), then becomes the criterion for bistability 

to occur in the one-variable system. Bistability under clamped Na+
i
 was indeed observed in 

the AP models in previous studies [20,32] in which Hopf bifurcations occur when Na+
i
 is 

free running.

In Fig. 8, we plot the stability boundaries for βs = 0 (short-dashed line) and βs = 0.15 (solid 

line), showing that a larger βs requires a steeper g zn  for the Hopf bifurcation to occur. This 

indicates that a faster Na+
i
 accumulation rate suppresses this instability.

b. τ2 − 4Δ > 0, period-doubling bifurcation.: In this case, the two eigenvalues are real 

and when the smaller one λ = τ − τ2 − 4Δ /2 < − 1, or τ + 2 < τ2 − 4Δ, instability occurs 

via a period-doubling bifurcation, which leads to the following stability criterion, i.e., when

waβs 2 − βc + uaαβc 2 − βs − βsβcuswaα g′ < − 2 − βc 2 − βs ,

(28)

the steady state is unstable. Similarly, when βs ≪ βc, Eq. (28) can be reduced to

uaαβcg′ < − 2 + βc .

(29)

Because the right side of Eq. (28) or Eq. (29) is always negative, α > 0 is needed to satisfy 

the stability criterion, in particular when βs ≪ βc. α > 0 corresponds to the feedback between 

APD and Ca2 +
i
 being negative. However, when βs is large, α > 0 may not be always 

required (e.g., the period-doubling curve for βs = 0.2 in Fig. 8 ends at < 0) to satisfy Eq. (28). 

This is because the feedback between APD and Na+
i
 is generally negative; this negative 

feedback can play the same role as the one between APD and Ca2 +
i
 in promoting the 

period-doubling bifurcation. In Fig. 8, we plot the stability boundaries βs = 0 (dashed) and 

for βs = 0.2 (solid). A larger βs requires a less steep g zn  for the period-doubling bifurcation 

to occur, indicating that a faster Na+
i
 accumulation rate promotes this instability.

c. τ2 − 4Δ > 0, saddle-node bifurcation.: In this case, when the larger of the two 

eigenvalues λ = τ + τ2 − 4Δ /2 > 1, or 2 − τ < τ2 − 4Δ, instability occurs via a saddle-node 

bifurcation, leading to the condition

wa + uaα + uswaα g′ > 1 .

(30)
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Note that Eq. (30) is independent of βc and βs. To satisfy Eq. (30), α < 0 is required since 

g′ < 0, i.e., this bifurcation is promoted by the positive feedback between APD and Ca2 +
i
. 

However, theoretically, because wa < 0 can occur, Eq. (30) can be satisfied even when α > 0. 

In other words, when wa < 0, the feedback between APD and Na+
i
 becomes positive, and 

thus it can give rise to the saddle-node bifurcation. The dashed-dotted curve in Fig. 8 is a 

stability boundary of this bifurcation. The saddle-node bifurcation leads to bistability in the 

system. Note that this stability boundary can intersect with that of the Hopf bifurcation, and 

thus one may see bistability or oscillations depending on the choice of the parameters, such 

as βs and α.

2. Bifurcations and complex dynamics using a Hill-type function of g zn

—To demonstrate the bifurcations predicted by the stability analysis and the complex 

dynamics induced by the feedback loops and slow ion accumulation, we carry out computer 

simulations of the IM model [Eqs. (7) and (8)] using the coupling conditions of the EAD 

case as shown in Table I and a Hill function for Eq. (18), i.e.,

an = g zn = amin + amax − amin

1 + zn
kd

ℎ ,

(31)

where amax and amin are the maximum and minimum APD values. ℎ is the Hill coefficient and 

kd is the dissociation constant.

Figure 9(a) is a phase diagram showing the unstable regions in the α − T  plane. Agreeing 

with the linear stability analysis, there are two unstable regions: one when α < 0 (unstable 

I) and one when α > 0 (unstable II). Note that to maintain the two unstable regions in the 

same phase diagram as in Fig. 8, we set kd as function of α, i.e., kd = 11.5 + 0.00005α. The 

rationale for doing this is as follows. First, in the linear stability analysis shown in Fig. 8, 

we do not consider the actual steady state and its change with parameters. Second, in the 

simulations of the detailed AP model, one observes two unstable regions by altering kNCX

(see, e.g., Figs. 10 and 15). Changing kNCX alters both α and kd (see, e.g., Figs. 13 and 14 and 

