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Abstract 

Background Accumulating studies have highlighted the significant role of circulating metabolomics in the etiol-
ogy of reproductive system disorders. However, the causal effects between genetically determined metabolites 
(GDMs) and reproductive diseases, including primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS), 
and abnormal spermatozoa (AS), still await thorough clarification.

Methods With the currently most comprehensive genome-wide association studies (GWAS) data of metabolomics, 
systematic two-sample Mendelian randomization (MR) analyses were conducted to disclose causal associations 
between 1,091 blood metabolites and 309 metabolite ratios with reproductive disorders. The inverse-variance 
weighted (IVW) method served as the primary analysis approach, and multiple effective MR methods were employed 
as complementary analyses including MR-Egger, weighted median, constrained maximum likelihood (cML-MA), 
contamination mixture method, robust adjusted profile score (MR-RAPS), and debiased inverse-variance weighted 
method. Heterogeneity and pleiotropy were assessed via MR-Egger intercept and Cochran’s Q statistical analysis. 
Outliers were detected by Radial MR and MR-PRESSO methods. External replication and metabolic pathway analysis 
were also conducted.

Results Potential causal associations of 63 GDMs with POI were unearthed, and five metabolites with strong causal 
links to POI were emphasized. Two metabolic pathways related to the pathogenesis of POI were pinpointed. Sugges-
tive causal effects of 70 GDMs on PCOS were detected, among which 7 metabolites stood out for strong causality 
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with elevated PCOS risk. Four metabolic pathways associated with PCOS mechanisms were recognized. For AS, 64 
GDMs as potential predictive biomarkers were identified, particularly highlighting two metabolites for their strong 
causal connections with AS. Three pathways underneath the AS mechanism were identified. Multiple assessments 
were conducted to further confirm the reliability and robustness of our causal inferences.

Conclusion By extensively assessing the causal implications of circulating GDMs on reproductive system disorders, 
our study underscores the intricate and pivotal role of metabolomics in reproductive ill-health, laying a theoretical 
foundation for clinical strategies from metabolic insights.

Keywords Genetically determined metabolites, Mendelian randomization, Primary ovarian insufficiency, Polycystic 
ovary syndrome, Abnormal spermatozoa

Introduction
The global incidence of infertility is 10% -15%, and 
reproductive disorders have risen to the forefront of 
health concerns worldwide [1, 2]. Currently, a declin-
ing trend in fertility rates is observed all over the world, 
with infertility not only profoundly affecting patients 
and their families but also imposing significant eco-
nomic burdens on society [3]. Etiologically, infertil-
ity can arise from multiple factors, such as ovulatory 
disorders in women and sperm abnormalities in men. 
Primary ovarian insufficiency (POI) is a condition with 
medical, psychological, and reproductive impacts, 
occurring in at least 1% of women and leading to life-
long health issues and psychological stress [4]. As a 
critical cause of ovarian hormone deficiency and infer-
tility, POI also links to an increased risk of cardiovas-
cular diseases, osteoporosis, and a degree of cognitive 
decline [5]. Moreover, an association between POI and 
higher early mortality has been reported [6]. Disap-
pointingly, due to the highly heterogeneous and mul-
tifactorial nature of POI, the biological mechanisms 
behind 90% of cases remain to be further elucidated 
[7]. Serving as the most common endocrine disorder 
affecting women of reproductive age (up to 6%-12%), 
polycystic ovary syndrome (PCOS) spans from ado-
lescence through to post-menopause [8, 9]. Patients 
are not only challenged by the quintessential clinical 
features, including hyperandrogenism, ovulatory dys-
function, and the presence of polycystic ovaries, but 
also frequently suffer from various metabolic dysfunc-
tions, such as insulin resistance and Type 2 diabetes, 
exerting substantial physical and psychological stress 
[10–12]. The etiology of PCOS is intricately complex 
and enigmatic, and its underlying biological mecha-
nisms remain a focal point of research. Apart from 
that, male factors account for approximately 40% of 
infertility cases [1, 2]. Sperm morphology and motility, 
the ability to penetrate cervical mucus, as well as the 
capacity to enter the zona pellucida of the oocyte, are 
crucial for the successful fertilization of the sperm and 
oocyte. The impact of abnormal spermatozoa (AS) on 

delaying natural conception and elevating miscarriage 
risks underscores the urgent need for in-depth research 
in this area [13].

