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ABSTRACT: Addressing the challenge of mapping hyperlocal air
pollution in areas without local monitoring, we evaluated unsupervised
transfer learning-based land-use regression (LUR) models developed
using mobile monitoring data from other cities: CORrelation
ALignment (Coral) and its inverse distance-weighted modification
(IDW_Coral). These models mitigated domain shifts and transferred
patterns learned from mobile air quality monitoring campaigns in
Copenhagen and Rotterdam to estimate annual average air pollution
levels in Amsterdam (50m road segments) without involving any
Amsterdam measurements in model development. For nitrogen
dioxide (NO2), IDW_Coral outperformed Copenhagen and Rotter-
dam LUR models directly applied to Amsterdam, achieving MAE
(4.47 μg/m3) and RMSE (5.36 μg/m3) comparable to a locally fitted
LUR model (AMS_SLR) developed using Amsterdam mobile measurements collected for 160 days. IDW_Coral yielded an R2 of
0.35, similar to that of the AMS_SLR based on 20 collection days, suggesting a minimum requirement of 20-day mobile monitoring
to capture city-specific insights. For ultrafine particles (UFP), IDW_Coral’s citywide predictions strongly correlated with previously
published mixed-effect models fitted with 160-day Amsterdam measurements (Pearson correlation of 0.71 for UFP and 0.72 for
NO2). IDW_Coral demands no direct measurements in the target area, showcasing its potential for large-scale applications and
offering significant economic efficiencies in executing mobile monitoring campaigns.
KEYWORDS: air pollution, ultra fine particles (UFP), geographic principles, unsupervised transfer learning,
land use regression model (LUR), inverse distance-weighted model (IDW), domain shift

1. INTRODUCTION
Mobile monitoring campaigns have proven highly effective in
capturing hyperlocal variations (e.g., on 50m road segments)
of regulated and unregulated air pollution.1−4 However, a city-
wide mobile monitoring campaign is time-consuming and
labor-intensive. The accuracy of mapping long-term (e.g.,
annual) concentrations using mobile measurements relies on
the frequency of revisits per location, which necessitates an
extended collection duration, especially when covering a large
geographic area. An open scientific question is how to
efficiently scale up mobile monitoring campaigns to cover
larger spatial areas.
Remote sensing products have a large spatial coverage, but

their resolutions are often very coarse such as 7 km × 3.5 km
(TROPOMI)5 or 13 km × 24 km (OMI)6 for nitrogen dioxide
(NO2). Additionally, satellite observations do not cover all
pollutants such as ultrafine particles (UFP). To preserve the
hyperlocal variations, previous studies scale up the application
of mobile measurements by exploring the generalization of
Land-Use Regression (LUR) models. These studies trained a
LUR model using the mobile measurements from one already
collected area (the source area). Then, they directly applied

this trained model to estimate air pollution concentrations in
another city (the target area).10 This approach ignores the
potential differences in emission patterns between the source
and target areas, often resulting in uncertainty and instability in
performance. For linear regression-based LUR models, an
alternative is to fix the model structure, while only recalibrating
the coefficients based on the city-specific data. Previous studies
showed better performance than directly applied LUR models
without calibration for nitrogen dioxide (NO2),

7 ultrafine
particles (UFP),8 and Particle Number Concentration
(PNC).9,10 However, the local measurements that can be
used for recalibration are often scarce or unavailable in many
areas.
Transfer learning methods are designed to incorporate the

domain discrepancy between source and target areas. These
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methods are known for their ability to enhance training by
leveraging knowledge obtained from another model trained on
a similar task. Our previous papers applied supervised transfer
learning algorithms to transfer the short-term mobile measure-
ments to predict long-term air pollution concentrations by
taking fixed-site measurements as the target labels.11,12 Target
labels refer to the air pollution measurements in the target area.
The supervised model is trained to establish a mapping from
covariates to these target labels. However, encountering the
common constraint of no target labels (i.e., no local
measurements in the target area), we propose the use of
unsupervised transfer learning methods. This approach aims to
mitigate the domain difference by harmonizing the feature
space, holding the potential to ensure model performance
during the transfer process. Unsupervised transfer learning
methods are broadly applied in tasks such as deep-learning-
based building detection from satellite images13 and regression
tasks involving unbalanced sampling.14 However, to our
knowledge, their applications in air pollution modeling have
yet to be explored.
This study aims to estimate hyperlocal air pollution maps for

areas without local measurements. We evaluated the trans-
ferability of an unsupervised transfer learning algorithm −
CORrelation ALignment (Coral) which can transfer knowl-
edge from a single source area to the target area, requiring no
measurements in the target area. Further adapted from Coral,
we developed an IDW-based framework to assemble individual
Coral models (i.e., IDW_Coral). It leverages the fundamental
geographic principles (Tobler’s first law of geography) to fuse
knowledge learned from multiple mobile-monitored areas. We
applied these transfer learning LUR models to transfer mobile
measurements collected from Copenhagen and Rotterdam to
estimate the air pollution concentrations in Amsterdam in fine-
scaled spatial resolution. Without including Amsterdam
measurements, our investigation focuses on whether our
proposed transfer learning LUR models can achieve com-
parable performance to a local LUR model trained on local
mobile measurements.

