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Abstract
Background  Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their 
relationship with immune infiltration.

Methods  We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as 
a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) 
and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We 
subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub 
module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, 
single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and 
immune cells. Lastly, we employed RT-PCR to validate our results.

Results  WGCNA results suggested that the blue module was the most associated with OA and was functionally 
associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, 
and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA 
across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed 
that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, 
and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these 
findings.

Conclusions  HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with 
OA progression and immune cell infiltration.
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Introduction
Osteoarthritis (OA) is a common chronic degenerative 
joint disease affecting millions of people worldwide [1]. 
It is characterized by the cartilage deterioration, sub-
chondral osteosclerosis, osteophyte formation and syno-
vial inflammation [2, 3]. The clinical symptoms include 
joint pain and dysfunction, eventually leading to disabil-
ity [4]. Recent study indicates that early diagnosis and 
timely intervention can not only relieve temporary symp-
toms but also delay OA progression [5]. However, reli-
able biological markers for OA remain limited, and the 
pathogenesis of OA is not completely understood. Thus, 
identifying biomarkers for OA and exploring the molecu-
lar mechanisms of its development is essential.

Recently, immune cell infiltration has emerged as a sig-
nificant contributor to OA pathophysiology [6]. These 
immune cells include mast cells, macrophages, lympho-
cytes, and neutrophils [7, 8]. These cells produce pro-
inflammatory mediators, secrete degrading enzymes, 
and disrupt the metabolism of various joint cells [9, 10]. 
Targeting immune cells may provide a promising dis-
ease-modifying strategy for OA; however, the underlying 
mechanisms of immune cell infiltration require further 
elucidation. Thus, it is important to explore the genes 
that regulate this infiltration.

In the present study, we initially conducted a weighted 
gene co-expression network analysis (WGCNA) to iden-
tify the module most relevant to OA. Subsequently, we 
performed functional enrichment analysis along with 
protein-protein interaction (PPI) assessments to explore 
the potential roles and interactions of genes within this 
key module. Leveraging a machine learning algorithm, 
we identified seven candidate molecules. After validation 
of their diagnostic accuracy, we obtained the final bio-
markers. Lastly, we performed single-gene analysis and 
single-sample gene set enrichment analyses (ssGSEA) 
to reveal the biological functions and immunological 
correlates of these biomarkers. Taken together, the aim 
of our study was to identify potential specific biomark-
ers for OA progression and assess their association with 
immune infiltration.

Materials and methods
Data collection and processing
The gene expression profiles of GSE117999, GSE51588, 
GSE57218, and GSE114007 were downloaded from the 
Gene Expression Omnibus (GEO) database. GSE117999 
contains 24 samples, including 12 cartilage tissue sam-
ples from normal joints and 12 cartilage tissue samples 
from OA joints. GSE51588 contains 50 samples, includ-
ing 10 subchondral bone tissue samples from normal 
joints and 40 subchondral bone tissue samples from OA 
joints. GSE57218 contains 73 samples, including 7 carti-
lage tissue samples from normal joints and 66 cartilage 

tissue samples from OA joints. GSE114007 contains 38 
samples, including 18 cartilage tissue samples from nor-
mal joints and 20 cartilage tissue samples from OA joints. 
Batch effects were removed using the “sva” R package, 
followed by normalization with the “limma” R package 
[11]. The GSE117999, GSE51588, and GSE57218 cohorts 
functioned as the training set, while GSE114007 served 
as the validation set.

WGCNA analysis and module selection
A gene co-expression network was established using the 
WGCNA R package with normalized expression data for 
16,106 genes in the training set [12]. A hierarchical clus-
tering analysis preceded module detection. The scale-free 
topology criterion then determined the optimal soft-
thresholding power (β). Then, average connectivity and 
independent traits of each module were assessed using 
selected β values. A network was subsequently con-
structed. Gene significance (GS) quantified the relations 
between individual genes and OA, while module mem-
bership (MM) gauged the importance of the gene profile 
within modules. The module demonstrating the highest 
GS and MM was identified as the hub module Genes 
with |log2FC| > 1 and false discovery rate (FDR) < 0.05, 
were identified as differentially expressed genes (DEGs).

