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Acute kidney injury (AKI) is a common condition associated
with significant morbidity, mortality, and cost. Injured kidney
tissue can regenerate after many forms of AKI. However, there
are no treatments in routine clinical practice to encourage
recovery. In part, this shortcoming is due to an incomplete
understanding of the genetic mechanisms that orchestrate
kidney recovery. The advent of high-throughput sequencing
technologies and genetic mouse models has opened an un-
precedented window into the transcriptional dynamics that
accompany both successful and maladaptive repair. AKI re-
covery shares similar cell-state transformations with kidney
development, which can suggest common mechanisms of gene
regulation. Several powerful bioinformatic strategies have been
developed to infer the activity of gene regulatory networks by
combining multiple forms of sequencing data at single-cell
resolution. These studies highlight not only shared stress re-
sponses but also key changes in gene regulatory networks
controlling metabolism. Furthermore, chromatin immunopre-
cipitation studies in injured kidneys have revealed dynamic
epigenetic modifications at enhancer elements near target
genes. This review will highlight how these studies have
enhanced our understanding of gene regulation in injury
response and regeneration.

Acute kidney injury (AKI) is a common condition affecting
up to 20% of hospitalized patients and contributes to increased
morbidity, mortality, and cost (1, 2). Remarkably, the injured
kidney can regenerate after many forms of AKI if the degree of
injury is sublethal. Unfortunately, there are no treatments to
stimulate or enhance regeneration other than supportive care
in routine clinical practice, in part owing to an incomplete
understanding of the molecular and genetic controls that limit
injury or promote regeneration. During repair, genetic cell
lineage tracing supports a model where surviving tubular
epithelial cells dedifferentiate, proliferate, and eventually re-
express specialized proximal tubule genes required for
normal functions (reviewed in Ref. (3)). To accomplish this
feat, cells must alter their stable patterns of gene expression in
response to the high cellular stress induced by injury. Cells
must activate a program of survival and repair while retaining
the memory of their original identity. Finally, they must re-
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establish a stable differentiated expression pattern indicative
of functional proximal tubules. The precise genetic and
epigenetic mechanisms that regulate these transformations
and re-entry into mitosis remain poorly defined. However,
recent advances in single-cell molecular methods, tractable
genetic mouse models, and integrated bioinformatic analyses
have opened an unprecedented window into the genetic con-
trols that regulate tubular regeneration. Defining these mo-
lecular and genetic mechanisms may identify novel kidney-
specific targets to promote successful regeneration or limit
the degree of injury for patients suffering from AKI. This re-
view will highlight recent advances in our understanding of
how transcription factors drive the injury response and impact
regeneration.
Overview of ischemic injury

Kidney injury can occur from multiple hemodynamic, toxic,
and obstructive insults. A common cause of severe kidney
injury in hospitalized patients is transient ischemia leading to
injury and death of tubular epithelial cells (reviewed in Refs. (4,
5)). Of the nephron segments, the proximal tubule is most
sensitive to this type of injury, though injury to other segments
also occurs (6). The proximal tubule uses highly specialized
metabolism that relies on oxidation of fatty acids to fuel the
energy-intensive resorption of fluid and electrolytes from the
glomerular ultrafiltrate, which is predominantly performed by
this nephron segment. Concurrently, the microvascular anat-
omy of the kidney produces a gradient of oxygen availability
from the cortex to medulla (7). Thus, in the setting of kidney
hypoperfusion, a mismatch between oxygen delivery and de-
mand results in oxidative stress, injury, and cell death via
several pathways. These processes occur predominantly in the
S3 segment of the proximal tubule, which sits at the border of
the cortex and medulla (8) (Fig. 1). Remarkably, the damaged
tubular epithelium can regenerate, restoring kidney function
for some patients. However, we now appreciate that this
regeneration is rarely complete such that patients who develop
AKI have a greater chance of developing chronic kidney dis-
ease and progressing to end-stage kidney disease (9–11).