Metabolites, as the ultimate outputs of upstream genes 
and proteins, function as indicators of an individual’s 
real-time physiological state and disease risk, thereby 
becoming a focal point for therapeutic strategies and 
management [14, 15]. Metabolomics leverages metabo-
lites derived from human studies to map the connections 
between diseases and their metabolic pathways [16]. Its 
heightened sensitivity enables the detection of subtle bio-
logical changes, offering insights into the mechanisms 
underlying various physiological states, anomalies, and 
diseases [17]. Through genome-wide association stud-
ies (GWAS) extending to metabolic phenotypes, geneti-
cally determined metabolites (GDMs) forge a critical link 
between genetic variations and environmental triggers 
of diseases [18–21]. Metabolomics is increasingly har-
nessed to uncover the fundamental causes of complex 
diseases, such as cancer [22] and diabetes [23], signifi-
cantly propelling the advancement of precision medicine. 
A plethora of studies have demonstrated the intricate link 
between reproductive function and metabolic health [24, 
25]. Dysfunctions in the reproductive system are associ-
ated with deterioration in metabolic profiles, highlighting 
the intertwined nature of metabolism and reproduction 
[26]. Multiple metabolites including branched-chain 
amino acids [27], arachidonic [28], creatine metabolism 
[29], and vitamin D [30] metabolism, among others, have 
been proven to have an undeniable close association 
with the functionality of female ovaries and male sperm. 
Nonetheless, the limited scope and small sample sizes of 
these studies yield restricted insights into pathophysi-
ological mechanisms. It is imperative to embark on novel 
research that encompasses extensive screenings of a wide 
spectrum of circulating metabolites, which are crucial 
for deciphering causality between GDMs and associated 
genetic variations underlying reproductive disorders.

Mendelian Randomization (MR) employs genetic 
variants, particularly single nucleotide polymor-
phisms (SNPs), as instrumental variables (IVs) to proxy 
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exposure variables, facilitating the investigation of 
causal effects between exposures and distinct health 
outcomes [31]. Unlike traditional observational stud-
ies, which are susceptible to biases from small sample 
sizes, reverse causation, and the influence of potential 
environmental and societal confounders, MR offers a 
robust approach to unbiased detection of causal effects 
[32]. In scenarios where randomized controlled trials 
are impractical, causality is ambiguous, or confound-
ing factors and reverse causality exists, MR presents 
a viable alternative for causal inference [33]. Over the 
past decade, the application of MR to publicly avail-
able GWAS data has seen a surge in popularity with 
significant results yielded [34, 35]. Herein, we lever-
aged the largest metabolite-associated GWAS data to 
date (encompassing 1,091 metabolites and 309 metabo-
lite ratios) and conducted two-sample MR analyses to 
address research gaps in causal links between GDMs 

and reproductive disorders (comprising POI, PCOS, 
and AS) from a genetic variation perspective.

Methods
Study design
Exhaustive two-sample MR analyses were conducted to 
investigate the causal links between 1,400 GDMs and 
a spectrum of reproductive system diseases. Various 
robust MR analytical techniques were employed in our 
study to secure reliable causal inferences [36–39]. Sensi-
tivity analyses were performed to ensure the robustness 
of our findings. To enhance the validation of the candi-
date GDMs and affirm the robustness of our findings, we 
leveraged GWAS data from another metabolomics study, 
encompassing 486 genetically influenced metabolites, 
for external replication in this research [19]. Moreover, 
enrichment analysis of metabolic pathways was per-
formed to delve deeper into the mechanisms underlying 
reproductive system disorders. Figure  1A illustrates the 

Fig. 1 Study design overview. A Mendelian randomization (MR) analyses depend on three core assumptions. Assumption 1, genetic instruments 
are strongly associated with the exposures of interest; Assumption 2, genetic instruments are independent of confounding factors; Assumption 3, 
genetic instruments are not associated with outcome and affect outcome only via exposures. B Outline of the study design
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three core principles essential for the effective execution 
of MR: (1) genetic variants strongly correlate with the 
exposure; (2) genetic variants are not associated with any 
potential confounders; (3) genetic instruments impact 
the outcome solely through effects on the exposure [40]. 
The workflow of our study design is depicted in Fig. 1B.