Functional enrichment analysis
Genes in the hub module were extracted for Gene Ontol-
ogy (GO) terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis using 
the “clusterProfiler” R package [13]. Terms and pathways 
with achieving FDR < 0.05 were considered significantly 
enriched.

Construction of the PPI network
PPI networks of genes in the hub module were predicted 
using the STRING database (http://string-db.org; version 
11.5) [14]. PPI networks were constructed with an inter-
action score of > 0.4.

Screening and verifying biomarkers
Three machine learning methods-least absolute shrink-
age and selection operator (LASSO) logistic regression, 
support vector machine (SVM), and random forest (RF)-
were used to screen biomarkers for OA. The LASSO 
algorithm was conducted via the “glmnet” R package. The 
SVM module was implemented using “e1071” and “kern-
lab” R package. RF analysis was performed using “ran-
domForest” R package. The intersection of results from 
LASSO, SVM, and RF constituted the candidate diagnos-
tic gene for further analysis. Statistical significance was 
set at P < 0.05.

Boxplots were used to compare the differential expres-
sion of biomarkers between healthy and OA tissues in 
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both the training and validation sets. Receiver operating 
characteristic (ROC) curve analysis was used to assess 
the diagnostic accuracy.

Single gene analysis
Single gene analysis included differential expression 
analysis, GO, KEGG enrichment analysis, and gene 
set enrichment analyses (GSEA). Based on the median 
expression levels of each key genes (HTRA1, DPT, and 
MXRA5), we categorized 98 osteoarthritis (OA) patients 
into high and low expression groups. The identified 
DEGs were used for the GO, KEGG, and GSEA enrich-
ment analyses. The GO and KEGG analysis were carried 
out as before. GSEA was conducted using GESA 3.0 soft-
ware [15].

Evaluating immune cell infiltration
The ssGSEA methods was applied to with “GSVA” R 
package to to evaluate immune cell infiltration levels. 
The cell-specific markers of the 28 types of immune cells 
were obtained from a previous study [16]. We compared 
immune cell counts across groups and assessed correla-
tions among the 28 infiltrating immune cell types.

Correlation analysis between biomarkers and immune cells
Spearman correlation analysis was conducted to explore 
potential relationships between biomarker expression 
and infiltrating immune cells with “corrplot” R package. 
The result was visualized with “ggplot2” R package.

Real-time polymerase chain reaction (RT-PCR) validation
To validate our bioinformatics findings, we harvested 
cartilage and subchondral bone from five OA patients 
undergoing total joint arthroplasty for RT-PCR confir-
mation. This study was approved by the Ethical Com-
mittees of our hospital (2023A02), and informed consent 
was obtained from all patients. We categorized tissues 
into intact cartilage with underlying subchondral bone 
(control samples) and degenerative cartilage with under-
lying subchondral bone (OA samples). Total RNA was 
extracted from tissues using TRIzol reagent (Invitrogen, 

USA). Total RNA was then reverse-transcribed to cDNA 
and RT-PCR was performed using a PCR Kit (Pro-
mega, China) following the manufacturer’s instructions. 
The target genes were HTRA1, DPT, and MXRA5, and 
GAPDH was used as an internal reference. The primers 
used are listed in Table 1. The relative mRNA expression 
was calculated using the 2−ΔΔCt method.

Results
Identification of the key module and enrichment analysis
To identify the key module most associated with OA, 
WGCNA was performed using the expression levels 
of 16,106 genes. Clustering analysis facilitated module 
detection, yielding seven distinct modules represented 
by unique colors (Fig.  1A). The soft thresholding power 
β was determined to be 6 (Fig. 1B). As shown in Fig. 1C, 
the blue module showed the strongest association with 
OA (R = 0.37, P = 6e-06). Thus, the blue module, contain-
ing 327 genes, was considered the key module.

