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ABSTRACT: This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for
directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-
2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a
template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes.
When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be
explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP’s redox-active moieties
(TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density
decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L−1. PEDOT-TEMPO-MIP
also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant
concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1%
among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for
PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the
groundwork for developing compact PFAS sensors.
KEYWORDS: per- and polyfluoroalkyl substances (PFAS), perfluorooctanoic acid (PFOA), molecularly imprinted polymer (MIP),
electrochemical sensor, conductive polymer, redox-active polymer

■ INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) are a suite of
ionizable synthetic organofluorine surfactants widely used in
industrial and consumer applications over the past few
decades.1−3 Some PFAS are highly recalcitrant, bioaccumula-
tive, and toxic.4,5 The U.S. Environmental Protection Agency
has set maximum contaminant levels (MCLs) for six PFAS in
drinking water, with the MCLs for perfluorooctanesulfonic
acid (PFOS) and perfluorooctanoic acid (PFOA) at 4 ng·L−1

each as of April 2024.6 Reports suggest that PFAS are present
in the drinking water of 200 million Americans.7,8 There is
consensus that technologies for rapid PFAS detection at sub
ng·L−1 concentrations are critical but lacking.
The current gold standard of PFAS detection relies on

expensive instrumentation (i.e., liquid chromatography-triple
quadrupole-tandem mass spectrometry (LC-MS/MS)), which

requires specialized operator training and labor-intensive
sample processing that takes hours to days, and is cost-
prohibitive.9−12 Consequently, an array of optical and
electrochemical PFAS sensors have been developed, but their
selectivity remains problematic.13−16 This aspect is particularly
important given that many PFAS exist in mixtures and
interfering ions often coexist. Molecularly imprinted polymers
(MIPs) offer high selectivity for PFAS due to the molecular
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“lock-and-key” binding mechanism, which was previously
employed for concentrating PFAS from water samples.17−20

Briefly, MIPs are cross-linked polymers synthesized in the
presence of template molecules (e.g., PFAS), which are
removed by post-polymerization to create cavities with a
size, shape, and binding affinity similar to the template
used.21−23 Combining MIPs with electrochemical detection
has gained immense attention, which relies on changes in
electrochemical signals upon binding and removal of templates
from MIP cavities. MIPs are increasingly used in chemical
sensing platforms to detect drug residues,24,25 organic
dyes,26,27 pesticides,28,29 pathogens,21,30 and PFAS.31−35

However, several major obstacles exist. First, existing MIPs
coupled with electrochemical detection are not redox-active
and thus require addition and periodic replenishment of
external redox probes (e.g., ferric/ferrocyanide), adding
complexity to integration and downsizing of sensor sys-
tems.31−33 Moreover, current studies employed non-conduc-
tive MIPs (e.g., o-phenylenediamine),31−33,36 limiting electron
transfer and signal transduction during measurement. Addi-
tionally, several existing conductive MIPs (e.g., polypyrrole and
polyaniline) are not sufficiently stable in water, leading to
decreased conductivity over time.37,38

Herein, we leveraged the high conductivity and robustness
of poly-3,4-ethylenedioxythiophene (PEDOT) in water and
incorporated 2,2,6,6-tetramethylpiperidinyoxy (TEMPO), a
redox-active N-oxyl derivative, into PEDOT for direct
quantification of PFAS at sub ng·L−1 concentrations.39−43

The detection mechanism for PFOA relies on proton blocking,
hindering the conversion of TEMPOH to TEMPO+ upon
oxidation and reduction (Scheme 1). Specifically, we

synthesized and purified the monomer EDOT-TEMPO,
performed electropolymerization to obtain PEDOT-TEMPO-
MIP using PFOA as a template, established a calibration curve,
and assessed the selectivity, stability, and reusability of
PEDOT-TEMPO-MIP towards PFOA in the range that is
typical in surface water. Our findings provide an innovative
platform for rapid ex-situ PFAS quantification by creating a
redox-active MIP, eliminating the need for external redox
probes, and laying the groundwork for compact PFAS sensor
development.

■ METHODS AND MATERIALS
Chemicals, Material Characterization, and Chemical

Analysis. All chemicals, material characterization, and
chemical analysis are provided in the Supporting Information
(SI) (Texts S1, S2, and S3).