GWAS data sources for GDMs and reproductive system 
disorders
Several GWAS studies on GDMs have been conducted 
to date, providing insights into the genetic influence on 
human metabolism [19, 41–44]. Previously, Shin et  al. 
[19] identified 486 genetically influenced metabolites 
from a GWAS study on untargeted metabolomics with 
7,824 participants, with related data retrievable from the 
IEU OpenGWAS project (https:// gwas. mrcieu. ac. uk/). 
Recently, the scope of metabolome-wide GWAS data 
has been significantly expanded to a more comprehen-
sive range. The latest study by Chen et al. explored 1,091 
blood metabolites and ratios of 309 metabolites, which is 
accessible through the GWAS Catalog database (https:// 
www. ebi. ac. uk/ gwas/) with catalog numbers listed as 
GCST90199621-GCS90201020 [44]. In our research, we 
utilized GWAS data from Chen et al. as the primary basis 
for exploratory analyses, while GWAS data from Shin 
et al. served as supplementary validation to enhance the 
generalizability and robustness of our conclusions.

Statistics on POI and PCOS were derived from the 
FinnGen consortium R9 release data (https:// r9. finng en. 
fi/). For POI, the corresponding phenotype code utilized 
in this study was “E4_OVARFAIL”, with 469 cases and 
200,581 controls. For PCOS, the designated phenotype 
identifier was “R9_E4_PCOS”, encompassing 1,424 cases 
and 200,581 controls. Additionally, summary statistics 
for AS were sourced from the FinnGen consortium R7 
release data (https:// r7. finng en. fi/). GWAS data for the 
“abnormal spermatozoa” phenotype were accessed, com-
prising 1,913 cases and 293,878 controls in total. Since 
the GWAS data on these reproductive disorders were 
publicly accessible as summary information, no further 
ethical approvals were necessary for their use.

Selection of instrumental variables
To ensure the precision and efficacy of MR analyses, a 
stringent selection process for IVs was applied to 1,400 
metabolites, adhering to the three foundational assump-
tions of MR mentioned above. Genetic variants linked 
to metabolic traits were pinpointed using a genome-
wide significance threshold of P < 1 ×  10–5, ensuring IVs 
captured the predominant variance in metabolites. SNP 
pruning was executed using the clumping function in 
PLINK software (version v1.90). Independent SNPs 
(r2 < 0.1 within a 500 kb window) were chosen to generate 

IVs utilizing a clumping process with the European pop-
ulation from the 1,000 Genomes Project as the refer-
ence [45]. Furthermore, specific palindromic SNPs were 
excluded to avoid biased results due to IVs being selected 
improperly. To mitigate potential biases from weak 
instruments, the F-statistic (β2_exposure/SE2_expo-
sure) was calculated to assess the strength of IVs, with 
an F-statistic above 10 indicating sufficient power for 
reliable MR analysis [46, 47]. These criteria were aligned 
with prior research recommendations and ensured the 
reliability and accuracy of the IVs used in this study [48].

Two‑sample Mendelian randomization
In this study, the inverse-variance weighted (IVW) 
method served as the primary strategy for MR analysis. 
The IVW method is typically considered the gold stand-
ard for assessing causality, offering the most reliable test 
for the presence of causal effects [49]. Moreover, the 
flourishing development of MR methodologies in recent 
years has introduced a suite of innovative and effective 
analytical techniques into study strategy. To comple-
ment the IVW approach, various robust methods were 
employed in our analysis including MR-Egger, weighted 
median, constrained maximum likelihood (cML-MA), 
contamination mixture method, robust adjusted pro-
file score (MR-RAPS), and debiased inverse-variance 
weighted method. Specifically, the MR-Egger method 
provides a more stable causal estimate even in the pres-
ence of invalid IVs by estimating the causal effect through 
the Egger regression’s slope coefficient [50]. The weighted 
median approach offers protection against up to 50% of 
invalid IVs [51]. The cML-MA method, a constrained 
maximum likelihood and model averaging-based MR 
approach, is notably more powerful than MR-Egger in 
controlling both correlated and uncorrelated pleiotropic 
effects [52]. The contamination mixture method pro-
duces robust MR results even with invalid IVs and has 
shown the lowest mean squared error in various realistic 
scenarios [37]. MR-RAPS accounts for both systematic 
and idiosyncratic pleiotropy, providing robust inference 
for MR analysis with many weak instruments [38]. The 
Debiased Inverse-Variance Weighted Method eliminates 
bias from weak instruments, thus offering enhanced 
robustness [39].

In this study, the P-value from the IVW analysis was 
utilized as the primary metric for assessing the causal 
relationship, and six complementary methods were 
employed to further augment the assessment of MR 
findings. Consistent estimates (β values) across all meth-
ods indicated robust findings. Upon achieving uniform 
estimates across seven MR approaches, a metabolite 
was identified as a potential candidate with a possible 
causal link to reproductive system diseases when the 

https://gwas.mrcieu.ac.uk/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://r9.finngen.fi/
https://r9.finngen.fi/
https://r7.finngen.fi/
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IVW method indicated a significant difference (P < 0.05). 
When IVW and the six auxiliary MR tests all demon-
strated a significant difference (P < 0.05), the candidate 
metabolite was deemed to exert a definitive strong causal 
relationship with reproductive disorders.

