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Abstract 

Background/Objectives  This study aims to elucidate the genetic causes of congenital hypogonadotropic hypog‑
onadism (CHH), a rare genetic disorder resulting in GnRH deficiency, in six families from Pakistan.

Methods  Eighteen DNA samples from six families underwent genome sequencing followed by standard evaluation 
for pathogenic single nucleotide variants (SNVs) and small indels. All families were subsequently analyzed for patho‑
genic copy number variants (CNVs) using CoverageMaster.

Results  Novel pathogenic homozygous SNVs in known CHH genes were identified in four families: two families 
with variants in GNRHR, and two others harboring KISS1R variants. Subsequent investigation of CNVs in the remaining 
two families identified novel unique large deletions in ANOS1.

Conclusion  A combined, systematic analysis of single nucleotide and CNVs helps to improve the diagnostic yield 
for variants in patients with CHH.
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Introduction
Congenital hypogonadotropic hypogonadism (CHH) is 
a rare genetic endocrine disorder resulting in partial or 
absent puberty and infertility due to defects in gonad-
otropin-releasing hormone (GnRH) secretion and/or 
action. The frequency of CHH is estimated to be between 
1:86,000 [1] and 1:10,000 [2], and a reported male pre-
dominance from 5:1 [3] to 2:1 [4]. Clinically, CHH is dif-
ficult to distinguish from constitutional delay of growth 
and puberty (CDGP) during early adolescence, but the 
presence of micropenis and/or cryptorchidism in male 
neonates may be early clues for long-term GnRH defi-
ciency. The clinical diagnosis of CHH is primarily a 
diagnosis of exclusion after other common causes of 
hypogonadotropic hypogonadism have been ruled out 
[5]. Approximately 50% of CHH patients present with 
anosmia – Kallmann Syndrome – due to defects affect-
ing the olfactory and GnRH neuron systems during fetal 
development [6].

Pathogenic variants in more than 65 genes [5, 7, 8] 
have been associated with both non-syndromic and syn-
dromic CHH. While these variants are present in up to 
50% of cases [9], these variants only fully explain the 
CHH phenotype in closer to 25% of patients [10]. Previ-
ous studies focused primarily on patients from European 
descent [1, 2], however one recent study found a similar 
frequency of genetic variants in a non-European popula-
tion [11]. Dominant, recessive, X-linked inheritance, and 
uniparental disomy (UPD) have been observed in CHH 
families, and variable expressivity and incomplete pen-
etrance are prevalent in this disorder [12, 13]. Further-
more, the rapid discovery of new CHH genes coupled 
with advances in high-throughput sequencing (HTS), 
namely whole exome sequencing (WES) and genome 
sequencing (WGS), have increased our genetic under-
standing of CHH and uncovered a notable number of 
CHH patients with oligogenic inheritance [14].

Several of the known CHH genes were discovered 
through the detection of copy number variants (CNVs—
large insertion/deletion variants), most notably ANOS1 
[15] and FGFR1, [16] among others. Despite this, routine 
screening evaluation of CHH genes for CNVs is lacking, 
primarily due to the high cost and time for traditional 
assays such as karyotyping, fluorescence in situ hybridi-
zation (FISH), multiplex ligation-dependent probe 

amplification (MLPA) or array comparative genomic 
hybridization (CGH). Although HTS has been available 
for over a decade, recent advances in bioinformatic anal-
ysis of HTS data demonstrated its value to detect CNVs 
[17].

The current study evaluates six families segregating 
CHH and originating from remote areas of Punjab, Paki-
stan—an underrepresented population in the genetic 
studies of this disorder. Using a combination of tradi-
tional single nucleotide variants (SNVs) and advances in 
CNV detection, we successfully determined the underly-
ing genetic causes of CHH in all families.

Results
Clinical findings
We present six families (A-F) with 24 affected individu-
als (20 males and 4 females) of which 12 CHH men have 
been studied. All participants were evaluated at multi-
ple stages of their development, and the final diagno-
sis was given after a detailed medical consultation and 
hormonal blood tests at 18 years old or later to confirm 
the absence of pubertal development. Eight participants 
were normosmic CHH (nCHH) and four were hyposmic 
(KS). All presented with prepubertal testicular volume 
(< 3 mL), and one patient had a history of cryptorchidism 
(Family C, V-8). No hypothalamic or pituitary anomalies 
were detected on brain MRI. No other CHH-associated 
phenotypes (e.g. renal agenesis, synkinesia, etc.) were 
observed in our study population. The clinical evalu-
ations of the participants are summarized in Table  1 
and Fig.  1a. All unaffected family members had normal 
hormonal evaluations, and no defects in smell and/or 
fertility.