Preparation of MIPs. Details on the preparation of
monomer EDOT-TEMPO, PEDOT-TEMPO-MIP, and non-
molecularly imprinted PEDOT-TEMPO (PEDOT-TEMPO-
NIP) are provided in Text S4.44,45

Electrochemical Measurement. All potentials were
reported relative to the Ag/AgCl reference electrode. The
cyclic voltammetry (CV) scans of glassy carbon electrode,
PEDOT-TEMPO-MIP and PEDOT-TEMPO-NIP were col-
lected at a potential range of 0.0−1.5 V with a scan rate of 20
mV·s−1 in dichloromethane (DCM) solution containing 0.1
mol·L−1 tetrabutylammonium hexafluoro phosphate
(TBAPF6) as a commonly used nonaqueous electrolyte.
DCM was selected due to its high compatibility with PFOA
and TBAPF6 and was used for MIP electropolymerization and
electrochemical signal monitoring. By contrast, the rebinding
of PFAS was carried out in DI or actual water samples. The
direct quantification of PFOA using PEDOT-TEMPO-MIP
involves (1) MIP synthesis by electropolymerization in DCM
containing TBAPF6, (2) removal of PFOA template with DI,
(3) rebinding of PFOA with MIP in DI (or actual water
sample), and (4) detection of PFOA captured by MIP in an
electrochemical cell containing DCM and TBAPF6. Steps (1)
and (4) were performed in an electrochemical cell, and steps
(2) and (3) were carried out in batch reactors with water.
Furthermore, the reference current density (i0) was recorded in
CV scans in an electrochemical cell in DCM for PEDOT-
TEMPO-MIP after template (PFOA) removal. Rebinding of
PFOA was conducted by exposing PEDOT-TEMPO-MIP to
different PFOA concentrations (i.e., 4.14 × 10−10 to 4.14 ×
10−4 g·L−1) in DI water. Afterward, PEDOT-TEMPO-MIP
was transferred to an electrochemical cell for CV scans in
DCM to investigate the impact of PFOA rebinding on the
electrochemical signal. The baseline current density (i0) of
PEDOT-TEMPO-MIP was taken at an anodic peak of
TEMPO after PFOA template removal, whereas i was recorded
after being exposed to PFOA in DI water (also referred to as
“rebinding process”). Three cycles of CV scans were
conducted to obtain a stable electrode response (Figure S1).
The average value from the second and third scans was used
for each measurement. The changes in current density (i.e., Δi
= i − i0) were plotted against PFOA concentrations for the
calibration curve. Each PFOA concentration was measured in
triplicate.

■ RESULT AND DISCUSSION
Characterization of EDOT-TEMPO monomer. The

successful synthesis of the EDOT-TEMPO monomer was
indicated by its orange crystal (Figure S2) and by 1H nuclear
magnetic resonance (NMR) and Fourier transform infrared
(FTIR) spectroscopy (Figures S3 and S4). Text S6 explains
the NMR and FTIR spectroscopy in detail.

Preparation of PEDOT-TEMPO-MIP and PEDOT-
TEMPO-NIP. The CV scans were collected during the
electropolymerization of PEDOT-TEMPO-MIP with PFOA
(Figure S5). Consistent with the literature,44,45 we observed a
slight shift in the anodic peak of EDOT from 1.2 to 1.4 V and
from 0.86 to 0.90 V for TEMPO over ten scans, which was

Scheme 1. Proposed Mechanism for Electrochemical Signal
Decrease upon the Interaction between PFOA Anion and
Redox-Active Moieties on PEDOT-TEMPO-MIP (i.e.,
TEMPO: TEMPOH/TEMPO+) that Results in Blockage of
Conversion between the Oxidized and Reduced Forms of
TEMPO
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attributed to increased resistivity between the working
electrode and reference electrode following the growth of
PEDOT-TEMPO-MIP film.44,46 The increased current density
following electropolymerization can be explained by increased
pseudocapacitance of the film by incorporating more redox-
active moieties into the MIP.44,47 The glassy carbon electrode
coated with the PEDOT-TEMPO-MIP shows an apparent
blue color (Figure S5).44,45