2. METHOD AND DATA
We utilized mobile monitor data from Copenhagen and
Rotterdam as the source area and Amsterdam as the target
area. There is no spatial overlap between the three cities. The

proposed Coral and IDW_Coral models were compared with
(1) the local reference LUR models (AMS_SLR), developed
using Amsterdam mobile measurements with sequentially
increasing collection days (1 to 160); and (2) the directly
applied LUR models, which were trained solely on
Copenhagen and Rotterdam data and then directly applied,
without parameter re-estimation, to estimate Amsterdam air
pollution levels. Model performance was evaluated by 82
external long-term fixed-site monitors for NO2 (out-of-sample
validation). Additionally, due to the absence of external fixed-
site validations of UFP, model predictions of NO2 and UFP
were compared to our previously published mixed-effect
models trained using all Amsterdam mobile measurements of
NO2 and UFP.

1,3

2.1. Data Collection. Our mobile monitoring campaign in
Amsterdam was conducted for 10 months, from May 2019 to
Feb 2020, on weekdays (160 days), mainly between 9:00 and
20:00. The campaign measured each road multiple times on
separate days to measure air pollution concentrations
repeatedly. One Hz NO2 was measured by CAPS, Aerodyne
Research Inc., Massachusetts, and 1 Hz UFP was measured
using EPC 3783, TSI Inc. Minnesota. The raw mobile data
consisted of GPS points paired with air pollution measure-
ments and underwent preprocessing as described previously.1

The preprocessing included removing unrealistic 1-s values
(remove those below 0 or above 500 μg/m3 and below 250 or
above 500,000 particles/cm3 for NO2 and UFP, respectively),
employing percentiles for winsorizing (set values above the
97.5th percentile to the value of the 97.5th percentile and
values below 2.5th percentile to the value of the 2.5th
percentile) and temporal correcting data using a reference site
(only for NO2 and not for UFP due to the absence of a routine
reference site). Afterward, the raw data was snapped to the
nearby 50m road segments (referred to as the target
measurements, used only to develop the reference model).
We first computed the mean of GPS-based measurements for
each road segment per drive day. Then the mean of these
average values of all drive days was used as mobile
measurements (i.e., “mean of means”1). Table 1 summarizes
the basic statistics of the data used.
The source data for the transfer learning models was

obtained from mobile campaigns conducted in Copenhagen
(AirView project 2019)3,11,12 and Rotterdam (Ri-Urbans

Table 1. Summary of the Source, Target, and Validation Data

NO2 UFP

data set data source time frame

measured
road

segments

# drive
passa
(mean)

mean
concentrations
(μg/m3)

measured
road

segments

# drive
passa
(mean)

mean
concentrations (
particles/cm3)

Amsterdam mobile
data

AirView
mobile
campaign

10 months 160 collection days
2019-05-20 to 2020-02-27

47,670 6.8 28.6 47,327 5.8 32,822

Copenhagen mobile
data

AirView
mobile
campaign

30 collection days 2019-02-11 to
2019-03-26

13,736 1.7 22.4 20,495 1.9 15,186

Rotterdam mobile
data

Ri-Urban
project

30 collection days 2022-11-16 to
2022-12-22

59,269 1.8 23.5 61,272 1.8 23,172

external fixed-site
validation data
(Palmes)

GGDc 10 months 160 collection days May
2019 to March 2020, Amsterdam

82 sites N.A.b 28.0 not available

model comparison Google
insightsd

Amsterdam predictions from mixed-
effect model based on 160
collection days

47,962 N.A.b 28.8 47,962 N.A.b 22,175

aDrive pass is defined as the number of different dates of drive passing. bN.A.: not applicable. cGGD: Amsterdam Municipal Health Service.
dPublic access via: https://insights.sustainability.google/labs/airquality
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project 2022).15,16 The collection schema and instrumentation
are designed following the Amsterdam mobile campaign
mentioned above (weekdays only). We used the measurements
collected during the initial 30 days as an example of feasible
short-term surveys in multiple cities. Data collected between
February 11, 2019, and March 26, 2019, was included in the
Copenhagen campaign. For Rotterdam, the data covered
November 16, 2022, to December 22, 2022. Following the
same preprocessing methods, extreme values were excluded,
and the data was aggregated and snapped to 50-m road
segments.
All predictor variables were identical for all models. The

predictor variables are aligned with those used in our previous
papers.1,11 The predictor features used were: (1) land use
extracted from the Copernicus CORINE data set, which is a
harmonized pan-European land use data set;17 (2) traffic
information such as traffic counts and road types derived from
the Dutch national road network (NWB);18 and (3)
population density downloaded from Central Bureau of
Statistics Netherlands (CBS).19 The specific variables are
listed in Table 2 and the details including evaluated buffer sizes
are summarized in Appendix Table S1. Regarding the
variations in predictor variables throughout the year, variables
such as land use and land cover and population density exhibit
minimal fluctuations. Traffic intensity is represented by the
mean of the annual volume, aligning with our objective to
estimate the annual mean of air pollution concentrations.
To assess the accuracy of long-term air pollution predictions,

we used measurements from 82 Palmes tube monitoring sites
deployed by Amsterdam Municipal Health Service (GGD) as
the NO2 validation data.