Figs. 17 and 18), and kd is smaller for α < 0 than for α > 0, agreeing with the way we alter 

kd. With a constant kd, it is difficult to maintain the two unstable regions on the same phase 

diagram as in Fig. 9(a) without altering another parameter. Figure 9(b) shows bifurcation 

diagrams across the two unstable regions for = 2.5 s. In unstable region I, only periodic 

oscillatory behavior is observed [Fig. 9(c)]. In unstable region II, period-doubling routes to 

chaos occur, leading to high periodicity and chaos [Fig. 9(d)]. Comparing to unstable region 

I, even though APD varies roughly in the same range, the Ca2 +
i
 variation is attenuated 

and Na+
i
 exhibits almost no variation. Agreeing with the linear stability analysis, when 

the feedback between APD and Ca2 +
i
 is positive α < 0 , Hopf bifurcation leading to 

Wang et al. Page 16

Phys Rev E. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oscillatory dynamics occurs. When the feedback between APD and Ca2 +
i
 is negative 

α > 0 , period-doubling bifurcations leading to high periodicity and chaos occur.

D. Bifurcations and complex dynamics in the presence of EADs

To demonstrate that the IM model can capture the complex dynamics in the AP model, we 

first carry out simulations using the AP model under the condition of EADs. Then, we use 

the function g zn  reconstructed from the simulation data to carry out simulations of the IM 

model to recapture the bifurcations and the APD dynamics. Figure 10 shows bifurcation 

diagrams plotting an, cn, and sn versus kNCX kNCX controls the strength of NCX) for T = 2.5 s. 
There are two unstable regions in the bifurcation diagrams. When kNCX is small (from 0.75 

to 1.5 nA/pF), period-doubling routes to chaos occur, intermingled with periodic windows, 

corresponding to unstable region II in Fig. 9. When kNCX is large (from 2.1 to 5.6 nA/pF), 

periodic oscillations occur, corresponding to unstable region I in Fig. 9. Also agreeing with 

the map results shown in Fig. 9, the APD variations are in the same range in the two regions, 

but the Ca2 +
i
 and Na+

i
 varations are different. In unstable region II, the Ca2 +

i
 variation 

is attenuated, and Na+
i
 exhibits almost no variation.

To show what happens to the APs in the oscillatory regime, we plot a voltage trace for 

T = 2.5 s and kNCX = 5 nA/pF in Fig. 11(a), which shows oscillatory transitions between APs 

with EADs and APs without EADs. In this trace, an EAD occurs in each AP from 20 to 67.5 

s (total 19 beats), and APD is long. No EAD occurs in the APs from 67.5 to 175 s (total 

43 beats), and APD is short. The total length of this combined EAD and no EAD phase is 

155 s or 62 beats. This repeats as time goes on, giving rise to a periodic oscillatory behavior. 

Figure 11(b) plots an, cn, and sn versus beat number n from the same simulation in Fig. 11(a). 

The period of oscillation is 62 beats (or 155 s). As APD changes from short to long, both 

cn and sn elevate, and as APD changes from long to short, both cn and sn decay. Note that cn

responds much faster than sn to the APD changes. Figure 11(c) shows bifurcation diagrams 

plotting ancn, and sn versus T , in which the oscillatory behavior occurs between T = 2.35 s and 

T = 3.4 s, but stable for smaller or larger T  outside this region.

Because cn is the diastolic Ca2 +
i
 before each beat, for comparison, we also plot the 

peak Ca2 +
i
 on the same panel in Fig. 11(b), which shows almost the same oscillatory 

characteristics. It is known that peak Ca2 +
i
 is proportional to SR Ca2 +  level cSR , and as 

shown in Figs. 4(d) and 6(e), at steady state, cn is proportional to cSRn. Therefore, cn is also 

proportional to peak Ca2 +
i
.

Figure 12(a) plots a voltage trace in the chaotic regime for T = 2.5 s and kNCX = 1 nA/pF, 

which shows chaotic traistions between APs with EADs and APs without EADs. Figure 

12(b) plots an, cn, and sn versus beat number n from the same simulation, showing chaotic 

variations. Figure 12(c) shows bifurcation diagrams plotting an, cn, and sn versus T , in which 

chaos and high periodicity occur between T = 2.38 s and T = 2.8 s. In this case, Na+
i
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accumulation plays almost no role. The bifurcations and complex APD dynamics are mainly 

caused by the negative feedback between APD and Ca2 +
i
. In our previous study [19], 

we showed that the chaotic dynamics could be well explained by only including Ca2 +
i

accumulation.

