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Global analysis of the yeast knockout phenome
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Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout col-
lection, have produced the largest, richest, and most systematic phenotypic description of any organism.
However, integrative analyses of this rich data source have been virtually impossible because of the lack of a
central data repository and consistent metadata annotations. Here, we describe the aggregation, harmoniza-
tion, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset,
we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-
product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phe-
notypic similarity and intergenic distance, which suggests that gene positions in both yeast and human
genomes are optimized for function.
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INTRODUCTION
Connecting genotypes to phenotypes is essential for understanding
the molecular architecture of complex traits and developing suc-
cessful therapies against aging and disease. The assembly of large
human cohorts, coupled with deep phenotyping and advanced
computational analysis, is enabling great progress toward uncover-
ing genome-wide phenotypic associations in natural human popu-
lations (1). However, inferring causal gene-trait relationships from
these associations remains a challenge because of the complexity of
human genetics, physiology, socioeconomic structure, and environ-
mental exposures. An orthogonal approach to map genes to pheno-
types has long been available through model organisms that allow
systematic gene-by-gene perturbations in isogenic backgrounds and
carefully controlled experimental environments.

The budding yeast Saccharomyces cerevisiae has pioneered the
systematic phenotypic analysis of gene perturbations (2). In 2002,
a consortium of laboratories released the yeast knockout (YKO) col-
lection, which provided a complete set of isogenic strains each
deleted for exactly one open reading frame (ORF) (3). This collec-
tion, along with progress in automation and parallelization, enabled
rapid, affordable, and comprehensive loss-of-function screens that
examined nearly every aspect of yeast biology that could be mea-
sured on a large scale. However, the results of these screens re-
mained physically scattered and disorganized, thus preventing
systematic analysis and integration. In the absence of a central re-
pository and consistent metadata annotations, it has been impossi-
ble to know exactly which experiments have been done, how they
compare to one another, and what information they contribute to
our global understanding of yeast as a complex biological system.
Here, we address this problem and describe Yeast Phenome, a

data library that aggregates and annotates all published screens of
the YKO collection. Currently, Yeast Phenome contains ~43
million causal gene-to-phenotype links, which represent the
largest, richest, and most systematic phenotypic description of
any organism. To encourage exploration, download, and analysis,
we have made all data and metadata available at www.
yeastphenome.org.

The aggregation and harmonization of YKO data in Yeast
Phenome provide a unique dataset and enable discoveries that
could not be made with any single experiment in isolation. To dem-
onstrate its value, we provide several examples of Yeast Phenome
data analysis and describe three key findings, ranging from gene-
level to system-level observations. First, we analyze the variation
in the number of phenotypes per gene and find that tryptophan bio-
synthesis is an exceptional metabolic pathway that is required for
resistance to more than 1000 chemical compounds. Second, we
show that a multidimensional phenotypic profile, i.e., the set of
all known phenotypes associated with a gene, is a strong predictor
of gene function that complements and reinforces other genomic
datasets. Using phenotypic profiles as predictive tools, we identify
and validate the roles of two uncharacterized ORFs (YHR045W and
YGL117W). Last, we uncover an unexpected relationship between
phenotypic profile similarity and intergenic distance, which poten-
tially reflects the functional architecture of yeast and human
genomes. Overall, we show that data curation is a powerful approach
for generating new datasets and identifying global patterns that are
not apparent on a smaller scale.

RESULTS
Building a data library of knockout phenotypic screens
The YKO is a collection of ~5000 yeast strains where every ORF is
individually deleted and replaced by a selectable marker linked to an
ORF-specific molecular barcode in a common genetic background
(fig. S1, A and B). An exhaustive survey of the literature (Materials
andMethods) showed that, between November 2000 andMay 2022,
366 research groups published 531 studies, each describing the sys-
tematic testing of at least 1000 haploid or homozygous diploid YKO
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mutants for one ormore phenotypes under one ormore experimen-
tal conditions (Fig. 1A). To examine the wealth of information con-
cealed in these data, we curated the 531 publications and assembled
a comprehensive compendium of 14,495 knockout screens
(Fig. 1A). We developed standard vocabularies to annotate and
cross-reference 6731 phenotypes and 7536 experimental environ-
ments associated with the screens and devised a reproducible com-
putational pipeline for extracting, formatting, and normalizing data
from each publication (fig. S1C and Materials and Methods).
Through close collaboration with 150 yeast researchers, we recov-
ered extended data for 413 screens (3% of the total) that correspond

to more complete and, typically, more quantitative versions of pre-
viously published experiments (Materials and Methods).

The Yeast Phenome data library is experimentally and biologi-
cally diverse (Fig. 1A). The most tested phenotype (53% of all
screens) is cell growth measured by colony size, optical density in
liquid culture, relative barcode abundance in pools, and several
other metrics (Fig. 1A, blue). Because it is relatively easy to
measure, growth of ~5000 knockout mutants has been tested in
7536 different environments, most of which (96%) involved a chem-
ical compound of known or unknownmode of action (Fig. 1A). For
~1500 knockout mutants (~30% of the YKO collection), growth

Fig. 1. Yeast Phenome is a data library of published genome-scale screens of the YKO collection. (A) Yeast Phenome (www.yeastphenome.org) can be thought of as
a data matrix where each row is a knockout mutant and each column is a phenotypic screen. The matrix contains phenotypic values obtained by extracting data from 531
papers published by 366 research laboratories. The phenotypes tested by the screens and the experimental conditions/environments, in which the phenotypes were
tested (e.g., chemical compounds, pH, temperature, and growth media), were annotated using standard vocabularies. Three major classes of phenotypes (cell growth,
gene expression, and other) are highlighted in blue, yellow, and pink, respectively. Gray represents unmeasured data because gene expression profiles were tested for
only ~1500 knockout mutants. (B) To facilitate analysis and interpretation, raw phenotypic values (i.e., those released in the publication) were normalized using a
modified z score transformation that uses the mode (instead of the mean) and SD from the mode to shift and scale the data.
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measurements are supplemented by mRNA expression levels of
6112 genes, representing the second most common phenotype in
Yeast Phenome (42% of all screens; Fig. 1A, yellow). Despite
being measured primarily in a single unperturbed environment
(4), these genome-wide expression profiles of knockout mutants
provide a large and diverse set of molecular biomarkers that may
act upstream of other phenotypes, including response to chemical
treatments. The remaining 5% of screens in Yeast Phenome are a
mosaic of 670 phenotypes that describe the state of the genome, pro-
teome, and metabolome of knockout mutants, along with morpho-
logical parameters and other cellular phenotypes, such as protein
localization and intracellular pH (Fig. 1A, red). These phenotypes
are generally measured using advanced technologies (e.g., mass
spectrometry, next-generation sequencing, and high-resolution mi-
croscopy), complex reporter systems, and, sometimes, longitudinal
sampling, which probe yeast biology in greater detail but are limited
in throughput (on average, 5.7 screens per publication). Hence, they
create many small but valuable datasets that are scattered through-
out the literature and have never been examined in the context of
other datasets.