Over the last 2 decades, a more comprehensive under-
standing of proximal tubule epithelial cell regeneration has
emerged. Much of this work has been performed in genetically
modified mouse models of AKI. Among the most widely used
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Figure 1. Patterns of injury after ischemic kidney injury. A, the nephron segments of the proximal tubule (red outline) involved in acute kidney injury and
their position in the gross structure of the kidney. For clarity, distal segments including the loop of Henle, distal tubule, and collecting ducts are not labeled.
B, H&E-stained mouse kidney section 2 days after ischemia–reperfusion injury (IRI) showing injured tubules in the S3 segment. Note tubular dilation,
simplification of the epithelium, and intratubular debris (examples: black arrowheads) and casts (example: yellow arrowhead). C, immunofluorescence
staining 2 days after IRI for kidney injury marker 1 (KIM-1, purple) and Ki67 (light blue), which mark injured epithelium and proliferating cells, respectively.
Note that KIM-1 staining is highly localized to the S3 segment at the border between cortex and medulla. D, H&E staining of a mouse kidney 28 days after
IRI. Note the focal area of fibrosis and tubular atrophy with inflammatory infiltrate (white arrow) surrounded by normal tubules. Scale bars represent 1 mm
(whole section) and 100 mm (regions of interest).
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injury models is ischemia—reperfusion in which the renal ar-
tery and vein are temporarily clamped and then released.
Alternatively, toxin models include cisplatin, glycerol-induced
rhabdomyolysis, aristolochic acid, folic acid, and lipopolysac-
charides. The rodent ischemia–reperfusion clamp model most
closely resembles the most common forms of human AKI and
will be the focus of this review. While rodent and human AKI
are not equivalent, work with human kidney organoids and
human AKI samples from the Kidney Precision Medicine
Project (6, 12, 13) confirms homology among many tran-
scriptional programs. Thus, genetically engineered mice can
yield important insights into the transcriptional responses to
AKI in humans where such manipulations are not possible.
2 J. Biol. Chem. (2024) 300(8) 107520
The studies addressing the origin of cells that repopulate the
injured nephron have led to multiple interpretations, including
designated populations of renal stem cells, bone marrow–
derived mesenchymal cells, or resident surviving epithelia.
However, sophisticated genetic lineage tracing now supports a
model where mature proximal tubule cells that survive the
initial injury can dedifferentiate and re-enter mitosis. Although
some cells in the nephron may disproportionately contribute
to repair (14), most mature tubular epithelia appear to retain
regenerative potential. Thus, there is neither evidence of a
fixed nephron progenitor pool in the mature kidney nor evi-
dence of cells of nonkidney origin contributing to repair
(15–17). Rather, irreversibly tagged proximal tubule cells can
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generate clones within regenerated tubules to strongly support
the idea that most of any surviving epithelial cell can prolif-
erate to repair a damaged tubule. Therefore, the widespread
and robust activation of proliferation markers after injury (18,
19) likely represents intrinsic nephron repair (14, 15, 20).
Furthermore, single-cell RNA-Seq datasets also identified a
novel population of cells after AKI that reflect incomplete or
failed repair and are associated with areas of fibrosis and
ongoing inflammation (5, 21–23) (Fig. 1D).
Mechanisms controlling cell state in regeneration

Dedifferentiation, proliferation, and the expression of
developmental regulatory genes and pathways all suggest
similarities between nephron development and regeneration
after AKI (24, 25). For a more complete discussion of renal
development and the genes and pathways involved, see the
study by Schnell et al., 2022 (26). After gastrulation, the kidney
develops from a region of mesoderm called intermediate, as it
is located between the axial mesoderm and the lateral plate
(Fig. 2). Two simple epithelial tubes called the nephric or
Wolffian ducts run bilaterally from the midthoracic region to
the posterior cloaca. At the posterior end, the ureteric bud
grows out of the nephric duct and invades the metanephric
mesenchyme to initiate metanephric kidney development. The
ureteric bud begins to branch, ultimately forming much of the
collecting duct system, whereas the mesenchyme aggregates at
Figure 2. Overview of kidney development. A, the kidney derives from a regi
plate, as seen on a cross section of embryonic day 8.5 mouse or 3 weeks hu
pronephros at the most anterior end. In time (left-to-right), an outgrowth of th
induces the adult or metanephric kidney. Cap mesenchyme (green) surrounds
the nephron through a series of morphological stages as outlined from left to r
the radial axis of the developing kidney. MET, mesenchyme-to-epithelial trans
the tips of the branching ureteric buds in response to WNT
signaling and begins the process of mesenchyme-to-epithelial
transition (MET) that will generate most of the epithelia
cells of the nephron. Also termed cap mesenchyme, these
progenitor cells express unique combinations of markers
including Pax2, Six2, and Cited1.

The cap mesenchyme aggregates and forms a primitive
epithelial renal vesicle that first forms a comma-shaped and
subsequently an s-shaped body patterned along the proximal–
distal axis in part by Notch signaling (Fig. 2C). The distal end
of the s-shaped body connects to the branching ureteric bud
epithelia to form a continuous tubule from glomerular pro-
genitor cells at the proximal end to collecting tubules at the
distal end. Multiple transcription factors have been identified
that drive the process of mesenchyme-to-epithelial conversion,
proliferation, elongation, and renal epithelial cell–type speci-
fication. Among the most essential are Pax2/8, WT1, Six2,
Eya1, HNF1b, HNF4a, and NOTCH intracellular domains.