To use the IM model to capture the dynamics of the AP model under the EAD condition, we 

reconstruct g zn  from the simualtion data of the AP model and determine a set of parameters 

for the functions of c‾ and s‾ [Eqs. (14) and (15)] based on the cn and sn levels measured in 

the AP model. We first reconstruct a g zn  for kNCX = 5 nA/pF (oscillatory regime). Figure 

13(a) replots all the data from Fig. 11(c) in the forms of an against sn (left) and an against cn

(middle). In both plots, the data points are scattered. We then plot an against zn (right) using 

the transformation zn = sn + αcn with α = − 13000. This transformation converts the scattered 

plots into a plot with the data being in a narrow band. We construct a piecewise linear 

function (solid line in the right panel) for g zn  based on this plot. To quantitatively match the 

bifurcations and the values of cn and sn requires a proper set of parameters for the functions 

of c‾ and s‾ [Eqs. (14) and (15)]. Because the parameters of the fitting functions in Figs. 

4 and 5 are obtained under voltage-clamp conditions, it may differ from the free-running 

conditions, and thus we cannot directly take them from Figs. 4 and 5. We first determine the 

ranges of the parameters based on the results in Figs. 4 and 5. We then take the steady-state 

data from the AP model (e.g., the steady states in the long or short T  in the bifurcation 

diagrams) and iterate the IM model to adjust the parameters to reach the same steady states. 

However, the choice of the parameters is not unique, and many sets of parameters can meet 

the criterion equally well. We use one of them for the simulations of the IM model, which 

are listed in the figure caption for each case.

Using the reconstructed functions, we carry out simulations of the IM model [Eqs. (7) and 

(8)]. Figure 13(b) plots an, cn, and sn versus n for T = 2.5 s and Fig. 13(c) shows bifurcation 

diagrams plotting an, cn, and sn versus T . Oscillatory behavior occurs between T = 2.36 s and 

= 3.38 s. The simulation results of the IM model shown in Figs. 13(b) and 13(c) are almost 

the same as those from the AP model shown in Figs. 11(b) and 11(c). Note that we have 

to use α < 0 to transform the scattered data into a narrow band to reconstruct g zn , and this 

transformation is not arbitrary but unique. This indicates that the feedback between APD and 

Ca2 +
i
 is positve, and thus the dynamics remains oscillatory as predicted by the theory.

We then repeat the process for the chaotic case shown in Fig. 12. In this case, α = 25000
converts the scattered plots into a very narrow-band plot [Fig. 14(a)]. α > 0 indicates that 

the feedback between APD and Ca2 +
i
 is negative and thus the dynamics is chaotic. Again, 

the simulations of the IM model using the reconstructed g zn  give rise to almost the same 

bifurcations and dynamics [Figs. 14(b) and 14(c)] as those from the AP model shown in 

Figs. 12(b) and 12(c), capturing the dynamics not only qualitatively but also quantitatively 

well.
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E. Bifurcations and complex dynamics under the condition of spike-and-dome AP 
morphology

Similar to the EAD case, we first carry out simulations of the AP model under the spike-

and-dome AP morphology condition, and then recapture the bifurcations and APD dynamics 

using the IM model. Differing from the EAD case, in the spike-and-dome case, we find that 

K+
i
 cannot reach a steady state under certain parameters in our simulations. This might 

be the same steady-state issue of cardiac AP models that has been addressed previously 

[67]. To avoid this, and because K+
i
 accumulation exhibits only a small effect on APD, 

Na+
i
, and Ca2 +

i
 (Note this does not mean that K+

i
 is not important, but as long as it is 

in the physiological range, its effect on dynamics is small), we clamp K+
i
= 136 mM for 

all simulations in this case. With some changes in parameters of the original TP04 model 

and substitution of Ito (see Sec. II), we observe the same complex dynamics as in the EAD 

case. Figure 15(a) shows bifurcation diagrams plotting an, cn, and sn versus kNCX for T = 1.6 s. 
When kNCX < 1.2 nA/pF, the system is stable. For kNCX = 1.2 to 4.2 nA/pF, chaos intermingling 

with periodic windows occurs. In this regime, the variation of cn is small, and that of sn is 

negligible. When kNCX > 4.2 nA/pF, oscillatory behavior occurs. In this regime, the variations 

of cn and sn are large. Figure 15(b) shows bifurcation diagrams plotting an, cn, and sn versus 

T  for kNCX = 5 nA/pF, which is in the oscillatory regime. The oscillatory behavior occurs 

between T = 1280 ms and = 1850 ms. Figure 15(c) shows bifurcation diagrams plotting 

an, cn, and sn versus T  for kNCX = 3 nA/pF, which is in the chaotic regime. Chaos and high 

periodicity occur for > 1360 ms. Figure 16 shows example traces of voltage [Figs. 16(a) and 

16(b)] and the corresponding an, cn, and sn versus n for the oscillatory [Fig. 16(c)] and chaotic 

[Fig. 16(d)] regimes.