Sensitivity analysis
Diverse methodologies were utilized to assess the het-
erogeneity and pleiotropy of our findings. Cochran’s Q 
statistical analysis was applied to detect heterogeneity 
for IVW and MR-Egger method, with a Cochran Q test-
derived P-value greater than 0.05 indicating no signifi-
cant heterogeneity [50]. The presence of pleiotropy and 
potential biases due to ineffective IVs were evaluated by 
the MR-PRESSO global test and MR-Egger intercept, 
with a P-value greater than 0.05 suggesting the absence of 
pleiotropy [53]. Of note, Radial MR and the MR-PRESSO 
were performed to identify outliers, followed by a repeti-
tion of MR analysis after removing heterogeneous SNPs 
[54]. Furthermore, the MR-Steiger directionality test was 
employed to verify the accuracy of deduced causal direc-
tion, thereby preventing reverse causation.

External replication analysis
To verify whether consistent causal associations with dis-
eases could be identified for the same metabolites based 
on GWAS data from different sources, we conducted 
replication analysis. For key metabolites identified in 
the primary analysis, we matched and performed exter-
nal replication using publicly available data from Shin 
et al. which involved 486 serum metabolites [19]. For the 
causal association analysis of metabolites with the corre-
sponding disease in the validation GWAS data, we also 
employed the IVW method and applied the same thresh-
old criteria as used in the primary analysis.

Metabolic pathway enrichment analysis
To elucidate the biological mechanisms behind circulat-
ing GDMs influencing reproductive system diseases, we 
performed enrichment analysis of metabolic pathways 
associated with these candidate metabolites via Metabo-
Analyst 6.0 (https:// www. metab oanal yst. ca/). The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
was selected as the pathway library for this analysis to 
identify key metabolic pathways. The enrichment method 
utilized was the hypergeometric test, and the threshold 
for significance in metabolic pathway enrichment analy-
sis was set at 0.05.

Statistical analysis
All MR analyses were conducted using R software (ver-
sion 4.2.0). A variety of R packages including Mendeli-
anRandomization, MR-PRESSO, and Radial MR were 

employed in this study. Collectively, these methods estab-
lished a systematic framework to comprehensively assess 
the causal relationships between circulating GDMs and 
reproductive system diseases. If the estimated causal 
effect P value for GDMs via the IVW method is less 
than 0.05, GDMs are defined as potential suggestive risk 
predictors for the disease. A strong causal relationship 
between the metabolite and the disease was confirmed 
when P values from the IVW method and six additional 
MR methods were all below 0.05. In all sensitivity analy-
sis tests, a two-tailed P < 0.05 is considered statistically 
significant.

Results
Exploration of the causal effects of serum GDMs on POI
Preliminary IVW analysis identified 63 circulating 
metabolites causally linked to POI, concerning multi-
ple metabolite categories including androgenic steroids, 
chemicals, creatine metabolism, fatty acid metabolism, 
amino acid metabolism, and nucleotide metabolism, etc. 
(Table  S1). Of these, 34 serum metabolites were associ-
ated with an increased risk of POI, while 29 GDMs were 
deduced to potentially reduce the risk. To eliminate the 
influence of confounding factors, 63 causal effects were 
further evaluated using multiple complementary algo-
rithms such as MR-Egger, weighted median, cML-MA, 
contamination mixture method, RAPS, and debiased 
inverse-variance weighted method (Table  S2). All 63 
metabolites demonstrated consistent causal directions 
across these supplementary algorithms. Heterogeneity 
was detected in only 4 of the 63 metabolites by Cochran’s 
Q test with IVW random effect models applied accord-
ingly, while the other GDMs displayed no heterogeneity 
among IVs (Table S3).

Based on horizontal pleiotropy analyses using MR-
Egger intercept and MR-PRESSO global test, except for 
the 3beta-hydroxy-5-cholestenoate levels, P-values for 
the remaining 62 metabolites were all above 0.05, indi-
cating a low risk of horizontal pleiotropy (Table S4). For 
3beta-hydroxy-5-cholestenoate levels, five outlier variants 
were detected using Radial MR and MR-PRESSO meth-
ods (Fig. 2, Table S5). After removing these outliers, the 
protective causality of 3beta-hydroxy-5-cholestenoate 
levels on POI remained significant (OR: 0.578; 95% CI: 
0.443–0.754; PIVW = 5.51E-5), and no pleiotropy or het-
erogeneity was present (Table S6). Moreover, MR Steiger 
directionality tests confirmed the accuracy of our causal 
direction inference for all 63 GDMs (Table S7).