Prior to induction by the ureteric bud, the metanephric
mesenchyme already is predisposed toward the renal epithelial
lineage fate and expresses a unique combination of tran-
scription factors such as WT1 and Pax2, both of which are
essential for responding to inductive signals and whose dele-
tion results in complete renal agenesis (27–29). The related
protein Pax8 has an identical DNA-binding domain to Pax2
but is only expressed in renal progenitor cells after induction
and remains on in most all the adult renal epithelia, whereas
on of mesoderm termed intermediate, lying between the somites and lateral
man. B, two bilateral epithelial ducts run longitudinally with a rudimentary
e nephric duct, termed ureteric bud, invades surrounding mesenchyme and
the ureteric bud tips in preparation for MET. C, the MET generates much of
ight. Continued branching of the ureteric bud induces more nephrons along
ition.

J. Biol. Chem. (2024) 300(8) 107520 3
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Pax2 is downregulated in the nephron but remains expressed
in the collecting duct system. Genetic studies suggest some
redundancy in Pax2/8 functions, both in development and in
the adult kidney (30, 31). Recent data suggest a Pax-dependent
core transcriptional program driving the MET in cooperation
with HNF1b (32). After induction, Six2 expression in the cap
mesenchyme helps to maintain the undifferentiated state and
allows for continued progenitor cell proliferation, as deletion
of Six2 results in precocious differentiation and progenitor cell
exhaustion (33). Inactivation of HNF1b in nephron pro-
genitors results in rudimentary nephrons with mostly distal
epithelial cell fates, suggesting a need for this protein in correct
proximal–distal patterning (34). Proximal–distal nephron
patterning is also affected by NOTCH ligands, which generate
the DNA-binding Notch intracellular domain through pro-
teolytic cleavage (35, 36). The Sry-box containing protein Sox9
is needed for branching of the ureteric bud epithelia and is also
reactivated and necessary for regeneration after AKI (37–39).
An HNF4a gene regulatory network has also been described in
mice and human kidney organoids that appears essential for
proximal tubule cell development (40, 41). While multiple
developmental genes and pathways are re-expressed or upre-
gulated in response to AKI (for more details, see the study by
Little and Kairath, 2016 (24)), whether these are essential or
are merely markers for a dedifferentiated state remains to be
fully explored.
Analysis of transcriptional control

At the transcriptional level, gene expression is regulated by
cis-acting DNA elements at promoters and enhancers and
trans-acting factors that bind to such elements and recruit
RNA polymerase and other cofactors necessary for initiation
and elongation. Yet, enhancers and promoters function within
the context of intact chromatin, which consists of DNA,
associated histones, and other proteins. The histones within
the nucleosome can be modified post-translationally by
epigenetic imprints, including methylation or acetylation at
lysine residues, which can determine the accessibility of
chromatin to the transcription machinery. Indeed, cell- and
tissue-specific enhancer modules can be identified solely by
their specific patterns of histone methylation (42), which are
imprinted by the histone methyltransferases of the Trithorax
and Polycomb family of proteins. Originally identified in
Drosophila as activators of embryonic gene expression, the
Trithorax family of proteins includes the histone H3K4
methyltransferases, whereas the Polycomb family is thought to
silence gene expression in part through methylation at H3K27
and H3K9. Thus, transcription factors that upregulate or
downregulate specific genes generally act upon the accessible
part of the genome, or epigenome, much of which is deter-
mined during embryonic development as individual cell fates
are specified.

The ability to quantify the entire transcriptome of a cell has
revolutionized how we think about cell identity, cell stress, and
plasticity. Hybridization of RNA to microarrays was first used
to quantify gene expression changes at genome-wide scale.
4 J. Biol. Chem. (2024) 300(8) 107520
Next-generation bulk RNA-Seq has refined such methods to
enable quantification of mRNA and splice variants with pre-
cision and economy. Moreover, single-cell RNA-Seq has
become the standard for identifying not only new cell types
and gene expression changes but also for following cellular
differentiation and lineage tracing in pseudotime. Building on
decades of work that has mapped the targets of many key
transcription factors associated with human physiology and
disease, such advanced technologies and bioinformatics are
beginning to deconvolve the activity of complex gene regula-
tory networks from such high-resolution transcriptional data
(reviewed in detail in Ref. (43)).

In addition to gene expression measurements, the direct
mapping of transcription factor localization to specific DNA
sequences at genome-wide scale has progressed rapidly. Using
specific antibodies against transcription factors coupled with
chromatin immunoprecipitation and next-generation
sequencing (ChIP-Seq), the binding profile of a transcription
factor or the pattern of histone modifications can be mapped
across the entire genome. Novel methods for mapping protein
binding to chromatin, which require much less input material,
include cleavage under targets and release using nuclease
(CUT&RUN) or tagmentation (CUT&Tag). An extensive li-
brary of these data is publicly available via the ENCODE
project (44) and is becoming available in murine (45) and
human (13) injured kidney samples. These data complement
experimental and computational approaches (46) to identify
sequence motifs associated with transcription factor–binding
sites that may regulate the response to renal injury.