Following the same procedure as in the EAD case, we reconstruct g zn  and choose 

parameters for the functions of c‾ and s‾ [Eqs. (14) and (15)] for the two cases shown in 

Figs. 15(b) and 15(c). Figure 17(a) replots the data in Fig. 15(b) in the forms of an against sn

(left) and an against cn (middle), showing two scattered plots. We then plot an against zn (right) 

using the transform zn = sn + αcn with α = − 22 000, tranforming the scattered plots into a 

narrow-band plot. α < 0 indicates that the feedback between APD and Ca2 +
i
 is positive and 

the dynamics shall be osillatory. Using the reconstructed g zn  [red curve in the right panel 

in Fig. 17(a)], and a proper set of parameters for the fucntions of c‾ and s‾ [Eqs. (14) and 

(15)] for the IM model, we obtain almost the same bifurcation diagrams [Fig. 17(b)] and 

oscillatory behavior [Fig. 17(c)] as the ones from the AP model shown in Figs. 15(b) and 

16(c).

We repeat the same process for the chaotic case. Figure 18(a) replots the data from Fig. 

15(c) in the forms of an against sn (left) and an against cn (middle), showing two scattered 

plots. We then plot an against zn (right) using the transformation zn = sn + αcn with α = 250 000, 

transforming the scattered plots into a very narrow-band plot. α > 0 indicates that the 

feedback between APD and Ca2 +
i
 is negative and the dynamics shall be chaotic. Using the 
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reconstructed g zn  [red curve in the right panel in Fig. 18(a)], and a proper set of parameters 

for c‾ and s‾ [Eqs. (14) and (15)] for the IM model, we also obtain almost the same bifurcation 

diagrams [Fig. 18(b)] and chaotic behavior [Fig. 18(c)] as the ones from the AP model 

shown in Figs. 15(c) and 16(d).

IV. DISCUSSION AND CONCLUSIONS

In this study, we investigate the roles of ion accumulation in the genesis of complex APD 

dynamics using computer simulations of a detailed AP model under two different diseased 

conditions and develop an IM model to reveal the underlying dynamical mechanisms. 

We first use simulation of the detailed AP model under normal condition to inform the 

development of the IM equations and construction of the IM functions for the IM model. 

We then validate the IM model using simulations of the detailed AP model under two 

diseased conditions in which complex APD dynamics occur. Our major observations from 

simulations of the detailed AP model and theoretical analyses of the IM model are the 

following: (1) The occurrence of EADs or spike-and-dome AP morphology results in a steep 

dependence of APD on ion concentrations (as well as other parameters, e.g., ion channel 

conductance), and this steep dependence is required for the occurrence of the complex AP 

dynamics; (2) When the feedback between Ca2 +
i
 and APD is positive, a Hopf bifurcation 

leading to oscillatory APD behavior occurs. When the feedback is negative, period-doubling 

bifurcations leading to high periodicity and chaos occur; (3) The slow accumulation of 

Na+
i
 and its negative feedback with APD are required for the Hopf bifurcation but not for 

the period-doubling bifurcations; (4) Using functions constructed using simulation data from 

the detailed AP model, the two-dimensional IM model cannot only qualitatively but also 

quantitatively capture the bifurcations and APD dynamics of the detailed high-dimensional 

AP model. Moreover, the IM model can explicitly dissect out the roles of the feedback 

loops and the APD responses to the changes of the ion concentrations in the genesis of 

the complex dynamics, unifying the two dynamical regimes under the same theoretical 

framework; and (5) Although the underlying diseased conditions or causes of the spike-and-

dome case are different from those of the EAD case, the dynamical mechanisms for the 

complex APD dynamics are identical, which can be captured by the same IM model.

It is known that slow ion accumulation is the main contributor for short-term memory in 

the heart [33,68]. Short-term memory has been investigated in many previous theoretical 

studies [11,18,69–71] which incorporated phenomenologically a “memory” variable in the 

models. Our IM model incorporates the specific feedback loops and timescales of Ca2 +
i

and Na+
i
 accumulation, linking short-term memory and slow ion accumulation to the 

genesis of complex APD dynamics in ventricular myocytes under diseased conditions. In 

particular, the roles of the feedback loops between APD and ion concentrations in generating 

the bifurcations and nonlinear dynamics are explicitly dissected out in the IM model.