20 The Palmes tubes data consisted of
repeated 4-weekly measurements throughout the year, cover-
ing all AMS and its surroundings. We aligned Palmes
monitoring data with the same period as our Amsterdam
mobile campaign and selected measurements within 20m of
the nearest road segment. The most common accuracy metrics
such as the squared Pearson correlation (R2), mean absolute
error (MAE), and root-mean-square error (RMSE) were used
to assess model performance.
No external monitoring sites were available for UFP in

Amsterdam. UFP is not routinely monitored in The Nether-
lands and Denmark. To assess the accuracy of UFP
predictions, we compared the predictions of IDW_Coral
with our previously published mixed-effect model that was
trained using all Amsterdam mobile data (10 months, 160
collection days). This method has been demonstrated as an
efficient and accurate approach in our previous papers1,3 and
the model estimations can be publicly accessed in the Google
Insights Explorer.21 To align with UFP, the NO2 predictions of
IDW_Coral were also compared to our previously published
NO2 mixed-effect model. In addition to MAE and RMSE, the
Pearson correlation (r) and Concordance Correlation
Coefficient (CCC)22 were used to quantify the correlation

and accuracy of the agreement to the mixed-effect model.
Pearson correlation primarily measures the strength and
direction of a linear relationship between two variables.
Meanwhile, CCC evaluates both the correlation and accuracy
of the agreement (overall agreement) between two sets of
variables. It is more robust to outliers and does not assume
linearity.
2.2. Transfer Learning LUR Models. 2.2.1. Coral.

CORrelation ALignment (Coral) is an unsupervised feature-
based transfer learning method. It aligns the covariance of the
input features of the source and target domains. Coral
transforms source features to minimize the difference between
the covariance matrix of the input target data and the one of
the transformed input source data. The source features
transformation is described by the following optimization
problem, eq 1.23 Specifically, it is a “two-stage” method. In the
first stage, Coral conducts feature alignment on source data,
decoding the input feature space. Subsequently, in the second
stage, Coral fits a regressor, such as ridge regression, on the
transformed target domain data within the encoded feature
space, utilizing the knowledge gained from the source domain.
This allows the model to generalize better to the target domain
and requires no target measurements. We implemented
CPH2AMS_Coral and RTM2AMS_Coral by transferring the
knowledge from Copenhagen and Rotterdam respectively to
estimate air pollution in Amsterdam using the Python package
“ADAPT”.24

A C A C
min

A
T

S T
F

2

(1)

Where CS and CT are the covariance matrices. A is the applied
transformation. ∥*∥F2 denotes the squared matrix Frobenius
norm.
The data set used to develop models must be distributed

similarly to the target population for many statistical
applications. The same principle also applies to LUR models.
The training (source) data must represent the target data on
which the model is applied later. This representativeness can
be mathematically formulated: Psource(X,Y) = Ptarget(X,Y).
Where X represents the predictor variables (e.g., land use,
population, traffic intensity), Y is the response variable (air
pollution measurements) and P is the possibility function.
When training in one area (source) and applying the fitted

model to make predictions in the other area (target), the
source training data may not represent the target data. Two
domain shifts are generally recognized.25 They are (1)
covariate shifts (P(Xs) ≠ P(Xt)), the distribution of covariates
differs in source and target data; and (2) conditional shifts
(P(Ys|Xs) ≠ P(Yt|Xt)), the associations between predictor
features and the response differs in source and target domains.
Coral is primarily designed to address covariate shifts

without target labels while assuming no conditional shifts.
Target labels stand for Yt which is the air pollution

Table 2. List of Predictor Features

category predictor feature

land usea agricultural land area; airport area; industry area; natural and forested areas; port area; residential land area; transportation area; urban green area;
water area

trafficb traffic intensity on nearest road; traffic intensity on nearest major road; heavy-duty traffic intensity on nearest road; heavy-duty traffic intensity on
nearest major road; road length of all roads; road length of all major roads; traffic intensity on all roads; traffic intensity on all major roads; heavy-
duty traffic intensity on all roads; heavy-duty traffic intensity on major roads

populationa population density
aWith buffers of 100, 300, 500, 1000, 5000 m. bWith buffers of 25, 50, 100, 300, 500, 1000 m.
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measurements in the target area. To illustrate the concept of
covariate shifts, we can consider a covariate feature−the annual
average number of cars on a road segment (traffic intensity).
For instance, if we assume that traffic intensities in a pseudo
source area vary from 2000 to 5000 vehicles per day, but in a
pseudo target area, the range extends from 5000 to 10,000.
The model trained in the source area performs well within the
range of 2000−5000 vehicles. However, it exceeds the range
encountered during the training when forcing it to predict
roads in the target area with 10,000 vehicles. Consequentially,
the model can be inaccurate as models have a good
generalization only if instances are seen during training.
Coral transforms the covariates into a comparable distribution
by encoding both the source and target features into a
common space. Differently, conditional shifts occur when the
relationships between predictor variables and the response in
target and source areas vary. In other words, conditional shifts
occur when the two areas’ overall emission patterns are
different. For instance, in streets with equivalent traffic

intensity, one area may predominantly consist of electric
cars, while another is characterized by diesel trucks. In such a
scenario, applying a model developed with electric cars to
predict air pollution in the area with trucks would lead to an
underestimation of air pollution levels.
2.2.2. IDW_Coral. Mitigating conditional shifts is challeng-

ing when target labels (measurements) are unavailable for
statistical learning models. However, according to Tobler’s first
law of geography, most natural objects and phenomena
including the absolute levels and the emission pattern of air
pollution are more likely to be similar to those of nearby
areas.26 Therefore, to alleviate the impact of conditional shifts,
an intuitive approach involves leveraging spatial distances to
weight individual Coral models (IDW_Coral), like the classic
spatial interpolation algorithm Inverse Distance Weighting
(IDW). Instead of interpolating observation values, IDW_Co-
ral interpolates individual Coral models. The single Coral
models transferred from nearby monitoring areas are weighted
higher and the far-away areas are weighted less. In the end, the

Figure 1. Modeling process diagram of IDW_Coral. CPH, RTM, and AMS are the abbreviations of Copenhagen, Rotterdam, and Amsterdam,
respectively. CPH2AMS_Coral presents applying the transfer learning algorithm (Coral) to transfer knowledge from Copenhagen to estimate air
pollution levels in Amsterdam. IDW_Coral weights the predictions of CPH2AMS_Coral and RTM2AMS_Coral by the inverse spatial distances.