Independently, high-throughput techniques to measure
genome-wide chromatin accessibility have become widely
available and include transposase-accessible chromatin with
sequencing (ATAC-Seq) and DNAse sensitivity or hypersen-
sitivity assays. These methods not only show which genes are
accessible but more importantly, indicate which gene regula-
tory elements are open and accessible to other factors. Open
gene regulatory regions that contain transcription factor–
binding motifs can be combined with transcription factor
expression and target gene activation to infer gene regulatory
networks. As with RNA-Seq, these technologies can be scaled
to single-cell resolution.

Several approaches have been deployed in the analysis of the
transcriptional response to kidney injury. The first is to use
deep sequencing technology to identify the differential
expression of transcription factors themselves (47–49). How-
ever, transcription factor expression may be necessary but
insufficient to infer activity. Post-translational modifications
such as phosphorylation can impact transcription factor ac-
tivity, stability, or nuclear localization to further regulate the
response to any given factor. To overcome this limitation,
several groups have used single-cell regulatory network infer-
ence and clustering (SCENIC) (50) to infer activity based on
target gene expression and pathway activation. Briefly, this
approach correlates sets of genes with transcription factor
expression, then refines these sets by including only genes with
nearby cis-regulatory elements (transcription factor motifs,
Fig. 3, A–C). The activity of each transcription factor regulon



Figure 3. Overview of gene regulatory network inference approaches in single cells. A, SCENIC identifies coexpression modules that are correlated with
transcription factor (TF) expression. B, the subset of genes within these modules likely to be directly regulated by the TF (TF regulons) are defined by the
presence of nearby TF-binding motifs. C, the activity of each regulon is determined by measuring the ranks of the regulon genes in each cell as an area
under the curve (AUC) of the count-rank profile at a specified fraction of genes. The binary (ON/OFF) regulon activity for each cell can be inferred from the
distribution of activities for the entire cell population. D, chromVAR uses differential chromatin accessibility to define TF activity. Accessibility (ATAC) peaks
are mapped to TFs by the presence of a motif within the peak region. This yields a set of peaks associated with each TF motif. E, bias-corrected relative
accessibility is estimated for the entire TF peak set, which helps mitigate the sparse reads obtained from single-cell ATAC data. F, either approach can be
then fed into downstream visualization and analysis. Diagrams were based on those in the original publications describing their use (50, 51).
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is then measured in each transcriptome. Another strategy uses
single-cell ATAC-Seq data (chromVAR (51)). Rather than
pooling the expression of transcripts, the approach pools the
differential accessibility of transcription factor–binding motifs.
This allows for a direct readout of potential transcription
factor activity in clusters of cells (Fig. 3, D and E). SCENIC and
chromVAR were optimized for sparse single-cell datasets.
Therefore, these approaches can be applied across thousands
of single-cell transcriptomes to infer transitional cell states.

New strategies refine predictions of transcription factor
activity using single-cell multiomic experiments that combine
ATAC-Seq with single-cell RNA-Seq data from the same cell.
Approaches used to study kidney injury include TRIPOD (13,
52) and RENIN (53). In particular, RENIN was developed and
validated specifically with human kidney multiomic data. The
regularized regression approach in RENIN uses two steps.
First, differentially accessible regions defined by ATAC-Seq
are correlated with gene expression in individual cells to
identify putative cis-regulatory elements driving changes in
expression. Second, target gene expression is linked to the
expression of transcription factors with binding motifs in these
cis-regulatory elements to model transcriptional networks.
This approach enabled the prediction of several transcription
factors driving a chronic injury state in proximal tubule cells
that were validated experimentally (53).

However, these approaches are only accurate for tran-
scription factors where binding motifs are known with high
sensitivity and specificity. For many transcription factors, motif
specificity is quite poor (54). Sequence motifs can have de-
generacies leading to both high- and low-affinity sites. Indeed,
recent studies on enhancer logic suggest that the highest af-
finity sites are not always the most biologically significant (55).
Even with transcription factors whose motifs are tightly
defined 6 to 8 bp sequences, only a fraction of sites on the
genome are bound in vivo. Furthermore, actual bound sites, as
detected with ChIP-Seq, may not represent functional tran-
scription factor activity, since this technique only correlates
protein location to specific loci (56). Also, binding targets can
J. Biol. Chem. (2024) 300(8) 107520 5
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overlap considerably between transcription factors of the same
family. Many transcription factors can heterodimerize with
other family members to further increase the complexity and
impact the specificity of binding motifs.