It is shown that both EADs and spike-and-dome AP morphology can generate early 

spontaneous excitations in cardiac tissue, called premature ventricular complexes (PVCs) 

via dynamical instabilities [55,72]. These PVCs may propagate into longer APD regions 
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to result in reentry via unidirectional conduction block [73] or degenerate directly into 

reentry [46]. The dynamics revealed in this study may provide mechanistic insights beyond 

the generation of reentry. First, cellular chaos may synchronize at the tissue scale [44,74] 

to result in dynamical dispersion of refractoriness or multifocal arrhythmias. Second, the 

cellular oscillatory behavior may directly manifest at the tissue as Torsade de Pointes 

or nonsustained ventricular tachycardia that occur and terminate spontaneously [75–77]. 

Nevertheless, how these dynamics are manifested at the tissue scale and what new tissue-

scale dynamics may emerge from them need to be investigated in future studies.

In the current IM model, although both Ca2 +
i
 and Na+

i
 play important roles in generating 

the complex dynamics, the instability is still driven by the steep change in APD in response 

to the changes of the ion concentrations, i.e., the steep decreasing g zn  in the IM model. 

This instability is still a voltage-driven one. It is well known that dynamical instabilities 

can occur in the Ca2 +  cycling system itself, independent of the voltage system [63,65,78–

82]. It is known that coupling between APD and Ca2 +  can bring in novel dynamics when 

both systems are unstable [61,62,64,66]. We will integrate our previous IM models [64,82] 

with the IM model in this study to form an IM model that couples the voltage-driven and 

Ca2 + -driven dynamics as well as the short-term memory caused by ion accumulation to 

investigate the nonlinear dynamics emerging in cardiac systems.

In conclusion, slow ion accumulation, in particular Na+
i
 accumulation, plays a major 

role in short-term cardiac memory. Their memory effects combined with their feedback 

loops with APD can generate complex APD dynamics under diseased conditions. These 

complex dynamics can be well described by a low-dimensional IM model incorporating 

Ca2 +
i
 and Na+

i
 accumulation and the feedbacks between APD and Ca2 +

i
 and Na+

i
. 

Furthermore, the same IM model unifies the bifurcations and complex dynamics under 

different dynamical regimes and different diseased conditions into a single theoretical 

framework, providing a theoretical tool for analyzing the dynamical mechanisms of complex 

dynamics in cardiac myocytes.
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FIG. 1. 
Cardiac memory and intracellular ion accumulation. (a) Responses of APD to sudden 

changes (as marked) of pacing period in a human heart, modified from Franz et al. (Ref. 

[10]). (b) Schematic plot of ion cycling between intracellular and extracellular space via 

membrane ion channels and pumps. K+ enters the cell via NKA and extrudes via the K+

channel. Na+ enders the cell via the Na+ channel and NCX, and extrudes via NKA. Ca2 +

enters the cell via the Ca2 +  channel and extrudes via NCX. Ca2 +  also has an internal cycle, 

which is key to contraction of the heart. In this cycle, Ca2 +  releases from the SR via the 
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RyRs on the SR membrane and is reup taken back into the SR via the SERCA pump. SR is 

the major Ca2 +  store in a myocyte.
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FIG. 2. 
APs under disease conditions and definition of variables for the IM model. (a) An AP with 

a low IC, L and no EAD (dashed, GCa, L = 0.000035cm3/ μ F/s) and one with a high ICa, L and 

EAD (solid, GCa, L = 0.00014cm3/ μ F/s) from the AP model of the EAD case. The cyan mark 

indicates the square-pulse stimulus, which is given at = 100 ms. (b) A spike-and-dome AP 

with an intermediate Ito (solid, Gto = 0.19 mS/cm2) and a spike AP with a high Ito (dashed, 

Gto = 0.3 mS/cm2) from the AP model of the spike-and-dome case. (c) Example traces of 
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V , Ca2 +
i
, and Na+

i
 vs time from the original TP04 model under periodic pacing with 

a period of T . an is the APD of the nth beat, which is defined as the time duration when 

V ⩾ − 75mV . dn is the diastolic interval of the nth beat [dn − 1 for the n − 1 th beat], which is 

defined as the time duration when V < − 75mV . cn and sn are the values of Ca2 +
i
 and Na+

i

measured at the moment before the stimulus is given for the nth beat. In physiology, the 

Ca2 +
i
 trace during an AP is also called a Ca2 +  transient.

Wang et al. Page 29

Phys Rev E. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 

Responses of APD, Ca2 +
i
, Na+

i
, and K+

i
 to sudden changes of pacing period T  in the 

original TP04 model. (a) an, cn, sn, and pn (diastolic K+
i
 right before each beat) vs beat 

number n in a simulation in which T  is switched from T = 1 s to T = 0.5 s and back to 

T = 1 s. (b) Same as (a) but K+
i
 is clamped at K+

i
= 138 mM. (c) Same as (a) but Na+

i
 is 

clamped at Na+
i
= 12 mM.