SNV analysis
Homozygous pathogenic variants in GNRHR were identi-
fied in affected individuals of Families A and B (Fig. 1a, 
Table  1). All affected members were normosmic, which 
is consistent with a defect in GnRH action at the pitui-
tary level. Family A is a large consanguineous pedigree 
including 8 affected individuals with nCHH (5 males 
and 3 females). DNA was available on two affected 
males (21.IV & 26.IV), their unaffected brother (18.
IV) and parents (10.III & 11.III). A novel homozygous 
p.[Pro320Gln];[Pro320Gln] variant was identified in 

Fig. 1  Consanguineous families’ pedigrees and CNVs detected in ANOS1. a Pedigrees of the 6 consanguineous families. b Output 
of CoverageMaster on WGS for the region around ANOS1 in Subject III:6. The top panel shows the exon–intron map of ANOS1 in the genomic 
space. The bottom panels show the coverage for subject III:6 compared to the sequencing batch and controls in the genomic space. c Output 
of CoverageMaster on WGS for the region around ANOS1 in Subject IV:9. The top panel shows the exon–intron map of ANOS1 in the genomic space. 
The bottom panels show the coverage for subject IV:9 compared to the sequencing batch and controls in the genomic space

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Table 1  Families A-F clinical information

Variants found in families A-F in CHH genes with clinical information on their members. DX Diagnosis,  AAChange Amino acid change, N Normal phenotype, M Male,  
F Female, A Anosmic
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both affected patients in Family A (Fig. 1a). This variant 
is absent from gnomAD, has a CADD of 27.5, and pre-
dicted as damaging by SIFT. Additionally, an alternative 
variant at the same position results in binding defects 
(with GnRH), as shown in transiently transfected cells 
resulting in a total loss of function [18]. Consequently, 
p.Pro320Gln meets the PP3, PM5, PM2, PP2 and is clas-
sified as likely pathogenic according to ACMG standards. 
Family B also resulted from consanguineous marriages. 
Three brothers are affected with nCHH. DNA analy-
ses were performed on two affected brothers (6.IV & 
8.IV), one unaffected brother (11.IV) and the unaffected 
mother (10.III) Similarly, all affected patients in Fam-
ily B harbored homozygous p.[Phe309del];[Phe309del] 
GNRHR variants (MAF = 6.72 × 10–5 in gnomAD with 
no homozygotes observed). This variant is predicted to 
be damaging with SIFT, has a CADD of 21.8, meaning it 
is within the top 0.66% of the most pathogenic variants 
in humans, and co-segregates perfectly with the CHH 
phenotype. This variant meets the PM4, PM2 and PP1 
strong ACMG criteria leading to a likely pathogenic 
classification.

Homozygous truncating variants in KISS1R were 
identified in the affected individuals evaluated in both 
Families C and D, consistent with the autosomal reces-
sive inheritance mode. Family C is segregating a 
p.[Trp108Ter];[Trp108Ter] variant, while Family D is 
segregating a p.[Ser262Ter];[Ser262Ter] variant. Neither 
of these variants is found in gnomAD nor in Clinvar [19], 
and both are considered pathogenic by ACMG classifica-
tion due to their likely undergoing nonsense mediated 
decay (NMD) resulting in complete loss-of-function.

The SNVs observed in Families A-D were confirmed by 
Sanger sequencing in all available samples, and segrega-
tion analysis was consistent with their involvement. The 
homozygous nature of the pathogenic variants in all four 
families (Families A-D) is consistent with the consan-
guineous matings present. No additional SNVs in CHH 
genes were found in the affected individuals from Fami-
lies A-D. Furthermore, no putative causative SNVs in 
CHH genes were identified in Families E and F.