Functional enrichment analysis was performed to 
explore the potential functions of the genes in the key 
module. GO results showed that the main biological pro-
cess (BP) involved extracellular structure organization 
and extracellular matrix (ECM) organization, the cel-
lular component (CC) primarily consisted of the ECM 
and basement membrane, and the molecular function 
(MF) mainly encompassed ECM structural constituents, 
glycosaminoglycan binding, and growth factor binding 
(Fig.  1D). KEGG pathway enrichment analysis showed 
that revealed significant involvement of these genes in 
focal adhesion, ECM-receptor interactions, the Hippo 
signaling pathway, and the TGF-β signaling pathway 
(Fig.  1E). These results imply that ECM alterations may 
play a pivotal role in OA. Subsequently, a PPI network 
was constructed to investigate interactions among these 
genes (Fig. 1F).

Screening and verifying biomarkers
A total of 52 DEGs from the key module were extracted. 
The heatmap showed the differences in gene expression 
between OA patients and healthy controls (Fig. 2A). Bio-
marker selection was performed using the training set. 
The LASSO regression model revealed 22 DEGs relevant 
to OA (Fig. 2BC). Using the SVM algorithm, we identi-
fied 16 DEGs as potential biomarkers (Fig. 2D). Addition-
ally, the RF algorithm was applied (Fig. 2E), and the top 
ten genes are shown in Fig. 2F. Detailed results from the 
three machine learning methods are available in Supple-
mental Table 1. Ultimately, by considering the overlaps 
among the three methods, seven biomarkers for OA were 
identified (Fig. 2G). These included ALB, HTRA1, DPT, 
MXRA5, CILP, MPO, and PLAT.

We evaluated the diagnostic accuracy of these seven 
biomarkers in both training and validation datasets. 

Table 1  Primer sequences used for RT-qPCR
Gene Sequences (5’-3’)
HTRA1 F: ​T​C​C​C​A​A​C​A​G​T​T​T​G​C​G​C​C​A​T​A​A

R: ​C​C​G​G​C​A​C​C​T​C​T​C​G​T​T​T​A​G​A​A​A
DPT F: ​G​G​G​G​C​C​A​G​T​A​T​G​G​C​G​A​T​T​A​T​G

R: ​C​G​G​T​T​C​A​A​A​T​T​C​A​C​C​C​A​C​C​C
MXRA5 F: ​C​C​T​T​G​T​G​C​C​T​G​C​T​A​C​G​T​C​C

R: ​T​T​G​G​T​C​A​G​T​C​C​T​G​C​A​A​A​T​G​A​G
GAPDH F: ​G​G​C​A​A​A​G​T​G​G​A​G​A​T​T​G​T​T​G​C​C

R: ​C​T​T​C​C​C​A​T​T​C​T​C​G​G​C​C​T​T​G​A
RT-qPCR, real time quantitative polymerase chain reaction; F, forward; R, 
reverse; HTRA1, high temperature requirement A1; DPT, dilute prothrombin 
time; MXRA5, matrix remodeling associated 5; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase
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Analysis of expression levels among biomarkers in the 
training sets indicated that ALB and MPO exhibited 
reduced expression in OA patients, while HTRA1, DPT, 
MXRA5, CILP, and PLAT presented increased expres-
sion levels (P < 0.001) (Fig.  3A). The AUCs of ALB, 
HTRA1, DPT, MXRA5, CILP, MPO, and PLAT for OA 
were 0.820, 0.813, 0.773, 0.772, 0.740, 0.785, and 0.778, 
respectively (Fig. 3B). Notably, in the validation set, only 
three genes (HTRA1, DPT, and MXRA5) were differen-
tially expressed. Consistent with training set findings, 
these three genes showed significantly higher expression 
levels in the OA group (P < 0.001) (Fig.  3C). The AUCs 
of HTRA1, DPT, and MXRA5 for OA diagnosis in the 
validation set were 0.964, 0.844, and 0.947, respectively 
(Fig.  3D). Taken together, these results indicate that 

HTRA1, DPT, and MXRA5 are valuable biomarkers for 
OA.