Wang et al. Page 30

Phys Rev E. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 

Ca2 +
i
 and Na+

i
 behaviors under voltage-clamp conditions. (a) Schematic plot of 

the voltage-clamp protocol. T  is the period, an is APD, and dn is the diastolic 

interval. cn and sn are the values at the time when the voltage is changed from 

−85 to 0 mV. (b) Left: sn vs n starting from an initial condition away from its 

steady-state value s‾ . an = a = 300 ms and = 1.5 s. The line is a single-exponential fit: 

sn = 13.26 − 1.71e−n/124.2 mM. Right: cn vs n from the same simulation. The line is a 

biexponential fit: cn = 94 − 16e−n/8.1 − 14e−n/127.8 × 10−6 mM. (c) cn vs n for Na+
i
 clamped 

at 13.26 mM. The line is a single-exponential fit: cn = 94 − 28e−n/8.1 × 10−6 mM. (d) Left: 

c‾ vs clamped Na+
i
. The line is a linear fit: c‾ = − 14.6 + 8.2s‾ × 10−6 mM. Right: c‾SR vs 

clamped Na+
i
. The line is a linear fit: c‾SR = − 0.68 + 0.12s‾ mM.
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FIG. 5. 
Dependences of c‾ and s‾ on T  and an under different conditions. Solid (s‾) and open 

(c‾) circles are simulation data using the same voltage-clamp protocol as in Fig. 

4(a) and lines are plots of the corresponding fitting functions. (a) Original TP04 

model. Upper: c‾ and s‾ vs T  for an = 300 ms . c‾ and s‾ were taken at the 1200th 

beat for each T . The fitting functions are c‾ = 0.115 1 − e− T − 300 /72 / T − 250 mM

and s‾ = 6.2 + 14300
T + 520 1 − e− T − 300 /60 mM. Lower: c‾ and s‾ vs an for 

= 1500 ms. The fitting functions are c‾ = 87 + 0.058an 1 − 0.8e−an/160 × 10−6 mM and 

s‾ = 15 − 0.0052an 1 − 0.4e− an + 25 /105 mM. (b) The EAD case with kNCX = 3 nA/pF. 

Upper: c‾ and s‾ vs T for an = 300 ms. The fitting functions are 

c‾ = 0.055 1 − e− T − 300 /1.5 / T − 120 mM and s‾ = 5.7 + 22400
T + 2000 1 − e− T − 300 /40 mM. 

Lower: c‾ and s‾ vs an for = 2500 ms. The fitting functions are 

c‾ = 13 + 0.049an 1 − e−an/2.2 × 10−6 mM and s‾ = 10.3 + 0.0012an 1 − e−an/1.5 mM. (c) 

The spike-and-dome case with kNCX = 3 nA/pF. Upper: c‾ and s‾ vs T
for an = 300 ms. The fitting functions are c‾ = 0.096 1 − e− T − 300 /20 / T − 35 mM

and s‾ = 6.95 + 17 085 1 − e− T − 300 /65 / T + 970 mM. Lower: c‾ and s‾ vs an for 

= 1600 ms. The fitting functions are c‾ = 51 + 0.023an 1 − 0.7e−an/120 × 10−6 mM and 

s‾ = 15 − 0.005an 1 − 0.32e− an + 25 /75 mM.
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FIG. 6. 
Transforming a two-variable function into a one-variable function for the original TP04 

model. (a) Color map of an vs cn and sn. At t = 0 (after the system reaches steady state), 

Ca2 +
i
, Na+

i
, and Ca2 +

SR
 are reset randomly by drawing from the intervals 0.00005, 

0.00009 , 9.75, 13.75 , and 0, 1 mM, respectively. The cell is paced with = 1 s, and cn, sn, and 

cSRn are taken at the end of beat No. 10. (b) an vs sn from the same dataset. (c) APD vs cn

from the same dataset. (d) an vs zn after the transformation zn = sn + 43000cn. The straight line 

is a linear fit with the following function: an = 402 − 9.2zn. (e) cn vs cSRn from the same dataset. 