Notably, when considering significance across all seven 
MR methods, five serum metabolites stood out, includ-
ing four androgenic steroids-related metabolites and one 
unknown metabolite (Fig.  3A). Of these, two metabo-
lites were associated with increased risk of POI (Fig. 3B), 

https://www.metaboanalyst.ca/
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specifically, andro steroid monosulfate C19H28O6S (1) 
levels (OR: 1.394; 95% CI: 1.150–1.690; PIVW = 0.001) 
and 16a-hydroxy DHEA 3-sulfate levels (OR: 1.295; 95% 
CI: 1.080–1.553; PIVW = 0.005), and X-23276 levels (OR: 
1.601; 95% CI: 1.203–2.131; PIVW = 0.001). Additionally, 
two metabolites were revealed to be linked to a reduced 
risk of POI, namely 5alpha-androstan-3beta,17beta-
diol disulfate levels (OR: 0.711; 95% CI: 0.564–0.897; 
PIVW = 0.004) and 5alpha-androstan-3alpha,17beta-diol 
monosulfate (1) levels (OR: 0.578; 95% CI: 0.443–0.754; 
PIVW = 0.009).

Validation analyses of candidate metabolites were 
conducted to further corroborate the reliability of our 
findings. For several GDMs identified as potential risk 
predictors, we successfully matched a portion of the same 
metabolites in additional GWAS data, and the causal 
trends consistent with the primary analysis were success-
fully validated, as anticipated (Figure S1A-1D). Although 
the causal effects between some GDMs and diseases were 
not significant, these discrepancies might be attributed 
to significant variations in sample sizes across different 
GWAS data sources.

Moreover, based on known metabolites with suggestive 
causal links to POI, we identified two metabolic path-
ways potentially involved in POI pathogenesis (Table S7). 
Valine, leucine, and isoleucine biosynthesis (P = 0.025), 

and steroid hormone biosynthesis (P = 0.027) were 
detected as potential biological pathways involved in the 
development of POI. Further exploration of these path-
ways might provide clearer insights into the pathogenic 
mechanisms underlying POI.

Investigation of causal relationships between circulating 
metabolites and PCOS
Initial IVW analysis unearthed 70 metabolites with 
potential causal links to PCOS, spanning categories 
including androgenic steroids, amino acid metabolism, 
partially characterized molecules, cardiovascular drugs, 
etc. (Table S9). Among these, 27 serum metabolites were 
identified as potential protective biomarkers for PCOS, 
while 43 GDMs were connected with an increased risk 
of PCOS development. Further assessment of these 70 
causal associations employed a variety of robust meth-
ods, such as MR-Egger, weighted median, cML-MA, con-
tamination mixture method, MR-RAPS, and debiased 
inverse-variance weighted method, each confirming cau-
sality estimates consistent with the initial IVW approach 
(Table S10). Significant heterogeneity was noted in analy-
ses for N-acetyl-aspartyl-glutamate (NAAG) levels, threo-
nine levels, and ribitol levels, prompting the application of 
the random-effect IVW model. In contrast, no heteroge-
neity was detected in analyses for the majority of GDMs 

Fig. 2 Radial plot demonstrating the identification of outlier variants for 3beta-hydroxy-5-cholestenoate levelsusing MR Radial method



Page 7 of 14Chen et al. Journal of Ovarian Research          (2024) 17:166  

(Table S11). Horizontal pleiotropy was also identified in 
analyses for N-acetyl-aspartyl-glutamate (NAAG) levels, 
threonine levels, and ribitol levels through MR-PRESSO 
global tests (Table  S12). Radial MR and MR-PRESSO 
methods detected related outlier variants for N-acetyl-
aspartyl-glutamate (NAAG) levels (Fig.  4A, Table  S13), 
threonine levels (Fig.  4B, Table  S15), and ribitol levels 
(Fig. 4C, Table S17). After the removal of these outliers, 
causal links between these three GDMs and PCOS were 
still significant, with no further detection of pleiotropy 
or heterogeneity (Tables S14, S16, S18). Additionally, MR 
Steiger directionality tests affirmed the precision of the 

causal effects’ directionality for candidate metabolites 
(Table S19).