Single gene analysis of hub biomarkers
To better understand the role of the three hub biomark-
ers in OA, single-gene analysis was performed. Based 
on the median expression level of HTRA1, OA patients 
were divided into high- and low-expression groups. The 
high-expression group exhibited differential expression 
of 209 genes compared to the low-expression group, with 
144 genes upregulated and 65 downregulated (Fig.  4A). 
GO functional enrichment analysis revealed that these 
DEGs primarily participated in ossification, development 
of bone and cartilage, and extracellular matrix organi-
zation (Fig.  4B). KEGG pathway analysis showed that 
these DEGs were significantly enriched in ECM-receptor 

Fig. 1  Key module detection and enrichment analysis. (A) Clustering dendrogram of genes, each module was displayed by distinct colors to distinguish 
different modules. (B) Determination of the soft thresholding power. (C) Heatmap of the correlations between gene modules and phenotypes. (D) GO 
terms analysis of the key module genes. (E) KEGG pathways analysis of the key module genes. (F) PPI network
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interaction, cytokine-cytokine receptor interaction, focal 
adhesion, and PI3K-Akt signaling pathway (Fig.  4C). 
GSEA analysis showed that the gene set of the low 
HTRA1 expression OA group was mainly involved in 
signaling pathways such as the adipocytokine signaling 
pathway, cytokine-cytokine receptor interaction, and 
neuroactive ligand receptor interaction (Fig. 4D), whereas 
the gene set of the high HTRA1 expression group sub-
stantially participated in the cell cycle, ECM receptor 
interaction, focal adhesion, and ribosome (Fig. 4E).

Similarly, based on the median DPT expression level, 
patients with OA were divided into high- and low-expres-
sion groups. The high-expression group showed differen-
tial expression of 93 genes relative to the low-expression 
group, with 76 genes upregulated and 17 downregulated 
(Fig.  5A). GO functional enrichment analysis revealed 
that these DEGs were mainly involved in collagen meta-
bolic processes, bone and cartilage development, and 
extracellular matrix organization (Fig.  5B). KEGG path-
way analysis showed that these DEGs were significantly 
enriched in protein digestion and absorption, ECM-
receptor interaction, focal adhesion, and phagosome 
(Fig.  5C). GSEA analysis showed that the gene set of 
the low DPT expression OA group was mainly involved 

in signaling pathways such as the adipocytokine signal-
ing pathway, PPAR signaling pathway, and T cell recep-
tor signaling pathway (Fig. 5D), whereas the gene set of 
the high DPT expression group substantially participated 
in ECM-receptor interaction, focal adhesion, oxidative 
phosphorylation, lysosomes, and ribosomes (Fig. 5E).

Following the same approach, we evaluated MXRA5 
expression levels to categorize OA patients into high- 
and low-expression groups. The high-expression group 
manifested differential expression of 190 genes compared 
to the low-expression group, with 136 genes upregulated 
and 54 downregulated (Fig.  6A). GO functional enrich-
ment analysis revealed that these DEGs were mainly 
involved in ossification, bone and cartilage develop-
ment, and extracellular matrix organization (Fig.  6B). 
KEGG pathway analysis showed that these DEGs were 
significantly enriched for protein digestion and absorp-
tion, ECM-receptor interaction, focal adhesion, tyro-
sine metabolism, and the PI3K-Akt signaling pathway 
(Fig. 6C). GSEA analysis showed that the gene set of the 
low MXRA5 expression OA group was mainly involved 
in signaling pathways such as adipocytokine signaling 
pathway, fatty acid metabolism, and PPAR signaling path-
way (Fig. 6D), whereas the gene set of the high MXRA5 

Fig. 2  Screening the biomarkers. (A) Heatmap present the identified DEGs in key module between OA patients and healthy controls. (B) LASSO logistic 
regression algorithm for screening the biomarkers. (C) Confidence interval for each lambda. (D) SVM algorithm screening of the biomarkers. (E) RF algo-
rithm screening of the biomarkers. (F) Top 10 genes in RF algorithm. (G) Venn diagram displaying the intersection between biomarkers identified using 
the three algorithms
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expression group substantially participated in the cell 
cycle, ECM-receptor interaction, focal adhesion, and 
lysosomes (Fig. 6E).