Table 3. Summary of Models Implementeda,b

model category model name model input algorithms

local LUR model AMS_SLR Amsterdam mobile measurements with sequentially increasing collection days
(Xt,Yt)

SLR

transfer learning LUR
model

CPH2AMS_Coral RTM/CPH 30-day mobile data (Xs,Ys) + Predictor features of Amsterdam
(Xt)

Coral
RTM2AMS_Coral
IDW_Coral distance weighted predictions of (RTM2AMS_Coral + CPH2AMS_Coral) inverse distance weighted

Coral
directly applied LUR
model

CPH2AMS_SLR CPH 30-day mobile data only (Xs,Ys) directly applied SLR
RTM2AMS_SLR RTM 30-day mobile data only (Xs,Ys)
IDW_SLR distance weighted predictions of (RTM2AMS_ SLR + CPH2AMS_ SLR) inverse distance weighted

SLR
aXs denotes the predictor variable such as land use, traffic and population in the source area. Xt represents the target area. Ys denotes the air
pollution in the source area. Yt presents the air pollution levels in the target area. In the context of transfer learning, Yt is also called the target labels.
bRTM: Rotterdam; CPH: Copenhagen; AMS: Amsterdam; CPH2AMS: models transfer mobile measurements in Copenhagen to estimate air
pollution levels in Amsterdam. Same for RTM2AMS.
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information/knowledge from all mobile monitoring areas is
summed. In this paper, IDW_Coral was implemented by
integrating predictions from CPH2AMS_Coral and
RTM2AMS_Coral weighted by their inverse spatial distances
(conceptualized in Figure 1). Note that the weights are
homogeneously applied to the prediction of CPH2AMS_Coral
and RTM2AMS_Coral because the conditional shifts only
differ between cities. The code of IDW_Coral is publicly
available at https://github.com/ZhendongYuan/transfer_
mapping.
2.3. Directly Applied LUR Models. Stepwise linear

regression (SLR) LUR models are often used for air pollution
mapping.4,27,28 SLR assumes a linear relationship between
predictor features and air pollution measurements. It selects
predictor features in a forward stepwise manner to avoid
collinearity. Details of SLR implementation were provided in
Appendix Text S1. SLR models trained in the source areas
(e.g., Copenhagen and Rotterdam) and directly applied to the
target area (i.e., Amsterdam) were labeled as the directly
applied LUR models (Table 3). In this context, two SLR
models were implemented, namely CPH2AMS_SLR and
RTM2AMS_SLR. These models were trained using the
predictor features from the source area and applied to predict
air concentrations in Amsterdam using predictor features from
Amsterdam. Additionally, we integrated these two directly
appl ied SLR models ( i .e . , CPH2AMS_SLR and
RTM2AMS_SLR) into the IDW framework, leading to the
IDW_SLR model. Compared to IDW_Coral, IDW_SLR lacks
the transfer learning component, serving as an indicator of the
efficiency of the transfer learning algorithm.
We chose SLR as the representation of the city-specific LUR

model instead of machine learning algorithms such as random
forest (RF), because we found previously that RF is generally
less generalizable than SLR in our modeling of air pollution in
Amsterdam and Copenhagen.11,29 More complex models need
to tune more parameters during training which can be
significantly affected by the domain differences.11

2.4. Local Reference Models. Mobile measurements in
Amsterdam were collected for 160 days. These measurements
were sliced into different collection days, sequentially
increasing from 1 to 160 days. Each slice was resampled 20
times. A series of SLR models were fitted using each data slice
(AMS_SLR, Table 3).

3. RESULTS AND DISCUSSION
This study analyzed mobile measurements collected from three
different European cities. There is no spatial overlap between
the three cities. Rotterdam is located 57km (straight-line
distance) from Amsterdam, while Copenhagen is 620km from
Amsterdam. We demonstrated that by transferring mobile
measurements from Copenhagen and Rotterdam, IDW_Coral
showed the capability to estimate accurate air pollution in
Amsterdam while preserving the hyperlocal spatial variations.
Without involving any local measurements, IDW_Coral
achieved MAE and RMSE comparable to those of local LUR
models trained using the local mobile measurements.
IDW_Coral substantially outperformed the directly applied
LUR models developed in Rotterdam and Copenhagen
without transfer learning algorithms. Additionally, IDW_Coral
correlated strongly with our previously published mixed-effect
models fitted using all Amsterdam mobile measurements.
3.1. External Validation for NO2. Integrating