To facilitate the analysis and interpretation of diverse Yeast
Phenome data, we implemented several conventions and normali-
zations (Materials and Methods). Because different phenotypes fol-
lowed markedly different distributions but were consistently
unimodal, we used the mode as a reference to normalize each
screen using a modified z score transformation (Fig. 1B and Mate-
rials and Methods). As a result, all phenotypic values reported in
Yeast Phenome can be universally interpreted as standardized devi-
ations from the most typical mutant, which, assuming that extreme
phenotypes are rare, is also likely to resemble the wild-type strain.
Both original and transformed data, which we refer to as normal-
ized phenotypic values (NPVs), are available at www.
yeastphenome.org.

Yeast Phenome data are reproducible and provide unique
information about gene function
Because of its size and metadata annotations, Yeast Phenome pro-
vides an opportunity to investigate the quality of YKO data and to
test their robustness to common sources of experimental noise. For
example, we can easily identify and compare independent screens
that examined the same phenotype under similar experimental con-
ditions and therefore assess the biological reproducibility of the
phenotype. To demonstrate this point, we compared eight indepen-
dent screens of respiratorymetabolism (i.e., growth on glycerol) and
found that, on average, 71% of respiration-deficient mutants (NPV
< −3) identified in any one screen were reproduced in at least five of
the eight replicates (note S1 and fig. S2A). The reproducibility of
respiration deficiency across the eight screens was nearly complete
(cosine ρ = 0.994 ± 0.003, mean ± SD) when, instead of a gene-by-
gene overlap, we compared the phenotype’s enrichment profiles
across the genetic interaction similarity network using Spatial Anal-
ysis of Functional Enrichment (SAFE) (note S1 and fig. S2B) (5).

To examine reproducibility across a wider range of phenotypes
and conditions, we identified 164 pairs of near-replicate screens and
compared their NPVs, regardless of significance (Materials and
Methods). We found that 30% of near-replicate screen pairs have
similar phenotypic profiles (cosine ρ > 0.6) and 48% have similar
SAFE enrichment profiles (ρ > 0.6), a 345-fold and 42-fold increase
over background, respectively (fig. S3, A and B). Replicate screens

performed by the same laboratory (as inferred from the name of the
last author of the corresponding publication) were more similar
than screens performed by different laboratories (68% versus 39%
of screen pairs with ρ > 0.6; fig. S3B), likely reflecting differences in
YKO versions, housing conditions, phenotyping strategies, and
other experimental parameters that are not easily captured.

Another potential source of experimental noise in YKO data is
secondarymutations (i.e.,“suppressors”) that arise spontaneously as
adaptations to gene loss and may interfere with the correct assign-
ment of genes to functions. To measure the impact of such strain
evolution, we compared different versions of the YKO collection,
as well as strains with and without evidence of secondary mutations
(note S2 and fig. S4). We found that secondary mutations increase
the relative risk of incorrect gene-to-function assignment by no
more than 3% and, therefore, are unlikely to impede the use and
interpretation of YKO data (note S2).

High-quality knockout phenotypes provide strong experimental
evidence of gene function and have long been exploited to identify
key players in major biological pathways. A multidimensional phe-
notypic profile, i.e., a vector of binary or quantitative phenotypic
values associated with a given gene, is even more powerful at pre-
dicting gene function because it enables more robust comparisons
of known and unknown genes, and facilitates transfers of knowledge
through “guilt by association.”We asked howwell gene function can
be predicted by phenotypic profiles assembled in Yeast Phenome
relative to other sources of functional information, such as gene ex-
pression, genetic interactions, and protein-protein interactions
(Materials and Methods). In each dataset, we ranked all gene
pairs by their profile similarity and performed a precision-recall
analysis using membership in the same functional group [a
protein complex, a biochemical pathway, or a moderately specific
Gene Ontology (GO) biological process term] as ground truth for
a functional relationship (Materials and Methods). We found that
profile similarity in each dataset is comparably predictive of a func-
tional relationship [area under the precision-recall curve (AUPR) =
0.424 to 0.477; fig. S5A]. However, different types of functional re-
lationships are better predicted by different types of biological data
(fig. S5B). For example, genes acting in the same biochemical
pathway are best predicted by coexpression profiles (AUPR =
0.258), whereas shared membership in the same protein complex
is best predicted by similar knockout phenotypes (AUPR =
0.429). Despite a consistent performance overall, we observed
little redundancy between data types such that genes correlated in
one dataset were largely uncorrelated in others (fig. S5C). We con-
clude that each data type provides independent functional informa-
tion that should be regarded as complementary and analyzed in an
integrative manner.

Given the diversity of data in Yeast Phenome, we also asked how
many YKO screens contribute independent functional information
(Materials and Methods). We found that 50% of phenotypic varia-
tion among knockout mutants is explained by 273 principal com-
ponents (fig. S6A), confirming our intuitive expectation that many
screens are independent and complementary. The main axis of var-
iation, which accounts for ~4% of the total variance, separates genes
involved in protein synthesis from those involved in vesicular trans-
port (fig. S6B). These genes are resistant and sensitive to an excep-
tionally wide range of exogenous stresses and have been proposed to
act as key regulators of cellular homeostasis (3, 6–8). The second
axis of variation shows a significant correlation to mutant growth
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rate (Pearson R = 0.21, P = 10−44; fig. S6B), another important factor
in general stress resistance and other phenotypes (4, 8–10).

Phenotype rates vary across genes and biological processes
NPVs, which express a mutant’s phenotype as a standardized devi-
ation from the most typical mutant in the corresponding phenotyp-
ic screen, allow us to compare phenotypes across different
experiments and identify genes having the greatest impact on cell
physiology. We found that virtually all genes have at least one
strong phenotype in Yeast Phenome (|NPV| > 3), supporting
earlier predictions that no gene is truly dispensable (7). Despite
this common baseline, the gene-specific phenotype rate, defined
as the fraction of screens in which a gene shows a strong phenotype
(|NPV| > 3), is highly variable, ranging from ~0 to 31% (mean =
1.8%, median = 0.6%; Fig. 2A). As expected, genes with many phe-
notypes (top decile, phenotype rate > 4.5%) are more likely to lack a
paralogue [odds ratio (OR) = 2.9, P = 6 × 10−10], to be conserved in
higher organisms (OR = 2.7, P = 3.8 × 10−13), and to be annotated to
multiple biological processes (OR = 7.4, P = 4.6 × 10−33) than genes
with few phenotypes (bottom decile, phenotype rate < 0.3%). Phe-
notype rate is also not uniformly distributed across biological pro-
cesses: Genes involved in intracellular membrane trafficking (e.g.,
intra-Golgi, Golgi-to-endosome, and Golgi-to-vacuole transport),
pH regulation (e.g., vacuole organization and acidification), lipid
metabolism (e.g., ergosterol biosynthesis), transcription, and chro-
matin remodeling have more phenotypes than expected by random
chance (fig. S7A). In contrast, metabolic functions (e.g., transmem-
brane transport and metabolism of carbohydrates, metal ions, and
nitrogen compounds) are generally depleted for phenotypes
(fig. S7B).