Upon considering the significance across all seven MR 
methods, seven serum metabolites were highlighted. 
Among them, three were unknown, and four known 
metabolites were involved in classes including gluta-
mate metabolism, glutathione metabolism, methionine, 
cysteine, SAM, taurine metabolism, etc. (Fig.  5A). All 
these metabolites were associated with an increased 
risk of PCOS (Fig.  5B), namely, N-acetyl-aspartyl-glu-
tamate (NAAG) levels (OR: 1.162; 95% CI: 1.106–1.220; 
PIVW = 2.22E − 09), cys-gly, oxidized levels (OR: 1.152; 95% 

Fig. 3 Causal associations between serum metabolites and POI: Results of MR analyses using multiple algorithms. A Forest plots showed the causal 
associations between serum metabolites and POI. The displayed P-values correspond to the IVW method. B Scatter plots of potential effects 
of single-nucleotide polymorphisms (SNPs) on five metabolites vs. POI, with the slope of each line corresponding to the estimated MR effect 
per method
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CI: 1.025–1.294; PIVW = 0.0179), methionine sulfoxide lev-
els (OR: 1.490; 95% CI: 1.233–1.801; PIVW = 3.69E − 05), 
metabolonic lactone sulfate levels (OR: 1.144; 95% CI: 
1.061–1.234; PIVW = 0.0005), X-11444 levels (OR: 1.162; 
95% CI: 1.031–1.309; PIVW = 0.0135), X-18886 lev-
els (OR: 1.408; 95% CI: 1.132 -1.750; PIVW = 0.0021), 
and X-26109 levels (OR: 1.168; 95% CI: 1.083–1.259; 
PIVW = 5.10E − 05).

Employing GWAS data from Shin et al. [19], replication 
analysis further substantiated the dependability of our 
results (Figures  S1E-1G). Encouragingly, the protective 
causal associations of androsterone sulfate levels (Figure 
S1F, PIVW = 0.002) and 5alpha-androstan-3beta,17beta-
diol disulfate levels (Figure S1G, PIVW = 0.005) with PCOS 
were robustly validated in the validation data.

Additionally, based upon known candidate metabo-
lites, four latent biological pathways underneath the 
pathogenesis of PCOS were identified, including glu-
tathione metabolism (P = 0.008), glycine, serine, and 
threonine metabolism (P = 0.011), pyrimidine metabo-
lism (P = 0.0152), and valine, leucine and isoleucine 
biosynthesis (P = 0.040) (Table  S20). Future in-depth 
research into these pathways is warranted to provide 
novel insights into the pathogenic mechanisms of PCOS.

Examination of causal relationships between serum 
metabolites and AS
Through IVW analysis, 64 serum metabolites were iden-
tified as exerting potential causal effects with AS, cover-
ing a variety of metabolic pathways including carotenoid, 

fatty acid, and bile acid metabolism (Table S21). Among 
these, 26 metabolites were noted for their potential in 
reducing the risk of AS, whereas 38 were implicated in 
increasing susceptibility to AS. Causal links between 
these candidate metabolites and AS were further evalu-
ated using a series of sophisticated statistical models such 
as MR-Egger, weighted median, cML-MA, contamination 
mixture method, MR-RAPS, and debiased inverse-vari-
ance weighted method, which all affirmed the initial cau-
sality findings (Table S22). No heterogeneity was detected 
in most analyses, except in those concerning citrulline 
levels and 2’-o-methyluridine levels (Table S23), and there 
is no evidence of substantial pleiotropy affecting the 
results (Table S24). The accuracy of our causal direction 
inference was confirmed by MR Steiger directionality 
tests (Table S25).

Founded on the IVW results, when the significance of 
six additional MR methods was considered, two metabo-
lites emerged as particularly noteworthy (Fig.  6A). One 
GDM remained unknown, and the other was associ-
ated with secondary bile acid metabolism. Both glyco-
cholenate sulfate levels (OR: 1.128; 95% CI: 1.050–1.212; 
PIVW = 0.001) and X-17653 levels (OR: 1.172; 95% CI: 
1.030–1.334; PIVW = 0.0163) were identified as being 
linked to an increased risk of AS, indicating their poten-
tial as predictive biomarkers for the disease (Fig. 6B).