CPH2AMS_Coral and RTM2AMS_Coral models, IDW_Co-

ral showed the most balanced performance between R2 and
absolute errors, based on independent long-term monitoring
measurements (Table 4). These measurements represent long-

term (annual) air pollution concentrations more than cross-
validation results based on short-term or on-road mobile
measurements.11,12 Note that most other mobile monitoring
campaigns are unable to perform such analysis due to the lack
of external long-term validation data.
R2 reflects the goodness-of-fit (i.e., how much variance can

be explained). Performance estimation needs to consider also
the absolute errors. Notably, IDW_Coral achieved MAE and
RMSE comparable to a locally fitted LUR model (AMS_SLR)
developed using Amsterdam mobile measurements collected
for 160 days. Specifically, it achieved an MAE and RMSE of
4.47 and 5.36 μg/m3 for NO2, which is 16 and 19% of the
mean long-term average measurements (Palmes). Compared
with the local LUR model trained with NO2 measurements of
160 collection days, differences were quite small (for MAE,
IDW_Coral - AMS_SLR_160D = 0.75 μg/m3; for RMSE,
IDW_Coral - AMS_SLR_160D = 0.66 μg/m3). IDW_Coral is
as accurate as the local LUR model developed using local
mobile measurements in terms of absolute errors. The R2 of
IDW_Coral is mainly limited by the small variation of its
predictions which are compressed between 25 and 35 μg/m3.
While long-term average measurements of NO2 (Palmes) vary
from 15 to 45 μg/m3 (Appendix Figure S1).
Previous studies rarely focus on the transferability of air

pollution measurements. We found no literature targeting the
application of a Land Use Regression (LUR) model based on
mobile-monitored NO2 data from another city. Limited
attempts exist for transferring fixed-site NO2 measurements.
For instance, Poplawski et al.,7 transferred passive sampler
measurements from Vancouver (Canada, 2 weeks, n = 116) to
Victoria (Canada) and Seattle, using 50 and 26 local
measurements in Victoria and Seattle for local calibrations.
Their locally calibrated models achieved an R2 of 0.58 in
Victoria and 0.65 in Seattle. Although the R2 values of our
proposed mobile measurements-based models are not as high
as those of fixed-site measurements-based models, mobile
measurements can capture finer-scale spatial variations which
might be more relevant to the application of human exposure
assessment.
The performance of IDW_Coral (R2 = 0.35) was

substantially better than the directly applied models developed

Table 4. Model Accuracy Validated by the Fixed-site
Routine Monitors for NO2 (n = 82)

external long-term validation

model category model name R2
MAE
(μg/m3)

RMSE
(μg/m3)

feature-based transfer
learning LUR
models

CPH2AMS_Coral 0.39 6.47 7.61
RTM2AMS_Coral 0.30 4.57 5.47
IDW_Coral 0.35 4.47 5.36

directly applied SLR CPH2AMS_SLR 0.17 7.86 10.77
RTM2AMS_SLR 0.19 5.19 6.67
IDW_SLR 0.21 4.94 6.28

local reference model AMS_SLR_160Da 0.52 3.72 4.70
AMS_SLR_30Da 0.39 4.83 5.47

aAMS_SLR_160D is the SLR model trained using Amsterdam
mobile measurements collected for 160 days. AMS_SLR_30D is
trained with 30 days of mobile measurements.
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in Rotterdam and Copenhagen without transfer learning
algorithms, specifically CPH2AMS_SLR (R2 = 0.17),
RTM2AMS_SLR (R2 = 0.19) and IDW_SLR (R2 = 0.21).
The transfer learning algorithms and the IDW strategy
contributed to its performance, as individual Coral models
outperformed the directly applied LUR models and
IDW_Coral was better than Coral models based on a single
city.
The R2 of IDW_Coral achieved 67% of AMS_SLR_160D

(R2 = 0.35 versus 0.52) and 90% of AMS_SLR_30D (R2 =
0.35 versus 0.39). AMS_SLR_160D refers to the local
reference model trained using all mobile measurements in
Amsterdam, while AMS_SLR_30D was trained using measure-
ments collected within 30 days, which corresponds to the
number of days available for Copenhagen and Rotterdam in
this application. IDW_Coral without target measurements
achieved an R2 similar to AMS_SLR when using data from 20
collection days (Figure 2). Meanwhile, for the MAE and
RMSE, IDW_Coral equals AMS_SLR using data of 50
collection days. This implies that at least in Amsterdam,
mobile campaigns of less than 20 days did not result in a better
model than transferring knowledge from other areas using
IDW_Coral. Consequently, to more accurately estimate long-
term air pollution concentrations, mobile monitoring cam-
paigns in Amsterdam need to span more than 20 days to gather
city-specific insights. IDW_Coral presents a time and cost-
effective alternative if this condition is not met.
3.1.1. Transfer Learning Aspect. As introduced in Section

2, when training and applying LUR models in different areas,
the probability distribution of covariates and the association

between covariates and the response can differ. This reflects
two domain shifts (covariate shifts and conditional shifts).
They jointly affect the accuracy of the directly applied SLR
models (i.e., CPH2AMS_SLR and RTM2AMS_SLR).
Coral models can partially reduce the covariate shifts.

CPH2AMS_Coral and RTM2AMS_Coral improved R2
significantly, compared to the directly applied SLR model
(Figure 2). Aligning the source and target feature space makes
the training cover the “unseen” situations in the target data,
effectively reducing extreme values in predictions. This, in turn,
reduced the variability of residuals for both CPH2AMS_Coral
and RTM2AMS_Coral, as indicated in the scatter plot in
Appendix Figure S1. Therefore, compared to the directly
applied LUR models, not only has the R2 improved
significantly, but there is also a decrease in absolute errors,
particularly for CPH2AMS_Coral.
The Coral method cannot correct the conditional shifts

without target labels. Conditional shifts occur, when the
emission pattern exhibits significant distinctions between
source and target areas which means the associations between
covariates and the response can be different (P(Ys|Xs) ≠ P(Yt|
Xt)). If we decompose the conditional distribution P(Y|X) into
Pgeneral(Y|X) and Pcityspecific(Y|X), we can assume Pgeneral(Y|X)
universal across different areas and Pcityspecific(Y|X) is varying
across areas. This was clear when comparing the coefficients
between SLR models trained in three cities (Appendix Tables
S3−S5). Covariates related to traffic, population, and port were
commonly selected. The similar coefficient structure reflects a
similar Pgeneral(Y|X). However, different magnitudes of
coefficients applied to different cities, suggesting distinct