In principle, differences in phenotype rate among biological pro-
cesses could be caused by an ascertainment bias such that some phe-
notypes are over- or underrepresented in Yeast Phenome for
technical, biological, or historical reasons. Alternatively, phenotype
rates may vary because of differences in mutational robustness that
arise from the presence or absence of compensatory mechanisms,
masking the loss of a gene or a pathway. To evaluate the relative
impact of ascertainment bias and mutational robustness, we com-
pared phenotype rates to genetic interaction degrees for the same
processes. We reasoned that, while phenotypic profiles may be
subject to sampling bias, genome-wide genetic interaction profiles
are virtually complete and unbiased (11). We found that the average
phenotype rate and genetic interaction degree of a biological
process are strongly correlated (Spearman ρ = 0.63, P = 6.4 ×
10−123; fig. S8), suggesting that mutational robustness is an impor-
tant contributor to phenotype rate. However, some processes, espe-
cially those related to vesicular trafficking and transcriptional
regulation, display higher phenotype rates than predicted from
their genetic interaction degrees (fig. S8). Such an excess of pheno-
types suggests that vesicle transport and transcription were probed
more frequently than other processes, either because researchers de-
signed more screens to target these processes or because, unbe-
knownst to the researchers, these processes are required under
more screening conditions.

Tryptophan biosynthesis is essential for resistance to many
chemical perturbations
Although knockout mutants of most metabolic genes have few phe-
notypes, we found that biosynthesis of aromatic amino acids is a

notable exception and presents one of the highest phenotype rates
of all biological processes (fig. S7A). The three aromatic amino acids
(tryptophan, tyrosine, and phenylalanine) are synthesized from a
common precursor, chorismate, via three separate pathways (fig.
S9A). However, only genes involved in the biosynthesis of choris-
mate (ARO1 to ARO4) and tryptophan (TRP1 to TRP5) have high
phenotype rates (on average, 6.5 and 12.5%, respectively, a 3.8- to
7.3-fold increase over the mean of all genes; Fig. 2B), whereas tyro-
sine and phenylalanine biosynthesis genes (ARO7 to ARO9, TYR1,
and PHA2) are close to average (1.7%). The phenotype rates of trp∆
and aro∆ mutants are the second and third highest among 187 bio-
chemical pathways encoded in the yeast genome, following only er-
gosterol biosynthesis (Fig. 2B). Furthermore, trp∆ and aro∆
phenotypic profiles are the most highly correlated (cosine ρ =
0.60 ± 0.15 for trp∆ mutants, mean ± SD; n = 10 pairs; Fig. 2B),
indicating that their phenotypes are likely biologically meaningful
and not caused by experimental noise.

As expected, trp∆/aro∆ mutants share phenotypes such as the
inability to grow on tryptophan-limited media (Fig. 2C, Trp− and
Trp− Tyr− Phe−), at low temperature or under high hydrostatic
pressure (Fig. 2C, °C/Pa). Both of these latter conditions are associ-
ated with the down-regulation of the main tryptophan permease
Tat2 and consequent repression of tryptophan uptake (12). The
vast majority (99%) of trp∆ and aro∆ phenotypes are sensitivities
to 1138 chemical compounds (NPV < −2), consistent with prior
identification of TRP1 to TRP5, ARO1 and ARO2 as multidrug re-
sistance genes (7). The sensitivity of trp∆/aro∆ mutants suggests
that these 1138 compounds modulate tryptophan uptake or metab-
olism through a direct or indirect mechanism (Discussion).

Although many compounds causing trp∆/aro∆ sensitivity are
not easily identifiable because they are proprietary and lack a pub-
licly available name or chemical structure (Materials and Methods),
others are well-known chemicals with extensive evidence for a role
in tryptophan homeostasis in yeast, rats, and other organisms. Ex-
amples of such known chemicals are haloperidol, rotenone, and
paraquat. Haloperidol is an antipsychotic medication prescribed
for the treatment of schizophrenia, Tourette syndrome, bipolar dis-
order, and substance abuse. Long-term haloperidol usage can cause
patients to develop tardive dyskinesia (TD), a syndrome of involun-
tary repetitive body movements such as twitching, shaking, and gri-
macing (13). Such movements are greatly reduced by the dietary
supplementation of tryptophan in haloperidol-induced rat models
of TD (14). Rotenone and paraquat are broad-spectrum pesticides
that target the electron transfer chain (ETC) and cause oxidative
damage. Chronic exposure to both chemicals has been linked to
the development of Parkinson’s disease (PD) in mice, rats, and
humans (15). In a manner similar to haloperidol, dietary trypto-
phan improves the impaired motor functions in rotenone-
induced rat models of PD (16). The benefits of tryptophan in
animals exposed to haloperidol, rotenone, and paraquat, along
with the sensitivity of yeast trp∆/aro∆ mutants to all three com-
pounds (Fig. 2C, haloperidol and ETC/PD), lead us to speculate
that these and, potentially, many other trp∆/aro∆ chemicals limit
the availability of tryptophan in the human nervous system.

Environmental conditions and chemicals causing trp∆/aro∆
sensitivity do not affect the growth of other mutants defective in
amino acid biosynthesis (e.g., arginine, lysine, threonine; Fig. 2C,
d to f ). These treatments therefore appear to specifically mimic
tryptophan depletion, rather than a general state of amino acid
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starvation. In wild-type yeast, the availability of all amino acids, in-
cluding tryptophan, is monitored by the general amino acid control
(GAAC) pathway, which senses the accumulation of uncharged
tRNAs and up-regulates the expression of biosynthetic genes (17).
GAACmutants (gcn2∆, gcn3∆, gcn4∆, and gcn20∆) are sensitive to
only 38% of the conditions that cause trp∆/aro∆ sensitivity (Fig. 2C
and fig. S9B), suggesting that, under these conditions, the

concentration of tryptophanyl-tRNA molecules is decreased and
GAAC is required to activate a proper response. In the remaining
62% of trp∆/aro∆ conditions, a functional GAAC is not required
for survival, suggesting that tRNA charging is not affected and
other tryptophan-derived molecules may be limiting (Discussion).