CNV analysis
As expected given the SNV results, no relevant CNVs 
were detected in CHH genes in Families A-D. However, 
hemizygous CNVs were present in ANOS1 on chro-
mosome X in Family E and F (Fig. 1a,b and Table 1). In 
Family E, a 140  kb deletion beginning 33  kb upstream 
of ANOS1 and extending through the first exon and 
intron of the gene was detected. A 100  kb deletion was 
also observed in Family F and encompassed the last 11 
of the 14 exons of ANOS1. Similar CNVs were absent in 
both DGV and gnomAD, and are considered pathogenic 

according to ACMG classification [20] given their trun-
cating nature. The segregation of these pathogenic 
ANOS1 variants in both families is consistent with the 
known X-linked mode of inheritance for this gene. All 
male affected family members tested for olfactory defects 
have CHH with anosmia/hyposmia, also known as Kall-
mann syndrome (Fig. 1, Table 2).

Discussion
Previous studies have demonstrated that pathogenic 
SNVs and small insertion/deletion variants can be found 
in up to 50% of CHH patients  [7, 9, 21] However, the 
diagnostic yield is much lower [10]. The current study 
uncovered novel pathogenic or likely pathogenic vari-
ants in known CHH genes that explain the patients’ phe-
notype in all 6 families. One key factor of this diagnostic 
success is the use of Whole Genome Sequencing (WGS) 
to subsequently evaluate patient DNA for Copy Num-
ber Variations (CNVs) when standard Single Nucleo-
tide Variant (SNV) analysis is negative. It’s important to 
note that CNVs are better detected in WGS compared to 
Whole Exome Sequencing (WES), making WGS a more 
effective tool for comprehensive genetic investigation 
[22, 23]. This is particularly useful when further investi-
gation is needed to find genetic causes for CHH. CNVs 
were evaluated in two prior CHH studies, the first one 
utilizing the relatively expensive and unscalable MLPA 
method [24], and the second [25] using WES data with 
7.4% and 2% diagnostic yield, respectively. It’s worth not-
ing that increased diagnostic yield has been observed in 
other diseases as well when using similar genomic analy-
sis techniques. This underscores the broad utility and 
effectiveness of these methods in enhancing our under-
standing of various diseases [17, 26, 27]. As shown in 
our study and many others, the advent of WGS and its 
rapidly decreasing cost now allows for more efficient and 
productive evaluation of CNVs in the increasing num-
ber of CHH-associated genes in both exonic and intronic 
regions.

Intriguingly, two Pakistani families harbored novel 
homozygous pathogenic variants in KISS1R—a notable 
finding since the frequency of KISS1R variants in CHH 
patients is quite rare (< 1.0%) [10]. To date, only nine loss-
of-function variants have been described in this gene [28] 
(Fig. S1) since its discovery two decades ago [29]. KISS1R-
deficient individuals are normosmic and exhibit severe 
GnRH deficiency. This is in line with the crucial role of 
the galanin-like G protein-coupled receptor encoded 
by KISS1R on the regulation of GnRH secretion. The 
patients’ symptoms are consistent with those previously 
reported for KISS1R variants [7]. Two families harbored 
homozygous missense variants in GNRHR, the first gene 
identified to cause nCHH in 1997 [30] and underlying 
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Table 2  Families A-F CHH segregating variants

Variants found in families A-F in CHH genes and their description. DX Diagnosis, KS* Suspected KS, N Normal phenotype, AAChange Amino acid change, hom 
homozygous, het heterozygous, hem hemizygous, M Male, F Female, LP Likely pathogenic, P Pathogenic
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4% of CHH cases [31]. One of them, p.Pro320Gln, is not 
found in any control databases. GNRHR encodes for the 
type 1 GnRH receptor, GnRHR, a G protein-coupled 
receptor expressed in the gonadotrophs. Natural GnRHR 
mutants are frequently recognized by the cellular qual-
ity control system as misfolded and are retained in the 
endoplasmic reticulum [32, 33]. Of interest, pharmac-
ochaperones rescue misfolded Gnrhr in murine models, 
disable the ability of Gnrhr mutants to reach the plasma 
membrane, and restore their ability to respond to endog-
enous Gnrh ligand, thus being a promising strategy to 
treat CHH patients with a genetic profile similar to the 
affected individuals in Family A [34].