(f) an vs zn using the transformation zn = sn + 3.2cSRn. The straight line is a linear fit with the 

following function: an = 392 − 9.3zn.
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FIG. 7. 
Memory effects simulated using the IM model. (a) c‾ (open circles) and s‾ (solid circles) 

vs T  with an = 300 ms (left) and c‾ and s‾ vs an with T = 1 s using Eqs. (14) and 

(15) with the following parameters: γc0 = 0.0075, γc = 0.000058, τac = 100, τdc = 70, T c = − 250, 

δ = 8.2 × 10−6, Δ = 6.2, c0 = 0, γs0 = 13500, γs = − 5.2, τas = 70, τds = 60, s0 = 6.2, and 

T s = 520 . βc = 0.12 and βs = 0.01. These parameters are either the same as or similar to 

the ones in the fitting functions in Fig. 5(a) for the original TP04 model [Note: due to 

T  in the denominator in Eqs. (14) and (15) being in the order of 1000, the γ values 

are 1000-fold of the corresponding values in the fitting functions in the lower panel in 

Fig. 5(a)]. (b) Simulating the voltage-clamp condition with an = 300 ms and T = 1 s in 

the IM model. Upper and middle panels: cn and sn vs n. The lines are exponential fits: 

sn = 13.95 − 2.45e−n/99.5 mM and cn = 95 − 13e−n/7.8 − 22e−n/99.5 × 10−6 mM. Lower panel: 

cn vs n when sn is clamped at 13.95 mM. The same functions of c‾ and s‾ as in (a) are 

used. The line is an exponential fit: cn = 95 − 38e−n/7.8 × 10−6 mM. (c) Simulating the 

memory effect in the IM model. an, cn, and sn vs n for T  changes from 1 s (n < 500) 
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to 0.5 s 500 < n < 1200  and back to 1 s n > 1200 . (d) Same as (c) but sn is clamped 

at 12 mM. For (c) and (d), the same functions for c‾ and s‾ as in (a) are used except 

γs0 = 10000 . an = g zn = 402 − 9.2zn and zn = sn + 43000cn are used.
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FIG. 8. 
Stability boundaries of the steady state in the g′ − α space from the IM model. 

us = δ = 4 × 10−6, ua = 0.04 × 10−6, wa = 0.005, and βc = 0.3. Period-doubling bifurcations for 

βs = 0.2 (solid) and βs 0 (dashed). Hopf bifurcations for βs = 0.15 (solid) and βs 0 (short 

dashed). Saddle-node bifurcation (dashed-dotted). The steady state is stable above but 

unstable below these boundaries.
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FIG. 9. 
Bifurcations and complex dynamics of the IM model with a Hill g zn  function. (a) Phase 

diagram showing the unstable regions in α − T  space. (b) Bifurcation diagrams showing 

an, cn, and sn vs α for T = 2.5 s. (c) An example of oscillatory behavior from unstable 

region I with α = − 0.03 × 106. (d) An example of chaotic behavior from unstable region 

II with α = 0.132 × 106. The parameters for the functions of c‾ and s‾ [Eqs. (14) and (15)] 

are γc0 = 0, γc = 0.0002, τac = 2.2, τdc = 1.5, T c = 2000, δ = 4 × 10−6, Δ = 6.2, c0 = 0, γs0 = 0, γs = 30, 

τas = 1.5, τds = 40, s0 = 6.2, and T s = 2000. The parameters for the Hill function [Eq. (31)] are 

amax = 1000 ms, amin = 600 ms, ℎ = 500, and kd = 11.5 + 0.00005α . βc = 0.3 and βs = 0.01.
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FIG. 10. 
Bifurcations and complex APD dynamics in the AP model under the EAD condition. Plotted 

are an, cn, and sn vs kNCX for T = 2.5 s.
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FIG. 11. 
Oscillatory behaviors in the AP model under the EAD condition. (a) Voltage trace showing 

oscillatory transition between APs with EADs and APs without EADs. The symbol * marks 

the APs with EADs. T = 2.5 s and kNCX = 5 nA/pF. (b) an, cn  and peak Ca2 +
i
), and sn vs 

n from the same simulation in (a). (c) Bifurcation diagrams showing an, cn, and sn vs T  for 

kNCX = 5 nA/pF.
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FIG. 12. 
Chaotic behaviors in the AP model under the EAD condition. (a) Voltage trace showing 

chaotic transitions between APs with EADs and APs without EADs. The symbol * marks 

the APs with EADs. T = 2.5 s and kNCX = 1 nA/pF. (b) an, cn, and sn vs n from the same 

simulation in (a). (c) Bifurcation diagrams showing an, cn, and sn vs T .
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FIG. 13. 
Bifurcations and oscillatory dynamics of the IM model for the EAD condition in the 

oscillatory regime. (a) Replotting the data in Fig. 11(c). All data points are plotted 

together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform zn = sn − 13000cn. 