Overall, the tryptophan biosynthesis pathway appears to be
uniquely important for resistance to a wide variety of chemical

Fig. 2. Tryptophan biosynthesis
is essential for resistance to a
wide range of chemical com-
pounds. (A) Distribution of phe-
notype rates for all genes in Yeast
Phenome. (B) The biosynthesis of
tryptophan and its precursor cho-
rismate are two of the top three
biochemical pathways with the
highest phenotype rate and the
highest phenotypic similarity.
Given a list of genes encoding
members of a biochemical
pathway, we computed the mean
and SE (std. err.) of their phenotype
rates, as well as themean and SE for
their pairwise phenotypic similari-
ties. Of 187 tested pathways, the 20
pathways with the highest mean
phenotype rates are shown. Tryp-
tophan and chorismate biosynthe-
sis are highlighted in red. The
number of genes in each pathway
is indicated in parentheses. (C)
Mutants involved in the biosyn-
thesis of tryptophan (trp1–5) and
chorismate (aro1–4), but not other
amino acids, share sensitivity to
tryptophan-depleted media, low
temperature, high pressure, and a
wide range of chemical com-
pounds. The heatmap shows NPVs
for a set of mutants (columns) in a
sample of screens (rows). Mutants
(columns) are organized by
pathway and include the following:
(a) biosynthesis of chorismate and
tryptophan, (b) biosynthesis of ty-
rosine and phenylalanine, (c) the
general amino acid control (GAAC)
pathway, (d) biosynthesis of argi-
nine, (e) biosynthesis of lysine, and
(f ) biosynthesis of threonine.
Screens (rows) are organized by
tested condition and include
growth in the following: trypto-
phan-limited media (Trp−); media
limited for multiple amino acids,
including tryptophan, tyrosine, and
phenylalanine (Trp− Tyr− Phe−);
exposure to low temperature and
high pressure (°C/Pa); exposure to
haloperidol (Haloperidol); expo-
sure to rotenone and paraquat
(ETC/PD); exposure to human hormones (Hormones); and exposure to other chemical compounds (Other).
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stresses, some of which may result in decreased tRNA charging.
While the specific mechanism for these effects remains unknown,
we speculate that trp∆/aro∆ compounds may disrupt the composi-
tion and/or fluidity of the plasmamembrane, therefore affecting the
function of membrane-bound tryptophan permeases (Discussion).

Phenotypic profiles organize genes into
functional domains
As shown above, phenotypic profiles are powerful tools for identi-
fying functionally similar genes and transfer knowledge through
guilt by association (fig. S5). To gain a global view of gene-gene re-
lationships uncovered by phenotypic similarity, we selected 1586
genes, showing a strong phenotype (|NPV| > 3) in at least 1% of
screens and projected the genes on a two-dimensional (2D) plane
such that their relative distances reflected their phenotypic similar-
ities (Fig. 3A andMaterials andMethods). The resulting phenotypic
similarity map, annotated with SAFE (5), showed that, similar to
pairwise genetic interactions (9, 11), knockout phenotypes organize
genes into distinct yet closely connected domains, each enriched for
one or more biological processes (Fig. 3A and Materials
and Methods).

The phenotypic similarity not only map groups of genes in a way
that reflects their shared function but also provides a key for inter-
preting new or poorly understood phenotypes. For example, the
map can be annotated with the chemogenomic profile of an
unknown compound to determine which biological processes are
required for sensitivity or resistance to the chemical (Fig. 3B).
SAFE analysis of one such compound, number 4292 in (18),
shows that mutants in protein glycosylation, sorting and degrada-
tion pathways are sensitive to the chemical, whereas mutants in cy-
toplasmic and mitochondrial translation are relatively resistant
(Fig. 3B). The SAFE enrichment profile of compound 4292 is a
nearmirror image of a fluorescent reporter-based screen for unfold-
ed protein response (UPR) (Fig. 3C) that measures the activation of
Hac1-regulated genes in response to the accumulation of misfolded
proteins in the endoplasmic reticulum (19). While the name, mo-
lecular target, or chemical structure of compound 4292 is not pub-
licly available (Materials and Methods), the reverse similarity of its
SAFE profile to UPR (Pearson R = −0.87, P ~ 0) strongly suggests
that compound 4292 impairs protein folding or quality control.
Overall, the SAFE profiles of 1578 chemogenomic screens (21%
of all tested chemicals) show a strong correlation (|R| > 0.7) to at
least one nonchemogenomic phenotype. In addition to UPR, the
phenotypes with the highest number of chemogenomic associations
include vacuolar morphology; copy number and expression of mi-
tochondrial DNA; chronological life span in glucose-limiting con-
ditions; and intracellular concentrations of potassium, calcium, and
glycogen (table S3).

Phenotypic profiles enable annotation of
uncharacterized ORFs
The ability of phenotypic profiles to organize genes by function pro-
vides an opportunity to validate uncharacterized ORFs and assign
gene functions. The Saccharomyces Genome Database estimates
that 688 yeast ORFs (10% of the genome) are currently uncharac-
terized, meaning that they are likely to produce a protein, as suggest-
ed by their conservation in other species, but no such protein
product has been experimentally verified in S. cerevisiae yet (20).
Of the 688 uncharacterized ORFs, 527 ORFs (77%) have at least

10 strong phenotypes in Yeast Phenome (|NPV| > 3) and 46 have
robust phenotypic profiles that are predictive of function (pheno-
type rate > 1%, similarity to a verified ORF ρ > 0.17; Fig. 3D and
table S4). We found that the top similarities of the uncharacterized
ORFs and their positioning on the phenotypic similarity map are
highly consistent with preliminary evidence from independent
high-throughput experiments, whenever such evidence is available
in the literature. For example, MRX1/YER077C, which appears to
encode a protein localized to mitochondria (21) and interacting
with the mitochondrial organization of gene expression complexes
(22), is most similar to members of the mitochondrial translation
machinery and localizes on the map accordingly (Fig. 3D).
Another uncharacterized ORF, YML037C, maps next to APL2,
APL4, APM2, and APS1 as well as other members of the adaptor
protein 1 (AP-1) clathrin-associated complex (Fig. 3D). This map
position is consistent with fluorescence microscopy experiments
showing that YML037C colocalizes with clathrin-coated vesicles
(21). To encourage functional annotations of these and other un-
characterized ORFs, as well as verified ORFs without a known func-
tion, the Yeast Phenome website provides a set of tools to explore
shared phenotypes, verify the mutants’ genomic sequences, and
connect to the wealth of information available in other databases
(www.yeastphenome.org). As a demonstration of the predictive
power of phenotypic similarity, we closely examined two of the un-
characterized ORFs with the highest phenotypic similarity to a ver-
ified ORF and tested their predicted functions experimentally.