Despite limitations, interactive gene regulatory networks
can be modeled based on transcription factor binding sites as
determined by ChIP-Seq, the position of consensus motifs in
promoters and enhancers, and gene expression changes in
response to gain or loss of function. Yet constructing regula-
tory networks still requires simplified assumptions of tran-
scription factor–target effects, which are often nonlinear and
can vary among targets for the same transcription factors.
Such regulatory models also do not account for the effects of
post-translational modifications that can alter the essential
function of many transcription factors. The potential for
compounded errors because of each of these limitations in-
creases with complexity, necessitating rigorous validation of
predictions. However, validating the vast numbers of gene
regulatory network predictions made by approaches such as
SCENIC or chromVAR is challenging. The throughput of
typical reductionist validation approaches is inadequate to
match the vast number of predictions made. Furthermore, in
the kidney, there are no tissue culture model systems available
that can replicate the transcriptome of proximal tubule in vivo
(57). As a result, only a few novel predictions have been vali-
dated experimentally (13, 47).

Early injury response

AKI leads to rapid changes in gene expression including
many transcription factors that may be involved in regulating
the adaptive and maladaptive responses to injury. Multiple
studies have examined transcriptomic changes after injury in
animal models of AKI (as listed in Table 1). Figure 4 sum-
marizes transcription factors with increased expression and
activity in proximal tubule cells early after ischemic injury,
identified using the various strategies discussed previously.
Table 1
Selected transcriptional profiling studies after kidney injury

Study Species Source Type of

Liu et al. (49) Mouse Whole kidney Microarray

Chang-Panesso et al.,
2019 (47)

Mouse Whole kidney RNA-Seq

Kirita et al., 2020 (21) Mouse Whole kidney snRNA-Seq
Legouis et al., 2020 (98) Mouse Whole kidney snRNA-Seq
Rudman-Melnick et al.,
2020 (100)

Mouse Whole kidney scRNA-Seq

Gerhardt et al., 2021 (83) Mouse Whole kidney snRNA-Seq
Ide et al., 2021 (23) Mouse Whole kidney scRNA-Seq

Balzer et al., 2022 (22) Mouse Whole kidney scRNA-Seq
Ide et al., 2022 (97) Mouse Whole kidney scRNA-Seq
Li et al., 2022 (101) Mouse Whole kidney snRNA-Seq
Gerhardt et al., 2023 (20) Mouse Whole kidney snRNA-Seq, snA
Lake et al., 2023 (6) Human Research biopsies sc/snRNA-Seq, S

spatial transcr
Li et al., 2024 (104) Human Kidney regions snRNA-Seq, snA

(SHARE-Seq)

Abbreviation: TRAP, translating ribosome affinity purification.

6 J. Biol. Chem. (2024) 300(8) 107520
Only transcription factors identified in two or more studies
were included. The strongest and most clearly defined signa-
tures detected include the Fos/Jun and ATF/CREB basic
leucine zipper families and the NF-kB family. These highly
conserved transcriptional programs are not kidney specific; we
will defer additional discussion here. While the results in
Figure 4 validate computational approaches in a broad sense,
these pathways represent generic cell responses to stress and
are unlikely to reflect novel targets to promote kidney regen-
eration. Most transcription factors identified in these studies
appear only once (143 of 198 across all studies, 72%). This
inconsistency highlights the limitations of the computational
approaches outlined previously as well as the sparse nature of
single-cell RNA-Seq and ATAC-Seq data. Furthermore,
several transcription factors with clear roles defined by genetic
studies such as FOXM1 (47), KLF6 (58), and SOX9 (37, 38)
(outlined later) are not robustly detected by these approaches.

In contrast to the bioinformatic strategies, lineage-tagged
transcriptional profiling has identified several transcription
factors that have some specificity for epithelial injury response
in the kidney (59). Among these is SOX9, a transcription factor
that is activated during development in proximal and distal
tubule epithelia but not in the glomeruli and collecting ducts
(37–39). In the adult, some distal tubule cells express SOX9.
However, after injury, there is widespread activation of SOX9
throughout the epithelia, colocalizing with markers of cell
proliferation. Genetic loss of Sox9 function prior to injury
impairs recovery (38, 60, 61), suggesting a critical need for
Sox9 in the early epithelial response to AKI. Work by Pabla
et al. has identified several critical mechanisms that regulate
the function of SOX9. The early expression of SOX9 is
induced by Zfp24, which is present in a phosphorylated state in
uninjured kidney but is rapidly and robustly dephosphorylated
in response to injury and enables binding to the SOX9 pro-
moter (62). SOX9 function is further modulated by Cdkl5-
mediated phosphorylation, which decreases SOX9 activity
data Cell-type specification
Transcription factor

analysis

TRAP for Six2 (nephron),
Foxd1 (interstitial), Cdh5
(endothelial), and Lyz2
(myeloid)

Ingenuity canonical
pathway analysis

TRAP for Kim1 Transcription factor
expression

Clustering with annotation SCENIC (50)
Clustering, Six2 enriched PROGENy (99)
Clustering with annotation Transcription factor

expression
Clustering, Krt20 and Six2 enriched SCENIC (50)
Clustering with annotation Not specifically

assessed
Clustering with annotation SCENIC (50)
Clustering with annotation SCENIC (50)
Clustering with annotation DoRothEA (102, 103)