Figure 2. Comparison of overall model performance of NO2 predictions validated by the 82 fixed-site routine measurements in Amsterdam.
AMS_SLR is the reference model fitted with gradually increased Amsterdam local mobile measurements. Each time slice was resampled 20 times
and plotted as dots. The other models rely on mobile measurements only from existing mobile campaigns (30 days) conducted in Copenhagen and
Rotterdam to estimate air pollution levels in Amsterdam.
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Pcityspecific(Y|X). Ignoring the conditional difference of
Pcityspecific(Y|X), the Coral models may experience higher levels
of uncertainty, particularly concerning absolute errors. For
example, the CPH2AMS_Coral yielded a notable MAE of 6.47
μg/m3.
Rotterdam is only 57 km from Amsterdam. By geographical

laws, closer locations tend to exhibit greater similarity both in
the built-up area and airshed. Despite some localized
differences, the emission pattern of air pollution in Rotterdam
could be generally similar to those in Amsterdam. It indicates
that its conditional distribution may also be partially similar to
the situation in Amsterdam. Even without transfer learning
methods, directly applying the LUR model - RTM2AMS_SLR
achieved low absolute errors (low MAE and RMSE in Figure
3) but a low R2 due to the covariate shifts. Targeting covariate
shifts, the RTM2AMS_Coral exhibited significantly improved
R2 compared to the RTM2AMS_SLR but only marginally in
MAE and RMSE.
3.1.2. Inverse Distance Weighted Assemble Strategy. The

framework of IDW can mitigate the drawbacks of the
individual Coral models mentioned above. Through reweight-
ing based on distances, IDW_Coral assigns a high degree of
importance, approximately 9/10, to the knowledge derived

from Rotterdam compared to Copenhagen. Since the condi-
tional distribution Pcityspecific(Y|X) in Rotterdam is more similar
to Amsterdam than Copenhagen, conditional shifts in
IDW_Coral are partially reduced. Meanwhile, the general
knowledge component Pgeneral(Y|X) is further enhanced in
IDW_Coral as more mobile measurements from another area
are incorporated, increasing the diversity (fewer “unseen”
instances). Therefore, the IDW_Coral obtained a lower MAE
and RMSE than single Coral models. Additionally, averaging
knowledge in Copenhagen and Rotterdam resulted in an
intermediate R2 between CPH2AMS_Coral and RTM2AMS_-
Coral.
Without Coral, IDW_SLR incorporates predictions from

CPH2AMS_SLR and RTM2AMS_SLR models. It out-
pe r fo rmed the ind iv idua l CPH2AMS_SLR and
RTM2AMS_SLR models (Table 4). However, IDW_SLR
did not perform as well as IDW_Coral. This discrepancy can
be attributed to IDW_Coral’s capacity to mitigate covariate
shifts by integrating two transfer learning models.
3.1.3. Spatial Pattern of NO2 Predictions. The hyperlocal

intracity variations were preserved by models trained using
mobile measurements. NO2 concentrations estimated by
CPH2AMS_SLR and RTM2AMS_SLR show high concen-

Figure 3. Spatial maps of NO2 predictions. Their differences compared to the local reference model - AMS_SLR_160D are plotted in the appendix
Figure S2.
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trations mainly in the port/water area and along the major ring
roads in Amsterdam which corresponded to their coefficients
where port, water, and major-road-related features were among
the most influential features (Appendix Tables S3−S5). NO2
concentrations estimated by the three Coral models preserved
the major road’s high values and showed elevated NO2
concentrations in the city center. However, AMS_SLR_160D,
trained with local measurements, presented a distinct spatial
pattern. It indicated higher concentrations along major roads,
without a discernible hotspot pattern in the city center.
Apart from the port and water areas, NO2 concentrations

estimated by RTM2AMS_SLR visually resemble the distribu-
tion of AMS_SLR_160D in the remaining areas. This suggests
partially similar emission patterns between Rotterdam and
Amsterdam. However, significant overestimations by
RTM2AMS_SLR in the port area emphasize variations in
the city-specific patterns in this zone.
3.2. NO2 and UFP Predictions Compared with Mixed-

effect Model. Model comparisons for NO2 and UFP between
the tested models and the previously published mixed-effects
models are summarized in Table 5. For NO2,
AMS_SLR_160D achieved the highest Pearson correlation of
0.92 and CCC of 0.88 to the mixed-effect model trained using
160 collection days in Amsterdam. Meanwhile, IDW_Coral
achieved a Pearson correlation of 0.72 and low MAE and

RMSE. IDW_Coral tends to underestimate the predictions of
the mixed-effect model, particularly at locations where the
mixed-effect model estimated high concentrations (ranging
from 20 to 40 μg/m3 in Figure 4). This can be attributed to a
limitation inherent in Coral. As an unsupervised transfer
learning algorithm, Coral aligns the feature space of the source
and target, which unavoidably results in a compromise in the
representation of extreme values. Interestingly, it appears that
this limitation seems to compensate for the prediction
inaccuracy of our mixed-effect models. In previous studies,
we observed that mixed-effect models often overestimate true
NO2 concentrations by approximately 25%, as mobile
measurements are collected on-road as opposed to roadside
routine validation measurements.1

Consistent with the external validation results for NO2
(Section 3.1), despite Coral models exhibiting a lower Pearson
correlation than the directly applied LUR models, the higher
CCC values in Table 5 indicate higher levels of agreement
(without linear assumptions) to the mixed-effect model
predictions. The proposed Coral models consistently yield
lower MAE and RMSE than directly applied LUR models. This
confirms the effectiveness of transfer learning to improve the
prediction capability, even without local measurement, which
is considered the most crucial feature for large-scale air
pollution mapping.