The first ORF is YHR045W, a putative protein of unknown func-
tion. Among all mutants in Yeast Phenome, yhr045w∆ shows the
strongest phenotypic similarity to dap1∆ (cosine ρ = 0.59 ± 0.07;
Fig. 4A) and localizes next to it on the phenotypic similarity map
(Fig. 3D). DAP1 encodes a heme-binding protein that regulates er-
gosterol biosynthesis and DNA damage response (23). One of the
phenotypes shared by dap1∆ and yhr045w∆ is sensitivity to hy-
droxyurea, an inhibitor of DNA synthesis: Both mutants are
among the top 15 hits in ~50% of all genome-wide hydroxyurea
screens published to date (Fig. 4A and fig. S10A). We experimental-
ly confirmed the sensitivity of dap1∆ and yhr045w∆ to hydroxyurea
(Fig. 4B). We also examined the dap1∆ yhr045w∆ double mutant
and found that the two genes are epistatic to one another, showing
nearly identical degree of sensitivity to hydroxyurea alone and in
combination (Fig. 4B). Furthermore, Dap1 is one of only five
known physical interactors of Yhr045w (Fig. 4C).

Dap1 is thought to regulate ergosterol biosynthesis by stabilizing
Erg11, a member of the cytochrome P450 family that catalyzes the
demethylation of lanosterol, an essential intermediate in the ergos-
terol pathway (24). The ability of Dap1 to stabilize Erg11 depends
on Dap1’s ability to bind heme, an iron-containing complex that
serves as a cofactor in numerous cellular reactions, including
Erg11’s demethylation activity (24). Consistent with their potential
joint role in heme binding and Erg11 stabilization, Yeast Phenome
data show that dap1∆ and yhr045w∆ are both sensitive to iron de-
pletion and Erg11 inhibition via chemical compounds such as flu-
conazole and itraconazole (Fig. 4, A and D). In addition, large-scale
genetic interaction screens have shown that dap1∆ and yhr045w∆
are both synthetically lethal with a temperature-sensitive erg11mu-
tation (11), although the overall genetic interaction profiles of
dap1∆ and yhr045w∆ are not correlated (cosine ρ = 0.03 ± 0.11).
While the connection between ergosterol biosynthesis and DNA
damage is not fully understood, the addition of exogenous heme
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Fig. 3. Phenotypic profiles organize genes by function, help interpret screen results, and validate uncharacterized ORFs. (A) A phenotypic similarity map was
generated by applying UniformManifold Aapproximation and Projection (UMAP) to the phenotypic profiles of 1586 genes with a phenotype rate of >1%. Themap, where
genes with similar phenotypes are placed closer than genes with dissimilar phenotypes, was annotated using SAFE with GO Slim biological process terms. Nodes (genes)
are colored on the basis of the GO term with the highest enrichment in their local neighborhoods. The regions with the strongest enrichments are labeled with the
corresponding GO terms. (B and C) SAFE was used to annotate the map with NPVs from a chemical genomic screen of the unknown chemical compound 4292 (B) and a
reporter screen for the unfolded protein response (UPR) (C). Nodes (genes) are colored on the basis of the average NPV in their local neighborhood relative to random
expectation. (D) The phenotypic similarity map shows the distribution of uncharacterized ORFs and suggests hypotheses about their potential functions. Red nodes
correspond to 43 uncharacterized ORFs (phenotype rate > 1%, similarity to a verified ORF ρ > 0.17). Pink nodes correspond to verified ORFs with strong phenotypic
similarity to uncharacterized ORFs.
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Fig. 4. Functional validation of YHR045W and YGL117W. (A) The similarity of the phenotypic profiles of yhr045wΔ and dap1Δ is shown as a scatterplot of their NPVs.
Every gray point corresponds to one phenotypic screen. Colored crosses highlight phenotypes suggestive of the genes’ shared function. (B) Similar to dap1Δ, yhr045wΔ is
sensitive to DNA damaging agents hydroxyurea (HU) and methyl methanesulfonate (MMS). The sensitivity of the dap1Δ yhr045wΔ double mutant is identical to that of
the two single mutants, suggesting that Dap1 and Yhr045w are epistatic to one another. (C) Dap1 is one of the five known physical interactors of Yhr045w. (D) The
sensitivity of dap1Δ and yhr045wΔ to hydroxyurea and fluconazole is suppressed by the overexpression of ERG11. The sensitivity of dap1Δ and yhr045wΔ to hydroxyurea
is suppressed by heme supplementation. (E) The similarity of the phenotypic profiles of ygl117wΔ and aro3Δ is shown as a scatterplot of their NPVs. Every gray point
corresponds to one phenotypic screen. Colored crosses highlight phenotypes suggestive of the genes’ shared function. (F) The growth of ygl117w∆ is severely impaired
in tryptophan-limited conditions (SC-Trp) relative to complete media (SC) but is restored in the absence of all three aromatic amino acids (SC-Trp-Tyr-Phe). YPD, yeast
extract, peptone, and dextrose; WT, wild type; DMSO, dimethyl sulfoxide.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Turco et al., Sci. Adv. 9, eadg5702 (2023) 26 May 2023 8 of 17



is able to suppress dap1∆ and yhr045w∆ sensitivity to DNAdamage
(Fig. 4D), potentially because excess heme availability bypasses a
Dap1-Yhr045w requirement for Erg11 stabilization. Consistent
with this hypothesis, overexpression of Erg11 also suppresses
dap1∆ and yhr045w∆ sensitivity to DNA damage and Erg11 inhib-
itors (Fig. 4D).

To confirm that the phenotypes observed for yhr045w∆ are
caused by the lack of Yhr045w, we verified its correct genomic se-
quence in the Saccharomyces cerevisiae Genome Variation database
(25) and complemented its phenotypes with an intact plasmid-
borne YHR045W (fig. S10B). Together, evidence from Yeast
Phenome, genetic interaction and protein-protein interaction
data, as well as our validation experiments, suggests that Yhr045w
acts in cooperation with Dap1 in regulating DNA damage response
and ergosterol biosynthesis. To reflect this joint function, we suggest
that YHR045W be named DDE1 for “Dap1-related DNA damage
response and ergosterol biosynthesis protein 1.”

Phenotypic profiles enable dissection of complex pathways
The second ORF we chose to characterize is YGL117W, a putative
protein of unknown function whose phenotypic profile is highly
similar to aro3∆ (cosine ρ = 0.62 ± 0.04; Figs. 2C, 3D, and 4E).
ARO3 encodes a 3-deoxy-D-arabino-heptulosonate-7-phosphate
(DAHP) synthase, which catalyzes the first step of the chorismate
biosynthesis pathway, ultimately producing tryptophan, tyrosine,
and phenylalanine (fig. S9A). The phenotypic profile of ygl117w∆
is as similar to trp∆/aro∆ mutants as they are to one another
(Fig. 2C and fig. S11A), strongly suggesting that Ygl117w is a new
member or regulator of the pathway. Consistent with this hypothe-
sis, and similar to other amino acid biosynthesis genes, YGL117W is
up-regulated following GCN4 induction (26) and upon amino acid
starvation and rapamycin treatment in a GCN4-dependent manner
(27). Furthermore, the promoter of YGL117W contains a Gcn4
control response element, which is bound by Gcn4 in vivo (28).