Two characteristic peaks were observed in CV scans of
PEDOT-TEMPO-MIP (Figure 1A; red curve): the anodic and
cathodic peaks appeared at 0.86 and 0.69 V, respectively,
corresponding to the redox-active TEMPO (i.e., TEMPO+,
and TEMPOH, Scheme 1).41−43 The peaks at 0.30 and 0.18 V
suggested anodic and cathodic peaks of the PEDOT
backbone.44,45 After electropolymerization, PEDOT-TEMPO-
MIP was washed with DI water instead of organic solvent to
remove the PFOA template. The rationale of solvent selection
was explained in Text S4.17−19 We observed an increase of
21.1% and 18.5% in current density at anodic and cathodic
peaks of PEDOT-TEMPO-MIP, respectively (Figure 1A; blue
vs. red curves). When PEDOT-TEMPO-MIP was exposed to
4.14 × 10−4 g·L−1 PFOA in DI for 30 min during rebinding, a
decrease of 40% and 34% in anodic and cathodic peaks current
density was observed, respectively (Figure 1A; green curve).
We postulate that the observed decrease in the current density
in the presence of PFOA can be attributed to the interaction
between the PFOA and TEMPO moieties. Specifically, the
anionic PFOA (pKa = 0.5−3.8)48,49 may form a charge-assisted
hydrogen bond with TEMPOH (pKa = 5.5−6.2). As a result,
the conversion from TEMPOH to TEMPO+ upon oxidation is
hindered, causing a decrease in anodic and cathodic peaks’
current density (Scheme 1). The formation of a charge-assisted
hydrogen bond has been previously reported to form between
PFOA and polar groups of various surfaces.50−52 The closer
proximity of pKa values of two species, the stronger the H-
bond formed.50−52

PEDOT-TEMPO-NIP was prepared under the same
experimental conditions as PEDOT-TEMPO-MIP, but with-
out PFOA. The CV scan for PEDOT-TEMPO-NIP showed
CV characteristics similar to those of PEDOT-TEMPO-MIP
(Figure 1B; red curve). However, the current density after
removing the PFOA template (Figure 1B; blue curve) or
rebinding with PFOA for 30 min (Figure 1B; green curve)

exhibited negligible changes at both anodic and cathodic peaks
of TEMPO, suggesting a lack of PFOA molecular imprinting
cavities in PEDOT-TEMPO-NIP.

Electrochemical Measurements of PFOA and Con-
struction of Calibration Curve. To determine the optimal
rebinding time for PFOA quantification, we first performed
time-dependent rebinding experiments by exposing PEDOT-
TEMPO-MIP to four different PFOA concentrations (i.e., 4.14
× 10−10, 4.14 × 10−9 g·L−1, 4.14 × 10−8 g·L−1, and 4.14 × 10−4

g·L−1). At a higher PFOA concentration (i.e., 4.14 × 10−4 g·
L−1), we observed a decrease in current density by 37% to 85%
from 30 to 180 min, which plateaued around 240 min (Table
S1). The current density decreased to a lesser extent at a lower
PFOA concentration (i.e., 4.14 × 10−8 g·L−1, 4.14 × 10−9 g·
L−1, 4.14 × 10−10 g·L−1) compared to a higher PFOA
concentration (i.e., 4.14 × 10−4 g·L−1), and current density
plateaued after 210 min. For consistency, we chose 240 min for
all subsequent experiments unless otherwise stated.
The calibration curve of PFOA was constructed by obtaining

Δi from the anodic peak of TEMPO after rebinding with
PFOA for 5 and 240 min, respectively, at a series of
concentrations (i.e., 4.14 × 10−10 g·L−1 to 4.14 × 10−4 g·
L−1). The rebinding time of 5 min was selected to establish a
more realistic scenario for rapid sensing, as shown in Figure 2,
Figure S6, and Table S2. The regression analysis indicated a
good linear relationship at both rebinding times (5 and 240
min) (i.e., R2 = 0.98) between Δi and corresponding PFOA
concentrations (Figure 2 and Figure S6). A method detection
limit (MDL) of 3.26 × 10−9 g·L−1 for PEDOT-TEMPO-MIP
was determined for 5 min exposure of PFOA using seven
replicates of the lowest calibration standard (i.e., 4.14 × 10−9 g·
L−1) (Figure 2) following an EPA standard method (Text
S5).53,54 By contrast, a lower MDL of 2.80 × 10−10 g·L−1 was
achieved for PEDOT-TEMPO-MIP using seven replicates of
lowest calibration standard (i.e., 4.14 × 10−10 g·L−1) for 240
min rebinding (Figure S6; Text S5).53,54 Our results suggest
that as PFOA concentrations increase, more PFOA molecules
were able to block proton transfer to TEMPO+ moieties,
thereby hindering conversion between TEMPO+/TEMPOH
and lowering TEMPO anodic peak current density.