Table 5. Model Comparisons with Previously Published Mixed-effect Model Estimates on All Road Segments in Amsterdam

pollutants model categories models Pearson correlationa CCCb MAE RMSE

NO2 μg/m3 local reference model AMS_SLR_160D 0.92 0.88 3.18 4.44
directly applied SLR CPH2AMS_SLR 0.82 0.71 6.82 10.10

RTM2AMS_SLR 0.77 0.38 6.03 9.02
IDW_SLR 0.82 0.50 5.58 8.14

feature-based TL LUR models CPH2AMS_Coral 0.76 0.75 5.15 6.82
RTM2AMS_Coral 0.67 0.43 4.89 7.91
IDW_Coral 0.72 0.50 4.64 7.42

UFP particles/cm3 local reference model AMS_SLR_160D 0.90 0.80 3736 4536
directly applied SLR CPH2AMS_SLR 0.89 0.46 13,076 18,168

RTM2AMS_SLR 0.74 0.66 5149 7250
IDW_SLR 0.79 0.70 5255 7180

feature-based TL LUR models CPH2AMS_Coral 0.60 0.13 10,357 11,727
RTM2AMS_Coral 0.70 0.65 5089 6190
IDW_Coral 0.71 0.69 4239 5461

aPearson correlation primarily measures the strength and direction of a linear relationship between two variables. All P-values were less than 2.2 ×
10−16. bCCC - concordance correlation coefficient. It reflects the overall agreement between two sets of variables without a linear assumption.

Figure 4. Scatter plot of IDW_Coral predictions for all road segments against estimations from mixed-effect models using Amsterdam mobile
measurements of all collection days for NO2 (left) and UFP (right).
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Due to the absence of long-term validation data sets for UFP
in Amsterdam, IDW_Coral predictions were only compared to
the UFP estimations from the mixed-effect model. A Pearson
correlation of 0.71 was observed between these two models,
similar to NO2 (r = 0.72). Although the mixed effect model
does not serve as a ground truth, the strong correlation
indicates a similarity in the concentration patterns predicted by
both models. IDW_SLR slightly correlates better with the
mixed-effect model predictions than IDW_Coral for UFP and
IDW_SLR achieved smaller absolute errors (lower MAE and
RMSE). Their marginal differences in correlations and
absolute errors (Table 5) make it difficult to differentiate
IDW_SLR from IDW_Coral. We found a lower correlation of
the CPH2AMS_Coral model (compared to the directly
applied CPH2AMS_SLR model), leading to a relatively
lower correlation of the IDW_Coral as well. However, we
attribute this to the fact that the correlation of the directly
applied SLR model is artificially high. Specifically, the
CPH2AMS_SLR predicted concentrations up to 191,372
particles/cm3, creating a very large variance. This variance

was significantly higher than the mixed-effect model’s
predictions, where a maximum of 70,200 particles/cm3 was
predicted. Because the Coral model mimics the distribution of
the target features, the CPH2AMS_Coral predicted the lowest
maximum concentration (36,805 particles/cm3; Appendix
Table S2). In other words, the higher Pearson correlation of
CPH2AMS_SLR is mainly caused by its significantly higher
prediction variations than those of the mixed-effect models.
Nevertheless, the overall accuracy, measured by MAE and
RMSE, indicates that CPH2AMS_Coral outperforms
CPH2AMS_SLR.
In the literature, locally calibrated linear-regression-based

LUR models are the most recommended methods to transfer
measurements between cities. They are designed to retain the
model structure developed in one area, while only recalibrating
the coefficients based on some measurements in the target
area. Patton et al.,9 implemented locally calibrated transferred
models to transfer mobile monitored particle number
concentration among urban neighborhoods in the Boston
area, achieving R2 values of 0.19−0.40. Zalzal et al.,8 applied a

Figure 5. Top left: Spatial map of UFP estimations from the mixed-effect model (publicly available in Google Insights Explorer21). Top right: The
predictions from IDW_Coral. Bottom: The difference map (Mixed_ef fect-IDW_Coral). Spatial maps of UFP predictions with a unified legend are
plotted in Appendix Figure S3.
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similar locally calibrated transferred model to transfer UFP
mobile measurements between Toronto and Montreal,
achieving R2 values of 0.36 for Toronto and 0.38 for Montreal.
Note that both validations are based on mobile measurements,
while our validation based on the predictions of the mixed-
effect models better represents the true distribution of
concentrations than purely mobile measurements. Our
proposed IDW_Coral model achieved a Pearson correlation
of 0.71 with the 50m road segment UFP concentration
estimates of the mixed-effect model which equals an R2 of 0.5
which is higher than the accuracy reported in the other studies
in terms of UFP. Note, IDW_Coral is developed without
utilizing any measurement (mobile or fixed-site) in Amster-
dam.
The spatial maps of the mixed-effect and IDW_Coral

models were colorized by the equal-quantile method to better
illustrate their intracity variations (Figure 5). Despite the
different levels of absolute values, the general spatial pattern of
IDW_Coral UFP predictions was similar to the mixed-effect
model predictions, with the distinction that IDW_Coral
predicts slightly higher concentrations in the city center and
lower concentrations on the major ring roads and suburbia
residential areas (shown in the difference map in Figure 5).
3.3. Strength and Limitation. The following character-