We used the Saccharomyces cerevisiae Genome Variation data-
base (25) to verify that ygl117w∆ mutants in YKO are mutated
for YGL117W. Furthermore, we experimentally confirmed that,
similar to aro3∆ and all trp∆ mutants (but not aro4∆; see below),
the growth of ygl117w∆ is impaired in tryptophan-limited condi-
tions (Trp−; Fig. 4F) and rescued by the expression of a plasmid-
borne YGL117W (fig. S11B). Despite sharing most other pheno-
types with the trp∆ mutants, aro3∆ and ygl117w∆ are different
from the rest of the pathway in that they can grow when all three
aromatic amino acids are missing concurrently (Trp− Tyr− Phe−;
Figs. 2C and 4F). Such difference in growth between Trp− and
Trp− Tyr− Phe− media is expected for aro3∆, due to Aro3 having
functional redundancy with Aro4 (another DAHP synthase) and
the feedback inhibition of Aro4 by tyrosine (fig. S9A). However,
aro4∆ does not mirror this behavior: despite the ability of phenyl-
alanine to inhibit Aro3 activity in vitro, aro4∆ exhibits normal
growth in Trp− Phe+ conditions (Fig. 4F). One possibility is that
Ygl117w negatively regulates the feedback inhibition of Aro3 by
phenylalanine in vivo and allows aro4∆ to maintain DAHP synthe-
sis in Trp− Phe+ conditions (fig. S11C). Overall, to reflect the in-
volvement of Ygl117w in the aromatic amino acid biosynthesis
pathway, we propose that this gene be named ARO5.

Relationship between phenotypic similarity and intergenic
distance
Typically, knockout phenotypes are attributed exclusively to the
deleted gene and interpreted as a reflection of its lost function.
However, because of the compact nature of the yeast genome
[median intergenic distance = 364 base pairs (bp), n = 5864], the
deletion of one gene can inadvertently disrupt the accessibility
and/or regulation of a neighboring nonoverlapping gene. These un-
intended perturbations, sometimes called neighboring gene effects
(NGEs) (29), are problematic because they can cause changes in ex-
pression and/or localization of nearby proteins and potentially con-
taminate knockout experiments with incorrect gene-to-phenotype
links. For example, in assigning a new function to YHR045W, we
verified that yhr045w∆ phenotypes are complemented by
YHR045W but not YHR042W/NCP1, a nearby nicotine adenine di-
nucleotide phosphate (NADP)–cytochrome P450 reductase that is
also involved in ergosterol biosynthesis and could be indirectly af-
fected by the deletion of YHR045W (fig. S10B). While our data in-
dicate that no such perturbation occurs and yhr045w∆ phenotypes
are due to the loss of YHR045W, numerous examples of true NGEs
have been reported in the literature (29, 30).

To systematically measure the extent to which NGEs affect
knockout phenotypes, we used Yeast Phenome data to examine
the relationship between phenotypic similarity and intergenic dis-
tance for ~782,000 gene pairs located on the same chromosome
(Materials and Methods). We found that, consistent with potential
NGEs, the phenotypic similarity of immediately adjacent genes is
significantly higher than that of all other nonoverlapping gene
pairs (average cosine ρ = 0.07 versus 0.02, respectively; Kolmogo-
rov-Smirnov test, P = 1.5 × 10−248; fig. S12). However, to our sur-
prise, excess phenotypic similarity is not limited to adjacent genes:
Proximal nonadjacent genes, i.e., those located on the same chro-
mosome but not immediately next to one another, also share signif-
icantly more phenotypes than expected (Kolmogorov-Smirnov test,
P ~ 0.0; fig. S12). A direct comparison of phenotypic similarity and
intergenic distance showed a strong exponential relationship such
that, for gene pairs located within ~380 kb of one another, closer
proximity corresponds to higher phenotypic similarity, and vice
versa (Pearson R = −0.96, P = 2.8 × 10−283; Fig. 5A). The same
trend was observed independently for each chromosome (fig.
S13), as well as for multiple unrelated subsets of the Yeast
Phenome dataset (fig. S14).

We asked whether the higher phenotypic similarity between
proximal genes can be explained by altered gene expression as
would be predicted by NGEs (29, 31). We examined whole-
genome transcriptional profiles for ~1500 knockout mutants (4)
and found that genes immediately adjacent to a knockout are 12
times more likely to change in expression than genes located
farther away (0.9% versus 0.08%, respectively; absolute log
mutant/wild type ratio |M| > 1.7, P < 0.05; chi-square test, P = 8.3
× 10−19). Most adjacent genes (76%) are down-regulated, and,
similar to phenotypic similarity, the magnitude of the effect
shows an exponential relationship with chromosomal proximity
(Fig. 5B). However, the range of this relationship is much shorter
than that observed for phenotypic similarity: On average, only
genes located within 1 kb from a knockout are affected and 92%
of these genes are immediately adjacent to the knockout (Fig. 5B).
Such a difference in range between phenotypic similarity and ex-
pression effects (380 kb versus 1 kb; Fig. 5, A and B) indicates
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Fig. 5. Phenotypic similarity is exponentially related to chromosomal proximity in yeast and human genomes. (A) In the yeast genome, the average similarity of
phenotypic profiles decays exponentially as a function of intergenic distance. Gene pairs located on the same chromosomewere grouped by intergenic distance. In each
group, the average intergenic distance and average phenotypic similarity were computed and plotted on the x and y axes, respectively. (B) The effect of the knockout on
the expression of nearby genes explains only a small portion of the relationship between intergenic distance and phenotypic similarity. For each knocked-out gene, genes
located on the same chromosomewere grouped by their distance from the knockout. In each group, the average distance and average change in gene expression in the
knockout strain were computed and plotted on the x and y axes, respectively. (C) Similar to yeast, the human genome also displays an exponential relationship between
intergenic distance and phenotypic similarity. The analysis was done as described in (A). Phenotypic similarity was estimated by comparing gene effects on fitness across
~1000 cancer cell lines, as measured by genome-wide RNA interference and CRISPR loss-of-function screens.
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that, while NGEs may be responsible for increased phenotypic sim-
ilarity among immediately adjacent gene pairs, the similarity of
other genes on the same chromosome is likely driven by
other factors.