TAC-Seq Clustering, Ki67 enriched chromVAR (51)
NARE-Seq,
iptomics

Clustering with annotation chromVAR (51)

TAC-Seq Clustering with annotation PROGENy (99),
chromVAR (51)



Figure 4. Transcription factors (TFs) and signatures identified in the early injury response by single-cell sequencing. TFs or gene regulatory networks
identified in each study are summarized. About 198 unique TFs were identified across all studies. Only TFs that appear in two or more studies are shown (55
of 198, 27%). Only data available with the article were utilized (including figures, supporting figures, and supporting information) so identified pathways
may not be comprehensive. Where statistics were available, only pathways with a Padj <0.05 were included. TFs are color coded by family. Columns are
coded by the approach used to identify gene regulatory networks.
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and stability (61, 63). While many SOX9 targets in other or-
gans are well established (64), only some of the kidney-specific
targets of SOX9 in AKI are defined, including VGF (65). Thus,
SOX9 activity reflects the transcriptional and post-
transcriptional mechanisms that can regulate the function of
an essential transcription factor for recovery after AKI. These
limitations are unaddressed by most computational strategies
and may account for the lack of consistent signals in single-cell
data despite robust evidence of its central importance. While
these findings suggest that SOX9 helps to stabilize injured
cells, allowing them to recover, the precise downstream ge-
netic mechanisms remain to be determined.

Chang-Panesso et al. (47) recently used a kidney injury
molecule 1 lineage tracing strategy with translating ribosome
affinity purification to identify transcription factors during
early and late repair. This approach identified FOXM1, which
like SOX9 is important for regulating early proliferation.
FOXM1 expression was localized predominantly to the S3
segment of the proximal tubule, consistent with the site of
highest kidney injury molecule 1 expression and proliferation
after injury. FOXM1 correlates with proliferation in a variety
of cell types (66) and is upregulated by the EGF signaling
pathway known to be critical for proximal tubule regeneration
(67, 68). However, the genetic mechanisms specifically acti-
vating the expression of FOXM1 and the identities of its tar-
gets are still poorly defined.
In addition to the generalized stress response and prolifer-
ation, the early phase of recovery is also characterized by
altered proximal tubule metabolism. This topic was recently
reviewed in detail by Piret and Mallipattu (69) and will be
summarized briefly here. Under physiologic conditions, the
proximal tubule relies on highly efficient oxidation of fatty
acids and amino acids to fuel energy-intensive transport. The
transcriptional basis for this unique and specialized meta-
bolism depends on a network of transcription factors,
including peroxisome proliferator–activated receptor alpha
(PPARA) (70) and PPARG (71), estrogen-related receptor
alpha (ESRRa) (72), pregnane X receptor (73), farnesoid X
receptor (71), HNF4a (41), Kruppel-like factor 15 (74), and
PPARg coactivator 1a (75). After injury, these pathways are all
downregulated across a range of injury models. The mecha-
nisms that define the interactions and relative importance of
these factors and their impact on metabolism is an area of
active investigation. In general, loss of any of these factors
tends to reduce baseline expression of the genes needed for
fatty acid metabolism, which, in turn, correlates with increased
severity of injury to the proximal tubule. For example, meta-
bolic switching after injury is regulated in part by a shift in
Kruppel-like factor 15, which promotes expression of normal
oxidative metabolism, to KLF6, which blocks the expression of
genes required for the metabolism of branched-chain amino
acids that contribute to oxidative metabolism (58, 74).
J. Biol. Chem. (2024) 300(8) 107520 7
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Likewise, Dhillon et al. (72) showed that ESRRa motifs,
together with HNF4A, HNF1B, and PPARA, are enriched in
promoters of metabolic and transport genes lost after injury.
ESRRa activity contributes to the oxidative capacity of prox-
imal tubule cells. Importantly, the combined expression of
ESSRa with other identified transcription factors (HNF4A,
HNF1B, and PPARA) can have a synergistic effect on
expression of transport genes. Similarly, Clark et al. (76)
recently identified cooperative regulation by HNF4a and
PPARg coactivator 1a of QPRT, which is critical for NAD+
metabolism in proximal tubules. It is also notable that most of
these factors also act as nuclear hormone receptors, which
adds an additional ligand-dependent layer to their function
(77, 78). Together, these data indicate that proximal tubule
transcription factors function in an overlapping fashion to
regulate metabolism and differentiation during recovery from
injury. While available evidence suggests these metabolic fac-
tors are tightly coordinated, the precise mechanisms that
govern how these programs are synchronously regulated
remain an area of active investigation.