istics of the proposed IDW_Coral approach were identified.
We illustrated the feasibility of transferring the mobile

knowledge from existing mobile campaigns to map hyperlocal
air pollution for a city without any air pollution measurements.
Compared to the other transferred models in the literature
where recalibration is performed,8,9 IDW_Coral requires no
measurements in the target area. IDW_Coral shows improve-
ment over the directly applied LUR models, particularly for
NO2. Compared to the local NO2 reference model,
IDW_Coral achieved 67% of the performance (based on R2)
compared to the AMS_SLR with 160 collection days and
comparable MAE and RMSE. The hyperlocal variations of air
pollution are preserved by IDW_Coral incorporating fine-
grained mobile measurements from Copenhagen and Rotter-
dam. This is mainly attributed to the design of the end-to-end
Coral algorithm, which directly bridges covariates between the
target and source domains and reduces the impacts of
differences in covariates across space and time.
Scalability. This work used two existing mobile monitoring

cities as the source for transfer learning. Like spatial
interpolation, expanding the coverage of mobile-monitored
areas, the IDW_Coral will be more accurate with the potential
for broader applicability as more diverse situations will be
involved. With only a few European cities currently mobile
monitored, our proposed IDW_Coral model can produce an
accurate air pollution map in fine spatial resolution across
Europe which can significantly save the efforts of conducting
mobile monitoring campaigns throughout numerous European
cities.
Flexibility. The proposed framework can be flexibly adapted

by different transfer learning algorithms. For example, we used
Coral as one of the most commonly applied unsupervised
transfer learning approaches. However, other unsupervised
transfer learning algorithms exist, such as kernel-based method
- Kernel Mean Matching (KMM) and neural-network-based −
Discriminative Adversarial Neural Network (DANN). These
methods could be compared to Coral in future work. We
demonstrated the enhanced model performance of distance-
inverse weighting strategies. As the first study of its kind, our

work demonstrates a potential feasible direction in this field.
Exploring various weights, such as dispersion applicable indices
or even learned weights, could enhance the depiction of
similarities, potentially leading to further improvement of the
mapping accuracy. Such weighting mechanisms may have the
advantage of embedding the physiochemical characteristics and
reflecting more regional information that cannot easily be
operationalized as predictor features, such as policy differences,
local climate zones, chemical transport models, or even fixed-
site monitoring measurements.
The following limitations of this study are acknowledged.

First, mobile measurements from only two monitored cities
were used in the IDW_Coral, resulting in only a moderate R2
value in the external long-term validation. Whether an R2 value
is adequate depends on the model’s application and the
available alternatives. For the current scarcity of UFP
measurements, imperfect models provide a foundation for
societal discussions and further research. This accuracy can be
further improved with more diverse measurements collected
from more areas. However, validating this conjecture is
challenging as it requires conducting more mobile campaigns
to cover larger areas which is time-consuming and costly.
Second, a common drawback of Coral is that the predictor
variables in both the source and target cities must be the same.
When more cities have been monitored and included in the
framework, harmonizing the predictor variables demands extra
effort. Third, although Coral helps to bridge the domain
difference between the source and target areas, the knowledge
transferred is still learned from the on-road short-term mobile
measurements. Its representativeness of the target long-term
concentrations at residential locations might be biased as we
have demonstrated previously.11,12 Fourth, our predictor
variables do not include meteorological information. However,
this information is rarely available in fine spatial resolution (i.e.,
50m road segments) and their variations are too small to be
meaningful as opposed to the larger scale. Future work can
investigate whether adding coarse meteorology information
(such as the finest EURO1K30 in 1KM*1KM) can benefit our
models. Fifth, we acknowledge that cities differ markedly in
multiple domains, including emission sources, urban config-
uration, and climate, limiting direct transferability of models
from one city to another city. Although our IDW-CORAL
approach builds on this limitation, the uncertainties raised
from these differences are only partially reduced. Sixth, UFP
predictions lack validation using external routine monitors.
The predictions produced by the Mixed-effect model are not
the ground truth. Future work should conduct long-term fixed-
site UFP monitoring campaigns in Amsterdam to produce a
more reliable benchmark.
Our study highlights the benefit of leveraging geographic

principles in transferring and fusing knowledge from diverse
mobile monitoring campaigns to map local air pollution.
IDW_Coral outperformed the direct application of Copenha-
gen and Rotterdam LUR models and achieved MAE and
RMSE comparable to a locally fitted LUR model (AMS_SLR),
developed using Amsterdam mobile monitoring data from 160
collection days for NO2. The R2 of IDW_Coral was similar to
that of the AMS_SLR based on 20 collection days, and the
MAE and RMSE of IDW_Coral equals AMS_SLR using data
of 50 collection days. This suggests that a mobile campaign in
Amsterdam lasting less than 20 days may be of limited value, as
IDW_Coral can serve as an equally accurate alternative.
IDW_Coral exhibited a relatively high Pearson correlation
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(0.72 for NO2 and 0.71 for UFP) with mixed-effect models
incorporating all Amsterdam local mobile measurements.
Similar to the classic spatial interpolation algorithm (i.e.,
IDW), the performance and scalability of IDW_Coral can be
further enhanced by expanding mobile monitored areas and
further developing weights beyond a simple distance-based
similarity measure. IDW_Coral demands no direct measure-
ments in the target area, showcasing its potential for large-scale
applications in European urban areas, resulting in significant
economic efficiencies in executing mobile monitoring
campaigns throughout numerous European cities.
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