One possibility is that the phenotypic similarity of proximal
genes is due to a batch effect introduced during the construction
of knockoutmutants. The YKO collection was built by a consortium
of 16 laboratories, each responsible for a set of genes in one or more
chromosomal regions (2). As a result, knockout mutants of proxi-
mal genes often originate from the same laboratory and may share
additional genetic variation that could enhance their phenotypic
similarity. While examples of such laboratory-linked variants have
been described (18), our analyses indicate that they are relatively
rare and underlie a small fraction of gene-gene similarities. For
example, proximal genes deleted by each individual laboratory
display the same relationship between phenotypic similarity and in-
tergenic distance as all proximal genes (fig. S15). Furthermore,
among all genes deleted by the same laboratory, those located on
different chromosomes show background levels of phenotypic sim-
ilarity, whereas those located on the same chromosome are consis-
tently more similar (fig. S16A). The only exceptions to this trend are
the 34 knockout mutants on chromosomes II and III, which were
generated by laboratory 14 (fig. S16A) and later shown to carry an
extra copy of chromosome XI (18, 25). A comprehensive analysis of
chromosomal ploidy in ~4400 YKO mutants (25) shows that the
amplification of chromosome XI in these 34 strains is the only
example of chromosome aneuploidy shared by proximal genes
(fig. S16B).

In the absence of widespread NGEs and laboratory origin effects,
it is possible that the higher phenotypic similarity among proximal
genes reflects a closer functional relationship. Several studies in
yeast and other organisms have reported evidence for chromosomal
colocalization of functionally related genes. In yeast, for example,
genes that are coexpressed (32, 33) or co-regulated by the same tran-
scription factor (34), as well as genes encodingmembers of the same
protein complex (35) or metabolic pathway (36), are more likely to
be located nearby on the same chromosome than expected by
random chance. To assess the extent to which our observations
reflect these known trends, we repeated our analysis after excluding
~186,000 gene pairs with existing evidence of functional co-cluster-
ing, as well as paralogous genes arisen from an ancient whole-
genome duplication event (Materials and Methods). The exponen-
tial decay of phenotypic similarity as a function of intergenic dis-
tance was unaffected (fig. S17A), indicating that chromosomal
location and biological function have a much stronger connection
than previously appreciated.

To confirm that our observations are not due to structural
changes in the genome caused by gene deletions, we repeated our
analysis in native, unperturbed genomes using coexpression across
multiple experimental conditions as a measure of functional simi-
larity (37). In agreement with previous reports (32), we observed
that nearby genes are more coexpressed than genes located farther
away or on different chromosomes (fig. S17B). In addition, in a
manner consistent with phenotypic similarity, average coexpression
decayed exponentially as a function of intergenic distance but affect-
ed a much shorter range (up to 10.8 kb; fig. S17B).

Last, we asked whether the relationship between intergenic dis-
tance and phenotypic similarity is specific to yeast or is conserved in
other organisms. The Cancer Dependency Map Project (DepMap)

aims to uncover genetic vulnerabilities in human cancers by system-
atically inactivating genes in a panel of cancer cell lines and measur-
ing the effect of each gene on cell fitness (38). Numerous reports
have demonstrated that genes sharing similar dependency profiles
across cancer cell lines are also likely to share a common function
(39–45). We examined the similarity of dependency profiles for ~8
million human gene pairs located on the same chromosome and
observed the same exponential relationship with intergenic distance
as in yeast (R = −0.93, P ~ 0.0; Fig. 5C). This relationship, which
extends as far as 100 Mb, is not explained by local chromosomal
amplifications that are typical of cancer cell lines and can cause
nearby genes to co-vary in copy number and dependency scores
(fig. S18) (46). The consistency of the effect across Yeast
Phenome and DepMap data strongly suggests that, despite differ-
ences in genome size, compactness, complexity, and perturbation
technologies, yeast and human genomes share one fundamental
property: Their genes are not randomly distributed but are posi-
tioned relative to one another in a way that reflects their function.

DISCUSSION
It is commonly assumed that the limiting factor for understanding a
biological system is the lack of data or, in some cases, the lack of the
right data. Baker’s yeast S. cerevisiae is a great example of how inac-
curate this assumption might be: Online repositories and the liter-
ature are overflowing with data, yet our understanding of the yeast
cell as a complete system is still in its infancy. One reason for such a
discrepancy between expectation and reality is that data alone are
not sufficient to generate knowledge. To be useful, data must gen-
erate hypotheses and, to do so, data must be discoverable, under-
standable, and usable in the context of other types of data (47).
Yeast Phenome was created to empower integration and reusability
of systematic phenotypic screens of the YKO collection and fuel the
generation of testable hypotheses. By aggregating, annotating, and
harmonizing all available YKO experiments, we have produced an
essential dataset for scientists interested in connecting genotypes to
phenotypes, predicting gene function, identifying drug targets, un-
derstanding the functional principles of genome organization,
testing causal inference methods, and answering many other out-
standing questions in the systems biology of yeast and other
organisms.

Yeast Phenome incorporates and considerably extends all previ-
ous efforts to aggregate YKO data (48–51). In its size, scope, and
depth of information, Yeast Phenome rivals many human biobanks
that aim to facilitate integrative analyses of human biology by
linking genomes, phenomes, and environomes for hundreds of
thousands of individuals worldwide (1). However, unlike natural
populations, where the effect of a variant on gene function must
be predicted from sequence and its contribution to a phenotype
must be inferred from statistical associations, a knockout screen
provides a direct measurement of every gene’s causal effect on a
phenotype. While in our current work we focused on complete
loss-of-function phenotypes, data libraries similar to Yeast
Phenome can be created for phenotypes caused by partial loss-of-
function, gain-of-function, dosage-modulating, and point muta-
tions for which genome-wide collections are already available. As
part of our aggregation and annotation efforts, we assembled
7011 screens of the yeast heterozygous diploid knockout collection,
which capture gene dosage and haploinsufficiency effects on an
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unprecedented scale. Because of the need to interpret haploinsuffi-
cient phenotypes differently from loss-of-function phenotypes, we
omitted heterozygous screens from our analyses but are making the
dataset available for download and investigation (www.
yeastphenome.org; note S3). Additional mutant libraries in alterna-
tive genetic backgrounds may also be required to uncover the full
spectrum of phenotypes associated with a gene. Despite the avail-
ability of numerous examples (52, 53), it is still unclear to what
extent the consequences of gene mutations depend on natural var-
iation in the rest of the genome. It is even less clear whether gene-
gene phenotypic similarities remain consistent across different
backgrounds or whether they change following the reshaping of
the underlying functional networks. Answering these questions is
important for understanding the rules of genotype-phenotype
mapping in yeast and, even more so, in humans.