Immune infiltration analysis
ssGSEA was performed to analyze differences in immune 
cell infiltration between OA and healthy tissues. Com-
pared to healthy tissue, O exhibited a greater abundance 
of activated dendritic cells (aDCs), immature dendritic 
cells (iDCs), cytolytic activity, inflammation-promoting 
factors, parainflammation, natural killer (NK) cells, follic-
ular helper T cells (Tfh), T helper 2 (Th2) cells, and type 
I interferon responses, while regulatory T cells (Tregs) 
were found in lower proportions (Fig.  7A). A heatmap 
illustrated the correlations among these immunocytes 
(Fig. 7B).

Correlation of HTRA1, DPT and MXRA5 with immune cell 
infiltration
We further examined the relationship between immune 
cell infiltration and the expression levels of HTRA1, DPT, 
and MXRA5. In patients with high HTRA1 expression, 
Th1 cells, B cells, NK cells, tumor-infiltrating lympho-
cytes (TIL), T cell co-stimulation, T cell co-inhibition, 
inflammation-promoting factors, checkpoint activity, 
cytolytic activity, and CD8 + T cells were present in lower 
proportions compared to patients with low HTRA1 
expression (Fig. 8A). Correlation analysis indicated a neg-
ative association between HTRA1 expression and these 
immune cells, while a positive correlation existed with 
Tfh expression (Fig. 8B).

In patients with high DPT expression, proportions of 
B cells, cytolytic activity, CD8 + T cells, Th1 cells, and 
NK cells were lower, whereas higher proportions of 
parenchymal inflammation, macrophages, type I inter-
feron responses, MHC class I molecules, neutrophils, 

Fig. 3  Validating the biomarkers. (A) Difference analysis of the expression levels of biomarkers in the training sets. (B) ROC curve analysis of the diagnostic 
efficacy of identified genes the training sets. (C) Difference analysis of the expression levels of biomarkers in the validation set. (D) ROC curve analysis of 
the diagnostic efficacy of identified genes the validation set. *P < 0.05, **P < 0.01, and ***P < 0.001
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HLA, dendritic cells (DCs), and plasmacytoid dendritic 
cells (pDCs) were observed (Fig. 8C). Correlation analy-
sis revealed a positive association of DPT with elevated 
immune cell levels but a negative correlation with 
CD8 + T cells and Th1 cells (Fig. 8D).

For patients with low MXRA5 expression, proportions 
of Th1 cells, B cells, NK cells, CD8 + T cells, cytolytic 
activity, inflammation-promoting factors, T cell co-
stimulation, and TIL were lower compared to those with 
high MXRA5 expression. Conversely, higher proportions 
of macrophages, inflammation, Tfh, type I interferon 
responses, and T helper cells were noted in the high-
expression group (Fig. 8E). Correlation analysis indicated 
that MXRA5 positively correlated with elevated immune 

cell levels (excluding T helper cells) but negatively corre-
lated with Th1 cells, B cells, NK cells, CD8 + T cells, cyto-
lytic activity, and iDCs (Fig. 8F).

In summary, our findings suggest that HTRA1, DPT, 
and MXRA5 play significant roles in the regulation of 
various immune cells in OA.

RT-PCR validation of three biomarkers
The mRNA levels of the three crucial OA biomarkers 
were validated through RT-PCR. The expression levels of 
HTRA1, DPT, and MXRA5 were markedly higher in OA 
samples than in control samples (Fig. 9), aligning with the 
bioinformatics analysis results.