It is important to remark that the genetic causes of 
CHH have been widely studied in patients mainly from 
European and North American populations. Indeed, only 
one publication has specifically evaluated CHH genes in 
a single Pakistani family [35]. The current manuscript 
not only demonstrates once more the improved diag-
nostic potential of WGS over the classical hybridisa-
tion-based sequencing methods, but also highlights the 
diagnostic utility of medical genetics in under-repre-
sented populations.

Materials and methods
Patients
This study included 24 individuals from six Pakistani 
families with at least two members affected by CHH. 
Five of the families reported consanguinity. Patients were 
diagnosed with CHH in accordance with the guidelines 
presented in the European Consensus Statement on 
CHH [5]. In short, CHH diagnosis included: (1) absent or 
partial puberty by age 17  years, (2) low or normal gon-
adotropin levels in the context of low serum levels of sex 
steroids (testosterone or estradiol), (3) a normal hypo-
thalamus and pituitary on imaging, and (4) otherwise 
normal anterior pituitary function [5]. Smell tests were 
performed using UPSIT [36].

DNA extraction and sequencing
DNA from the 24 participating family members was 
extracted in Pakistan. Eighteen of the samples had 
DNA of sufficient quality for WGS sequencing. DNA 
from the remaining seven individuals was retained for 
subsequent SNV or CNV confirmation (see SNV and 
CNV analysis, below) once a pathogenic variant was 
found to be segregating in the family. Paired-end WGS 
was performed using the DNBSEQ technology through 
the Denmark facility of BGI (Beijing Genomics Insti-
tute) Global. The DNBs (DNA nanoballs) were loaded 
into a patterned nanoarray, and paired-end reads 
of 100–150 bases were generated by probe-anchor 

synthesis (cPAS). Each sample was sequenced to a min-
imal depth of 30X.

The resulting raw sequences (BGI fastq files) were 
processed by an in-house bioinformatics analysis work-
flow which relies on Sentieon DNASeq (v202112.05), a 
GATK compliant toolbox [37, 38] that maps the reads 
to the human reference sequence (GRCh37) and detects 
SNVs and short insertions/deletions (Indels), smaller 
than 50 bp. Identified variants were then annotated with 
minor allele frequencies (MAFs) from gnomAD (v2.1.1) 
[39] and with multiple pathogenicity prediction tech-
niques including CADD (v1.6) [40] and SpliceAI (v1.3) 
[41] using ANNOVAR (v2020-06–07) [42].

SNV and CNV analysis
Selected variants satisfied at least one of the following 
criteria: nonsense (stop gain, frameshift, and acceptor–
donor splice sites ± 2 bp from an exon), missense, inframe 
indels, and variants with a probability higher than 0.8 of 
causing a splicing defect as determined by the SpliceAI 
algorithm [41].

All the variants present in one of 65 CHH genes (see 
Supplementary Table S1) passed GATK filters, including 
a minimum quality score (QS) of 50. In line with inher-
itance patterns observed in rare diseases, variants with 
a minor allele frequency (MAF) of less than 1% were 
deemed potentially pathogenic if homozygous, and those 
with a MAF of less than 0.01% if heterozygous. Variants 
passing these filters were further annotated using Var-
some [43] for classification of pathogenicity according 
to the American College of Medical Genetics (ACMG) 
standards. Sanger sequencing was used to confirm and 
evaluate segregation in all families, including members 
not sent for WGS.

CoverageMaster (v1.0) [44] was used to detect CNVs 
in CHH genes. In brief, this program uses depth of cov-
erage from WGS or WES, and compresses these data 
into a multiscale wavelet space. The output is then 
analyzed through an iterative Hidden Markov Model 
to detect insertions or deletions > 50  bp at nucleotide-
scale resolution. In addition, 30 unrelated samples 
sequenced with the same technology were used as con-
trols for the CoverageMaster analysis. This helps to 
identify errors of sequencing/assembly and frequent 
CNVs. The Database of Genomic Variants [45] and 
gnomAD for structural variants [46] were also used as 
controls. MLPA was used to confirm CNVs in all avail-
able DNA samples. For ANOS1, the SALSA MLPA 
probemix P132-A4 kallmann-1 kit (MRC Holland) was 
used according to the manufacturer’s protocol to vali-
date the variants.
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