Reproducibility, Stability, and Selectivity of PEDOT-
TEMPO-MIP. The reusability of PEDOT-TEMPO-MIP was
assessed by evaluating the relative change in current density of

Figure 1. CV scans of bare glassy carbon electrode (black), after electropolymerization (red), after template removal (blue), and after exposure to
4.14 × 10−4 g·L−1 PFOA for 30 min (green): (A) PEDOT-TEMPO-MIP and (B) PEDOT-TEMPO-NIP.
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the anodic peak of TEMPO at 0.87 V during five successive
measurements of the same PFOA sample (Figure S7). The
relative standard deviation (RSD) of five measurements was
6.5%. Although the reference current density (i0) shifted
slightly from −125 to −117 μA, possibly due to some
irreversible bindings of PFOA on MIPs, the current density (i)
shifted accordingly through consecutive measurements (i.e.,
from −116 to −108 μA). Our results suggest that PEDOT-
TEMPO-MIP can be reused at least five times with good
stability and reproducibility. Furthermore, the reproducibility
of PEDOT-TEMPO-MIP was demonstrated by measuring
4.14 × 10−9 g L−1 PFOA using three different electrodes. The
change in current density of the anodic peak of TEMPO at
0.87 V after washing and rebinding with 4.14 × 10−9 g L−1

PFOA was observed for each MIP electrode, and values are
summarized in Table S3. Our results suggest that electro-
polymerization of MIPs was highly reproducible with a relative
standard deviation (RSD) of 5.1%.
The selectivity of PEDOT-TEMPO-MIP was evaluated by

monitoring the current density decrease of anodic peak of
TEMPO at 0.87 V when exposed to (i) a single PFOA solution
(4.14 × 10−8 g·L−1), (ii) a single non-PFOA solution, namely,
perfluorobutanoic acid (PFBA), PFOS, or 6:2 fluorotelomer
sulfonamide alkylbetaine (6:2 FTAB) solution (4.14 × 10−8 g·
L−1), and (iii) a mixture of PFOA/PFBA, PFOA/PFOS, or
PFOA/6:2 FTAB solution (each at 4.14 × 10−8 g·L−1). The
current density decreased by 18.4 ± 1.1% when PEDOT-
TEMPO-MIP was exposed to single PFOA solution (i.e., 4.14
× 10−8 g·L−1). By contrast, the current density was only
reduced by 2.7 ± 0.8%, 1.4 ± 0.6%, and 2.5 ± 0.6% in the
presence of a non-template molecule, such as PFBA, PFOS, or
6:2 FTAB solution (i.e., 4.14 × 10−8 g·L−1), respectively,
suggesting that none of these compounds was able to
effectively block proton transfer and hinder subsequent
conversion between TEMPOH and TEMPO+. PEDOT-
TEMPO-MIP showed high selectivity toward PFOA against
its structural analogs (i.e., PFBA, PFOS, and 6:2 FTAB), which
can be explained by the formation of the exact shape and size
cavity of template molecule (PFOA) as compared to a non-
template molecule with different chain length, headgroup, and
charge.17−19 When PEDOT-TEMPO-MIP was exposed to a

mixture of PFOA/PFBA, PFOA/PFOS, and PFOA/6:2 FTAB
(each at 4.14 × 10−8 g·L−1), current density decreased by 17.2
± 3.0%, 14.6 ± 2.8%, and 20.2 ± 3.2%, respectively. Our
results from the PFOA mixture system were not significantly
different from those of a single PFOA in DI, highlighting the
selectivity of MIPs toward PFOA in the presence of its
structural analogs.
Lastly, we evaluated the performance of PEDOT-TEMPO-

MIP in a surface water sample. The chemical composition and
sampling location are provided in Table S4 and Figure S8.
Specifically, surface water contains a 7.3 ± 0.4 mg·L−1 non-
purgeable organic carbon (NPOC) and 7.8 ± 0.1 mg·L−1

chloride anion. The absence of PFOA and other PFAS such as
PFOS, PFBS, perfluorohexanoic acid (PFHxA), hexafluor-
opropylene oxide dimer acid (HFPO-DA), and 6:2-fluorote-
lomersulfonic acid (6:2-FTS) in DI water and collected surface
water sample was confirmed by LC-MS/MS. To understand
the impact of water matrices on PFOA quantification using
PEDOT-TEMPO-MIP, we spiked a known concentration of
PFOA (4.14 × 10−8 g·L−1) into the surface water sample. The
relative current density change of the anionic peak of TEMPO
after rebinding was monitored following the same protocol. We
observed a decrease in the current density of MIP (Figure 3)

by 7.8 ± 2.1% in a surface water sample, which was 18.4 ±
1.1% lower than when MIP was exposed to the same
concentration of PFOA in DI water. The decrease in current
density in surface water compared to DI can be attributed to
the presence of interfering ions (Cl−, SO42−) that are small
enough to occupy MIP cavities but could not hinder H+
transfer between TEMPOH and TEMPO+ due to the lack of
ability to form H-bond.