Fig. 5  Single gene analysis of DPT. (A) Heatmap present the identified DEGs between low- and high- DPT expression OA patients. (B) GO terms analysis 
of DPT-related DEGs. (C) KEGG pathways analysis of the DPT-related DEGs. (D) GSEA-KEGG enrichment analysis in low DPT expression OA group. (E) GSEA-
KEGG enrichment analysis in high DPT expression OA group, saved the top five enriched pathways

 

Fig. 4  Single gene analysis of HTRA1. (A) Heatmap present the identified DEGs between low- and high- HTRA1 expression OA patients. (B) GO terms 
analysis of HTRA1-related DEGs. (C) KEGG pathways analysis of the HTRA1-related DEGs. (D) GSEA-KEGG enrichment analysis in low HTRA1 expression OA 
group. (E) GSEA-KEGG enrichment analysis in high HTRA1 expression OA group, saved the top five enriched pathways
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Discussion
OA is the most common degenerative joint disease and 
is associated with progressive degeneration of articular 
cartilage, ECM, and subchondral bone [17]. Nonetheless, 
critical genes and mechanisms underlying OA progres-
sion remain poorly understood, complicating early tar-
geted intervention [10, 18]. Recent studies highlight the 
importance of immune cell infiltration in OA progression 
[6]. Therefore, identifying new biomarkers and exploring 
their relationship with immune cell infiltration patterns 
may provide promising early intervention strategies and 
improve the prognosis.

Our results revealed that HTRA1, DPT, and MXRA5 
are upregulated in OA and could serve as promising 
biomarkers for OA. However, the specific roles of these 
biomarkers in OA pathophysiology require further elu-
cidation. HTRA1 is a serine protease that modulates 
several biological processes including cell proliferation, 
migration, and fate determination [19]. HTRA1 can trig-
ger ECM substrate degradation and contribute to various 
diseases, including cancer and neurodegenerative disor-
ders [20–22]. In addition, HTRA1 promotes the expres-
sion of matrix metalloproteinases (MMPs) focal adhesion 
[23]. Emerging evidence indicates that HTRA1 facilitates 
inflammation and immune cell infiltration by activating 

Fig. 7  Evaluation of immune cell infiltration. (A) The difference of immune infiltration between OA and healthy controls. (B) Correlation heat map of 28 
types of immune cells. *P < 0.05, **P < 0.01, and ***P < 0.001

 

Fig. 6  Single gene analysis of MXRA5. (A) Heatmap present the identified DEGs between low- and high- MXRA5 expression OA patients. (B) GO terms 
analysis of MXRA5-related DEGs. (C) KEGG pathways analysis of the MXRA5-related DEGs. (D) GSEA-KEGG enrichment analysis in low MXRA5 expression 
OA group. (E) GSEA-KEGG enrichment analysis in high MXRA5 expression OA group, saved the top five enriched pathways
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the NF-kB signaling pathway [24, 25]. It may also exert 
an adverse impact on bone and cartilage formation via 
the TGF-β and BMP pathways [26, 27]. Moreover, after 
exposure to inflammatory cytokines, elevated HTRA1 
levels correlate with cartilage degeneration, implying that 

heightened HTRA1 expression may precipitate OA pro-
gression [28].

DPT serves as a key component of the ECM, critical for 
cell adhesion and ECM assembly. It interacts with various 
proteins, enhancing biological activities and regulating 
the cell cycle and differentiation [29–31]. These effects 

Fig. 8  Correlation between HTRA1, DPT, MXRA5, and infiltrating immune cells. (A) The difference of immune infiltration between low- and high- HTRA1 
expression OA patients. (B) Correlation between HTRA1 and infiltrating immune cells. *P < 0.05, **P < 0.01, and ***P < 0.001
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may be achieved via the TGF-β, P13K/Akt, YAP, and 
Wnt signaling pathways [29, 32–34]. Furthermore, DPT 
is associated with ECM remodeling in contexts like adi-
pose tissue, cancer, cardiac disorders, and wound healing 
[35–38]. Increased DPT expression correlates with ele-
vated inflammation levels, promoting pro-inflammatory 
factors [interleukin (IL)-6, IL-8, tumor necrosis factors 
(TNF) and lipopolysaccharide (LPS)] and suppressing 
anti-inflammatory markers (IL-4) [35, 37, 39].