To further strengthen our conclusions, replication 
analyses were conducted, confirming a similar causal 
association trend in alignment with the primary analy-
sis between citrulline levels and AS (Figure S1H). In 

Fig. 4 Radial plot demonstrating the identification of outlier variants for N-acetyl-aspartyl-glutamate (naag) levels, threonine levels, and ribitol levels 
using the MR Radial method
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Fig. 5 Causal associations between serum metabolites and PCOS: Results of MR analyses using multiple algorithms. A Forest plots showed 
the causal associations between serum metabolites and PCOS. The displayed P-values correspond to the IVW method. B Scatter plots of potential 
effects of single-nucleotide polymorphisms (SNPs) on five metabolites vs. PCOS, with the slope of each line corresponding to the estimated MR 
effect per method
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addition, insightful investigations based on known 
metabolites causally linked to AS identified three critical 
metabolic pathways potentially driving the onset of AS, 
involving sphingolipid metabolism (P = 0.0057), vitamin 
B6 metabolism (P = 0.0339), and caffeine metabolism 
(P = 0.0376) (Table  S26). A deeper exploration of these 
pathways may enhance the clinical management and 
treatment strategies for AS.

Discussion
Based on the most extensive metabolomics GWAS data 
to date, our study employed systematic two-sample MR 
analyses to unveil the causal effects between 1,091 blood 
metabolites and 309 metabolite ratios with a range of 
reproductive disorders, including POI, PCOS, and AS. 
By deeply integrating genomics with metabolomics and 
utilizing a variety of robust MR analytical algorithms, we 
thoroughly explored the complex involvement of GDMs 
in the etiology of reproductive diseases. Latent causal 
relationships between 63 GDMs and POI were disclosed, 
and five metabolites with strong causal associations 
with POI were highlighted. Moreover, two key meta-
bolic pathways implicated in the pathogenesis of POI 

were identified. Suggestive causal effects of 70 GDMs 
on PCOS were detected, with seven metabolites notably 
linked to an increased risk of PCOS, and four underly-
ing pathogenic pathways were delineated. For AS, we 
identified 64 GDMs as potential biomarkers risk predic-
tive, particularly pinpointing two metabolites with strong 
causal links to AS. Three critical pathways involved in 
AS’s etiology were also uncovered. Rigorous sensitiv-
ity analyses were conducted to control for confounding 
factors and enhance the reliability of findings. In a sys-
tematic manner, our study broadened the scope of poten-
tial biomarkers and therapeutic targets for reproductive 
system diseases, enabling researchers and clinicians to 
comprehensively discern the metabolic landscape behind 
reproductive disorders.

In our study, the complex causal relationships between 
androgenic steroids and POI were particularly empha-
sized. Previous research has indicated that POI was 
associated with a significant reduction in testoster-
one and androgen precursor concentrations in women 
[55]. Some scholars suggested that androgens might 
exert a positive role in promoting preantral follicular 
growth and preventing follicular atresia, as well as in 

Fig. 6 Causal associations between serum metabolites and AS: Results of MR analyses using multiple algorithms. A Forest plots showed the causal 
associations between serum metabolites and PCOS. The displayed P-values correspond to the IVW method. B Scatter plots of potential effects 
of single-nucleotide polymorphisms (SNPs) on five metabolites vs. PCOS, with the slope of each line corresponding to the estimated MR effect 
per method
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the activation of primordial follicles, although this view-
point lacked substantial empirical support [56–58]. 
Our study pinpointed that certain androgenic steroid, 
such as 5alpha-androstan-3beta,17beta-diol disulfate 
and 5alpha-androstan-3alpha,17beta-diol monosulfate, 
exhibited latent protective effects against POI, support-
ing the beneficial role of androgens in restoring dimin-
ished ovarian reserve. However, it is noteworthy that our 
research also disclosed that steroids like andro steroid 
monosulfate C19H28O6S levels and 16a-hydroxy DHEA 
3-sulfate levels might also increase the risk of POI, sug-
gesting the potential adverse effects of androgen levels 
on POI. The bidirectional action of androgens uncov-
ered in our study suggested their complex roles in ovar-
ian health. Indeed, even though some clinical success has 
been observed in using dehydroepiandrosterone (DHEA) 
supplements as an androgen precursor to enhance fer-
tility in women with low ovarian reserve in recent years 
[59], significant debate still persists regarding the overall 
effectiveness and mechanisms underlying androgen ther-
apy [56]. A consensus has yet to be achieved, and robust 
scientific evidence and extensive, rigorous randomized 
trials supporting the beneficial impacts of androgens on 
ovarian physiology are still lacking [56]. Additionally, 
pathway enrichment analysis in our study also revealed 
the involvement of steroid hormone biosynthesis in the 
development of POI, further underscoring the impor-
tance of exploring the impact of steroids on this condi-
tion. Future studies are imperative to delve deeper into 
related mechanisms to better inform clinical strate-
gies for POI, and thus provide more precise therapeutic 
options for patients.