In addition to the mouse models, robust sets of cell-level
transcriptional data from human AKI samples are now
becoming available (6, 13). While there are many similarities
(79), prior work has shown only partial overlap in the tran-
scriptional AKI response between rodents and humans (80). At
the level of transcriptional regulatory elements, there may be
important cross-species differences between regenerating
proximal tubules and the inflammatory responses that
accompany injury and regeneration.
Late regeneration responses

Compared with the immediate-early response to AKI, far
less is known about the gene regulatory networks that drive
regeneration and re-establish normal proximal tubule function
over time. This knowledge gap is a critical barrier to devel-
oping new therapies for AKI since this late phase of injury is
when most patients are recognized clinically. However, we
now know that recovery diverges to generate at least two
distinct populations of cells, as determined by pseudotime
trajectory and RNA velocity analyses of single nuclear/cell
RNA-Seq data (21, 23). One population of cells reflects suc-
cessful repair and re-establishment of proximal tubule cell fate.
The second population develops chronic injury and has been
termed failed repair proximal tubule cells (FR-PTCs) by some
authors (20, 21).

Successful recovery is characterized by the re-establishment
of a transcriptional profile akin to healthy proximal tubules
(21). Genes and motifs associated with unique proximal tubule
metabolism are enriched in this transition including HNF4A,
HNF1B, PPARA, and ESRRA (21, 22, 72). While these recov-
ered tubules appear normal by histology and overall tran-
scriptomic signature, subtle differences in gene expression do
emerge (20). The downregulated genes in recovered but pre-
viously injured cells are associated with transport and meta-
bolic processes and have substantial overlap with genes altered
by preinjury preconditioning regimens (81). Pathway and motif
8 J. Biol. Chem. (2024) 300(8) 107520
analyses revealed persistent activity of early injury pathways
(FOS/JUN, ATF/CREB, and Stat) and suppression of HNF4a
activity (20). This preconditioning phenotype is found in other
injury or stress models beyond AKI and includes such phe-
nomena as caloric restriction, hypoxic preconditioning, and
sex-dependent resistance to AKI (82).

In contrast, the population of FR-PTCs exhibits increased
expression of pathways seen during the early injury response
(FOS/JUN) and a strong inflammatory signature associated
with NF-kB (20, 21, 83). Newer multiomic methods have
implicated NFAT5, HIVEP2, and CREB5 as key contributors
as well (53). The failed repair population peaks several weeks
after injury and gradually recedes (21). In the mouse, the
evolution of this population appears to be segment specific. In
the first week after injury, the S3 segment contains most FR-
PTCs. By 4 weeks, few S3 FR-PTCs remain, while the
cortical population is unchanged (83).

None of the transcriptional analyses to date, which generally
pool all segments of the proximal tubule together, suggest a
stable undifferentiated population of cells after injury. RNA
velocity analysis suggests most cells progress toward either a
normal or an inflammatory state (23). These data suggest that
once established, FR-PTCs may develop a fixed transcriptional
program that is difficult to reset. Therefore, the loss of the
population over time is most likely because of cell death rather
than recovery of normal function. Turnover appears to be
highest in the S3 segment of the proximal tubule (83), but this
has yet to be established experimentally.

While the transcriptional networks in both postinjury
populations have been characterized by available profiling
studies, the transcriptional mechanisms that induce and
maintain these fate decisions remain unknown. In severe
injury, cells arise that show incomplete or atypical cell-cycle
progression (14, 84). Though these cells were identified prior
to the advent of single-cell transcriptomics, they are likely a
subpopulation of FR-PTCs. While persistent ongoing DNA
damage after injury would delay cell cycle progression via well-
established mechanisms (e.g., p53), how this damage induces
the dedifferentiation of proximal tubule cells has only recently
been explored. For example, the cyclin D1–cyclin dependent
kinase 5 axis can promote cell cycle arrest but simultaneously
promotes a FR-PTC-like phenotype independently of effects
on cell cycle progression (85). Furthermore, IL-22 is secreted
in response to DNA damage in proximal tubules and impacts
the DNA-damage response in neighboring cells, which con-
tributes to clustering of FR-PTCs (86). However, the genetic
mechanisms by which these signaling pathways induce dedif-
ferentiation remain to be elucidated.
Epigenetics and regeneration

As discussed briefly in an earlier section, cell fates during
development are specified, at least in part, by epigenetic
modifications of chromatin such that each lineage contains a
unique epigenome, upon which transcription factors act. This
epigenome is heritable in development and has inherent sta-
bility, also termed cellular memory. In the case of regeneration
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after injury, surviving dedifferentiated cells that re-enter
mitosis must replicate that epigenome to maintain cellular
fates. Yet, injury itself can induce epigenetic modifications and
impact recovery to affect long-term outcomes after AKI.
Global epigenetic changes after injury include histone modi-
fications (87) and DNA methylation (88). The specific mech-
anisms and the impact on cell recovery are active areas of
investigation, as recently reviewed in detail (89).