MXRA5, a secreted proteoglycan with VEGF receptor 
activity, is expressed in primates and mammals but not in 
mice or rats [40]. Like the other two biomarkers, MXRA5 
is crucial for cell adhesion and ECM remodeling [41]. Its 
expression is elevated in chronic cardiac disorders, kid-
ney diseases, and radiation-induced fibrosis [42–45]. 
Additionally, MXRA5 participates in tumorigenesis and 
could serve as a potential biomarker for early colorectal 
cancer, gastric cancer, glioma, and acute myeloid leu-
kemia diagnosis [46–49]. Recent studies suggest that 
MXRA5 overexpression correlates with the expression of 
immune checkpoint molecules and the extent of immune 
cell infiltration [42, 47, 49].

Although abnormal alternations of these 28 types 
of immune cells in OA development have been widely 
discussed, results varied considerably across studies. 
Our study again investigated the significant changes in 
immune cell subpopulations and their functions within 
OA cartilage and subchondral bone. We observed 
increased infiltration of DCs, NKs, Tfh, Th2, alongside 
decreased Tregs, which may exacerbate OA. DCs, as 
primary mediators of immune response, play a crucial 
role in recruiting proinflammatory immune cells such as 

macrophages and neutrophils, while activating inflam-
matory T cells [50]. Macrophages serve as both initiators 
and effectors in OA, significantly contributing to immune 
recruitment, releasing pro-inflammatory cytokines, and 
mediating ECM degradation [51]. Neutrophils release 
enzymes that that cartilage ECM [52]. T cells secrete pro-
inflammatory cytokines, and their accumulation in joints 
signifies OA progression [53, 54]. Therefore, analyzing 
the immune landscape of these cells in OA illuminates 
mechanisms driving OA progression, aiding in the identi-
fication of novel therapeutic target.

Next, we investigated correlations between HTRA1, 
DPT, MXRA5, and immune cells. Importantly, our find-
ings indicated that high expression levels of these three 
genes consistently aligned with reduced Th1 cells, B cells, 
and NK cells, yet increased macrophages and Tfh cells. 
Prior research noted that HTRA1 promotes macrophage 
infiltration during anomalous ocular angiogenesis [24]. 
Another bioinformatic study revealed that a strong posi-
tive correlation between DPT and macrophage infiltra-
tion in breast cancer [55]. In addition, Sun et al. and Wen 
et al. suggested the significant association of MXRA5 
with macrophage infiltration [42, 47]. Thus, we propose 
that HTRA1, DPT, and MXRA5 play critical roles in the 
OA immune microenvironment. Nonetheless, further 
investigations are essential to validate the complex inter-
play between these genes and immune cells.

Our study has some limitations. First, the sample 
size remains relatively limited. Second, the diagnostic 
accuracy of these three genes should be assessed in a 
large external cohort. Finally, the potential mechanisms 

Fig. 9  RT-PCR validation of the hub biomarkers between OA and healthy controls. All experiments were performed in triplicate. *P < 0.05, **P < 0.01, and 
***P < 0.001
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revealed in this study require validation through in vitro 
and in vivo experiments.

Conclusion
Utilizing a combination of WCGNA and machine learn-
ing methods, our study identified elevated levels of 
HTRA1, DPT, and MXRA5 in OA, suggesting their 
potential as promising novel biomarkers. Additionally, 
our research indicates that immune cells might play a 
role in OA progression. HTRA1, DPT, and MXRA5 dem-
onstrate a close correlation with immune cell infiltration. 
These findings not only unveil potential mechanisms 
underlying OA progression but also present novel critical 
biomarkers and promising immunotherapeutic targets 
for OA treatment.
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