Some GDMs with strong causal associations in pro-
moting the progression of PCOS were focused on in our 
research. N − acetyl − aspartyl − glutamate (NAGG), a 
dipeptide comprised of glutamate and N-acetylaspartate 
linked via a peptide bond, functions as a neurotransmit-
ter through the activation of the presynaptic metabo-
tropic receptor 3 (GRM3), which is predominantly found 
in the brain [60]. Nevertheless, untargeted metabolomic 
analyses also detected the presence of NAAG in cumu-
lus cells (CCs) and indicated its potential role in signaling 
[61]. As a supplement to previous research, our research 
further identified the potential promotive effects of circu-
lating NAAG on the progression of PCOS. Furthermore, 
CCs in PCOS patients were documented to be subjected 
to oxidative stress. A reduction in glutathione within CCs 
was observed and was postulated to correlate with the 
quality of oocytes in women suffering from PCOS [62]. 
Glutathione is broken down into glutamate and Cys-Gly 
by the action of gamma-glutamyl transferase [63]. Our 
study’s findings indicated that the buildup of oxidized 
Cys-Gly might contribute to the exacerbation of PCOS, 

thus corroborating similar results reported in existing lit-
erature. The pivotal role of glutathione metabolism was 
also unearthed in our analysis of biological pathways 
related to PCOS, potentially shedding light on thera-
peutic strategies for PCOS. Methionine sulfoxide has 
been established as a latent critical factor at the check-
point of oogenesis progression [64], and our research 
further suggested its strong causal association with the 
advancement of PCOS. Metabolonic lactone sulfate was 
proved to be linked to several indicators of cardiometa-
bolic health, such as obesity and insulin resistance [65], 
which are frequently implicated in PCOS [66]. Our study 
built on these observations, suggesting that higher lev-
els of metabolonic lactone sulfate could contribute to an 
increased risk of PCOS, underscoring its significance in 
the underlying mechanisms of this condition.

A number of metabolites causally linked to AS were 
identified in this study, among which glycocholenate sul-
fate stood out due to its strong causality with AS. Prior 
research on glycocholenate sulfate primarily concen-
trated on its implications for cardiovascular conditions, 
notably atrial fibrillation [67, 68]. However, investigations 
within the context of reproductive disorders were lim-
ited. The causal relationship between elevated levels of 
glycocholenate sulfate and increased risk of AS is a novel 
finding that warrants further validation and exploration 
within a broader clinical dataset. Elevated serum creati-
nine levels in patients with chronic glomerulonephritis 
were associated with abnormal expression of IL-17 and 
IL-18, adversely affecting male semen quality and poten-
tially contributing to infertility [69]. This appears to con-
tradict our findings, where elevated creatinine levels are 
linked to a protective causal association with AS. Such 
discrepancies could be attributed to differences in sam-
ple size, disease status, or the varying impacts of different 
creatinine levels. This warrants further in-depth research 
to elucidate the underlying mechanisms. Additionally, 
pregnenolone sulfate, along with progesterone, has been 
identified as a primary steroid activating CatSper, the 
calcium channel crucial for sperm hyperactivation and 
fertility [70]. Our research further suggested that preg-
nenolone sulfate levels might potentially exacerbate AS. 
To enhance understanding of latent biological processes, 
future research could focus on exploring how pregne-
nolone sulfate impacts sperm function under different 
conditions and assess its interactions with sperm fertility.

Nonetheless, our research has some limitations. Firstly, 
the significant causal relationships identified require 
further validation through metabolomic experiments. 
Secondly, the lack of available detailed individual data 
impedes further stratified analyses within the population. 
Lastly, as this study relies on European data, our find-
ings are not generalizable to other ethnic groups, thereby 
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limiting the universality. Consequently, including indi-
viduals from diverse genetic backgrounds could enhance 
the generalizability of the findings. In addition, given that 
utilizing genetic variants associated with metabolites as 
instrumental variables only represents prolonged expo-
sure conditions, short-term dietary interventions might 
produce different effects on the outcomes described.

Conclusion
In conclusion, our study utilized a systematical MR 
analysis framework to demonstrate for the first time the 
causal effects of 1,091 blood metabolites and 309 metab-
olite ratios on reproductive system disorders, paving new 
pathways for identifying potential metabolic mechanisms 
behind these disorders.
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