The dynamic changes in epigenetic marks and the need to
re-establish a stable epigenome after AKI are starting to be
addressed. Recently, Wilflingseder et al. comprehensively
mapped the promoter- and enhancer-selective histone marks,
H3K4me3 and H3K27ac, respectively, before and 2 days after
ischemia–reperfusion injury (IRI) (45). Their data indicated
that the H3K27ac mark was highly dynamic in the enhancer
elements, relative to promoters, of differentially regulated
genes. The DNA-binding motifs identified in differentially
marked enhancer elements overlap strongly with those iden-
tified by snRNA-Seq and multimodal analyses outlined previ-
ously. Enhancers activated with IRI are enriched in AP-1
transcription factors, while those suppressed were associated
with metabolic transcription factors, including RXR, ESRRA,
and HNF4a, all of which had decreased enhancer binding after
IRI. The preferential dynamics of H3K27ac/H3K4me1 marked
enhancer regions relative to promoters are also suggested by
human data (13). Many of the injury pathways associated with
differential chromatin accessibility were common to mice and
humans (6, 13). These studies use bulk chromatin samples,
which pool a wide range of cell-specific chromatin patterns.
This feature tends to attenuate the most dynamic signals and
accounts for only modest differences observed in histone
marks in most studies (13, 45).

While enhancer elements show dynamic activity after injury,
there is also strong evidence that promoter histone modifica-
tions play a critical role in the transcriptional response to
injury. For example, Ezh2 is a component of the Polycomb
repressor complex that catalyzes H3K27me3 at sites of gene
repression. Its expression is upregulated early after injury in
repairing proximal tubules identified both in snRNA profiles
(21) and Kim1 translating ribosome affinity purification (47).
However, its depletion reduces the severity of injury in
lipopolysaccharide-induced AKI (90). In contrast, PTIP is an
essential component of the KMT2C/D histone methyl-
transferase complex that deposits H3K4me3 at active pro-
moter regions (91). After folic acid injury, the regeneration of
proximal tubules that lack PTIP is profoundly impaired
because of an inability to re-establish the necessary histone
marks (92).

Pax2 and Pax8 are closely related developmental transcrip-
tion factors necessary for normal kidney development where
they are critical for METs (93). Pax2/8 are also upregulated
during normal recovery after AKI (15, 37, 94), which partly
mimics aspects of development. Pax2/8 can provide locus
specificity for both the Polycomb repressor complex and for the
PTIP–KMT2C/D complex depending on post-translational
modifications and cofactor interactions (95, 96). These
observations suggested that Pax2/8 may be tubule-specific
mediators of epigenetic modifications after injury. We
recently investigated the role of Pax2/8 in the recovery fromAKI
using conditional alleles and a proximal tubule–specific driver
(82). We anticipated that Pax2/8 mutant mice would not
recover from ischemic AKI because of an inability to reset
appropriate epigenetic marks during regeneration. Surprisingly,
we discovered thesemice weremore resistant to ischemic injury
(82). Uninjured Pax2/8 mutant proximal tubule cells in the S3
segment developed an expression pattern that overlapped with
FR-PTCs described previously. We proposed that the loss of
Pax2/8 mimics the cellular stresses observed in preconditioning
or after injury and alters metabolism to make cells more resis-
tant to ischemia. Interestingly, upregulation of Pax2/8 (21, 97)
and increased accessibility of Pax-family binding motifs (20) are
prominent in the FR-PTC population. With similar DNA-
binding domains, Pax2 and Pax8 may be partially redundant
in the proximal tubules.Whether Pax2 and Pax8 have unique or
shared target genes in the adult kidney before or after injury
remains to be determined.
Conclusions

The advent of high-throughput technologies for analyzing
transcription at single-cell resolution as well as chromatin
accessibility and transcription factor binding has resulted in an
unprecedented wealth of new data to understand kidney
regeneration. These data have firmly established the roles of
stress-response genes both in early and late injury and the
paramount importance of metabolic expression signatures
with proximal tubule function and regeneration. The tools for
integrating these massive and diverse datasets are powerful
and everimproving. Yet, the logic of biological phenomena is
not easily discerned from large datasets because of the
complexity, redundancy, and noise inherent in most systems.
While changes in gene expression are easily measured across
the genome, it is not obvious whether any specific gene change
directly impacts renal cell regeneration. We can measure
genome-wide binding of many transcription factors; yet it is
not always clear whether these binding sites are functional.
Similarly, motif analyses often indicate that only a small per-
centage of sequence motifs are bound in vivo and do not ac-
count for post-translational modifications that can enhance or
suppress activity. Yet models and predictions provide many
hypotheses that can be tested in genetically tractable animal
models and validated in human cohorts. Thus, as the complex
transcriptional networks that regulate recovery from AKI
become more clear, novel therapeutic approaches to treat this
vexing clinical problem may be at hand.
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