■ ENVIRONMENTAL SIGNIFICANCE
This work demonstrates the feasibility of synthesizing
PEDOT-TEMPO-MIP that can directly quantify sub ng·L−1

PFAS concentrations electrochemically without using external
redox probes. Specifically, we directly quantify PFOA with

Figure 2. Calibration curve of the current density decrease at the
anodic peak of TEMPO (y-axis) vs PFOA concentrations (ranging
from 4.14 × 10−9 to 4.14 × 10−4 g·L−1; x-axis). The current density
was recorded from the CV scans of PEDOT-TEMPO-MIP after being
exposed to PFOA for 5 min. The error bar at each point was derived
from triplicate measurements. The linear regression is y = 4.91x −
4.47 (R2 = 0.98).

Figure 3. Decrease in current density at the anodic peak of TEMPO
of PEDOT-TEMPO-MIP after rebinding with (i) a single PFOA,
PFBA, PFOS or 6:2 FTAB (each at 4.14 × 10−8 g·L−1) in DI water,
(ii) a mixture of PFOA/PFBA, PFOA/PFOS, or PFOA/6:2 FTAB
(each at 4.14 × 10−8 g·L−1) in DI water, and (iii) spiked a known
concentration of PFOA (4.14 × 10−8 g·L−1) into the surface water
sample for 240 min.
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MIP by utilizing specific interactions between PFOA and
binding sites that cause signal reduction. By contrast, past
published methods rely on external redox probes, which
quantify PFOA indirectly and are more likely to result in a false
positive. Our obtained MDL for PEDOT-TEMPO-MIP is
significantly lower than reported MDL values from potentio-
metric, fluorescence, and calorimetric sensors for PFAS (10−5

to 10−3 g·L−1)55−57 and slightly lower than reported MDLs for
photoelectrochemical, electrochemical impedance spectrosco-
py, and Raman spectroscopy sensors (10−9 to 10−8 g·L−1).58−60

It is worth noting that our calculated MDL of PEDOT-
TEMPO-MIP may be further improved by applying other
electrochemical techniques (e.g., differential pulse voltammetry
or square wave voltammetry) to reduce background noise and
enhance sensitivity.31,47

Moreover, a novel PFAS sensing mechanism was elucidated
for the first time. Specifically, we utilized redox-active
properties of PEDOT-TEMPO-MIP, namely, the conversion
between TEMPOH and TEMPO+ upon oxidation and
subsequent reduction, to directly quantify PFAS. The aspect
of directly quantifying PFAS is of significance for environ-
mental monitoring. Existing electrochemical detection of PFAS
relies on external redox probes (e.g., ferric/ferrocyanide),
which must be added and replenished periodically.31−33 The
ability to directly quantify PFAS helps simplify component
integration for sensor platforms and enables the development
of portable devices. The reversible nature of the redox-active
TEMPO also helps eliminate the need for reagent replenish-
ment and lays the groundwork for continuous monitoring,
which may revolutionize the field of environmental monitor-
ing.
Lastly, the ability to rapidly quantify PFAS is highly desirable

in the field. For instance, current gold-standard LC-MS/MS
requires complex sample preparation and analysis protocols,
which take hours to days to obtain results.3,10,12,59 The typical
sample preparation and testing time for surface-enhanced
raman spectroscopy (SERS) is in the range of hours, which
relies on a diffusion-controlled process to accumulate sufficient
PFAS between neighboring nanoparticles to reach the best
signal enhancement.61−63 By contrast, PFAS detection in our
proposed platform can be accomplished within a few minutes
(e.g., 5 min), which lays the groundwork for rapid detection,
that is urgently needed in environmental science and
engineering. Although some loss of sensitivity was observed
due to interfering ions in water matrices, presumably, the
calibration curve can be prepared in the same water matrices
but at higher concentrations than native water, which might
help correct background interference. Nonetheless, our PFAS
sensor can serve as a screening tool to quickly identify water
bodies impacted by PFAS pollution, allowing further PFAS
characterization. Future work on the scale-up feasibility of
MIP-coupled electrochemical sensors, cost analysis, and
potential for real-time sensing are warranted.
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