(b) an, cn, and sn vs n from the IM model for T = 2.5 s. (c) Bifurcation diagrams 

showing an, cn, and sn vs T  from the IM model. g zn  used in the simulation of the 

IM model is a piecewise linear function based on the transformed data, plotted as 

the solid curve in the right panel in (a). The parameters for the functions of c‾ and 

s‾ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.000212, τac = 2.2, τdc = 1.5, T c = 2900, δ = 8 × 10−6, 

Δ = 11, c0 = 0.0, γs0 = 0, γs = 28.3, τas = 1.5, τds = 40, s0 = 6.8, and T s = 2300 . βc = 0.2 and 

βs = 0.008.
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FIG. 14. 
Bifurcations and chaotic dynamics of the IM model for the EAD condition under chaotic 

regime. (a) Replotting the data from Fig. 12(c). All data points are plotted together. 

Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform zn = sn + 25000cn. 

(b) an, cn, and sn vs n from the IM model for T = 2.52 s. (c) Bifurcation diagrams 

showing an, cn, and sn vs T  from the IM model. g zn  used in the simulation of the 

IM model is a piecewise linear function based on the transformed data, plotted as 

the solid curve in the right panel in (a). The parameters for the functions of c‾ and 

s‾ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.000194, τac = 2.2, τdc = 1.5, T c = 1470, δ = 8 × 10−6, 

Δ = 5.3, c0 = 0.0, γs0 = 0, γs = 14.3, τas = 1.5, τds = 40, s0 = 7.1, and T s = 1640 . βc = 0.16 and 

βs = 0.036.
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FIG. 15. 
Bifurcations and complex dynamics in the AP model under the spike-and-dome condition. 

(a) Bifurcation diagrams plotting an, cn, and sn vs kNCX for T = 1.6 s. (b) Bifurcation diagrams 

plotting an, cn, and sn vs T  for the AP model in the unstable I regime kNCX = 5 nA/pF . (c) 

Bifurcation diagrams plotting an, cn, and sn vs T  for the AP model in the unstable II regime 

(kNCX = 3 nA/pF).
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FIG. 16. 
Complex dynamics in AP model under the spike-and-dome condition. (a) Voltage vs t
for an oscillatory case. kNCX = 5 nA/pF and = 1.5 s. (b) Voltage vs t for a chaotic case. 

kNCX = 3 nA/pF and = 1.51 s. (c) an, cn, and sn vs n for the oscillatory case in (a). (d) an, cn, and 

sn vs n for the chaotic case in (b).
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FIG. 17. 
Recapturing the bifurcations and dynamics using the IM model for the spike-and-dome 

case in the oscillatory regime. (a) Replotting the data from Fig. 15(b). All data points 

are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the transform 

zn = sn − 22000cn. (b) an, cn, and sn vs n from the IM model for T = 1.5 s. (c) Bifurcation 

diagrams showing an, cn, and sn vs T  from the IM model. Oscillatory dynamics occurs 

between T = 1300 ms and T = 1850 ms . g zn  used in the simulation of the IM model is a 

piecewise linear function based on the transformed data, plotted as the solid curve in the 

right panel in (a). The parameters for the functions of c‾ and s‾ [Eqs. (14) and (15)] are 

γc0 = 0, γc = 0.00015, τac = 100, τdc = 70, T c = − 100, δ = 5.3 × 10−6, Δ = 10, c0 = 0, γs0 = 0, γs = 33,
τas = 70

, 

τds = 60, s0 = 6.6, and T s = − 600 . βc = 0.126 and βs = 0.0013.
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FIG. 18. 
Recapturing the bifurcations and dynamics using the IM model for the spike-and-

dome case in the chaotic regime. (a) Replotting the data from Fig. 15(c). All data 

points are plotted together. Left: an vs cn. Middle: an vs sn. Right: an vs zn after the 

transform zn = sn + 250000cn. (b) an, cn, and sn vs n from the IM model for T = 1.5 s. 
(c) Bifurcation diagrams showing an, cn, and sn vs T  from the IM model. g zn  used 

in the simulation of the IM model is a piecewise linear function based on the 

transformed data, plotted as the solid curve in the right panel in (a). The parameters 

for the functions of c‾ and s‾ [Eqs. (14) and (15)] are γc0 = 0, γc = 0.00027, τac = 100, τdc = 70, 

T c = 1000, δ = 4.5 × 10−6, Δ = 9.7, c0 = 0, γs0 = 0, γs = 37, τas = 70, τds = 60, s0 = 7.2, and 

T s = − 400 . βc = 0.12 and βs = 0.006.
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