We have shown that Yeast Phenome helps generating testable
hypotheses and improves our understanding of cellular biology.
One of the advances enabled by Yeast Phenome is the discovery
that more than 1000 chemical compounds, including several
drugs approved by the Food and Drug Administration, limit the in-
tracellular abundance of tryptophan (Fig. 2). While TRP and ARO
genes have been previously linked to multidrug resistance in yeast
(7), the diversity of Yeast Phenome data provides unprecedented
insight into a possible mechanism and its relevance to other organ-
isms. It would be tempting to speculate that the compounds elicit-
ing trpΔ/aroΔ sensitivity bind and inactivate one or both
tryptophan permeases (Tat1 and Tat2), therefore inhibiting trypto-
phan uptake and making the cell dependent on its biosynthesis.
However, the chemical structures of trpΔ/aroΔ compounds are
vastly diverse and their known modes-of-action range from rote-
none (a mitochondrial complex I inhibitor) and clotrimazole (an
ergosterol biosynthesis inhibitor) to ibuprofen (a nonsteroid anti-
inflammatory drug) and dehydroepiandrosterone (a human
hormone precursor). Such diversity is inconsistent with a direct
biochemical interaction with a tryptophan permease or any other
protein. A more likely scenario is an indirect effect whereby chem-
ical compounds interfere with tryptophan uptake by changing the
structure, composition, or fluidity of the plasma membrane. In
support of this hypothesis, ibuprofen has been shown to electrostat-
ically adsorb and then hydrophobically insert into phospholipid bi-
layers in a dose-dependent manner in vitro (54). Physical
perturbations that cause trpΔ/aroΔ sensitivity (low temperature
and high hydrostatic pressure; Fig. 2C) are also known to affect
membrane fluidity (55). Furthermore, most trpΔ/aroΔ mutants
are synthetically lethal with erg2–6Δ mutants (11), which are defec-
tive in the production of ergosterol, a primary component of yeast
membranes and a regulator of membrane fluidity.

The plasma membrane hosts numerous biomolecules, including
sensors, transporters, and enzymes, whose function is sensitive to
changes in membrane fluidity. Therefore, it is currently unclear
why, relative to all other bioprocesses, tryptophan uptake would
be so prominently affected by membrane perturbations. It is possi-
ble that the cell is uniquely sensitive to small changes in tryptophan
abundance because tryptophan is the largest, rarest, and most ener-
getically expensive of all amino acids (56). Furthermore, tryptophan
is the only source of de novo nicotinamide adenine dinucleotide
(NAD) synthesis and may indirectly regulate many metabolic reac-
tions (56). In higher organisms, including humans, tryptophan is
the precursor of important neuroactivemolecules such as serotonin,

melatonin, kynurenine, xanthurenic acid, and quinolinic acid (56)
and has been implicated in modulating the ability of tumor cells to
evade immune surveillance (57). Because human cells are unable to
synthesize tryptophan and rely completely on dietary intake, the in-
tracellular availability of tryptophan is determined entirely by the
regulation of its transport across membranes. The identification
of ~1000 chemical compounds that may affect such transport will
likely be useful in the investigation of neurological diseases and
immuno-oncology.

Another discovery enabled by Yeast Phenome is the exponential
relationship between phenotypic similarity and physical proximity
among genes located on the same chromosome (Fig. 5). This rela-
tionship strongly suggests that genes are not randomly scattered
throughout the genome but tend to organize by function. Evidence
of co-clustering gene groups has long been available in yeast and
other organisms (32, 58, 59). For example, the major histocompat-
ibility complex (MHC) comprises 20 to 100 related genes located in
the same chromosomal region in most vertebrates. Our analyses of
Yeast Phenome and human DepMap data indicate that this phe-
nomenon is not limited to isolated blocks of functionally similar
genes, such as the MHC. We show that the relationship between
gene position and function is much more continuous and long-
ranging than previously appreciated (380 kb and 100 Mb in yeast
and human genomes, respectively).

One possible explanation for the pervasive genomic colocaliza-
tion of functionally related genes is the need to efficiently store and
access genetic information within the cell nucleus. Given the com-
plexity of DNA packaging and the energetic costs likely associated
with selective access to specific DNA regions, it may not be unex-
pected that the genes often accessed together are positioned nearby.
Another possible explanation is that physical proximity among
functionally related genes has evolutionary advantages for main-
taining favorable combinations of alleles. It has been proposed
that, when two alleles share a genetic interaction (i.e., their joint
effect on fitness is greater than the sum of their individual
effects), natural selection should act to preserve the successful hap-
lotype and suppress recombination between the two loci (59, 60).
Given that functionally related genes are strongly enriched for
genetic interactions (9, 11), it is possible that their relative
genomic positions are under selective pressure to reduce recombi-
nation rate and enhance genetic linkage by minimizing physical
distance.

A recurrent theme that emerged from our analyses is the impor-
tance of examining phenotypic profiles in addition to individual
gene-phenotype pairings. A phenotypic profile, intended either as
a set of phenotypes associated with a gene or as a set of genes asso-
ciated with a phenotype, is a powerful tool for investigating a bio-
logical system because it is quantitative, comprehensive, and robust
to noise. This global perspective is oftenmissed by studies that focus
on characterizing only the strongest hits from a loss-of-function
screen or, in a largely similar manner, only the most statistically sig-
nificant variants from a genome-wide association study. It is be-
coming increasingly clear that great value can be derived from
examining all genetic variations linked to a trait and all traits
linked to a genetic variant, regardless of their significance against
an arbitrary threshold.
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MATERIALS AND METHODS
Data sources
A detailed description of strategies used to collect, annotate, and
normalize Yeast Phenome data is provided at https://
yeastphenome.org/about/project/. A list of additional datasets
used for analysis is provided in note S4.

Calculating profile similarity
To compute robust, outlier-insensitive, gene-gene similarities and
corresponding confidence estimates in a computationally efficient
and parallelizable manner, we adopted the following bootstrap strat-
egy. Given a data matrix (e.g., the Yeast Phenome dataset), where
rows correspond to genes and columns correspond to gene features
(e.g., phenotypic screens), we created 100 submatrices by selecting
1500 columns (~10%) using random sampling with replacement.
For each of the submatrices, we computed gene-gene correlations
as defined by a chosen similarity metric (e.g., cosine, Pearson, or
Spearman correlations) using a parallelized implementation by
deepgraph (61). For each gene pair, we combined the 100
sampled correlations and computed the mean and SD.

Analysis of reproducibility among near-replicate screens
Two screens were considered near-replicates if they shared the same
phenotype, the same condition, and the same media. In this analy-
sis, all types of growth measurements (e.g., colony size, culture tur-
bidity, and relative abundance of pooled culture) were considered as
one phenotype. Media containing common buffers (e.g., HEPES) or
solvents (e.g., dimethyl sulfoxide) were also considered to be equiv-
alent to the same media without the additions.

Precision-recall analysis of profile similarities
Data for the functional groups (GO biological process terms,
protein complexes, and biochemical pathways), genetic interac-
tions, protein-protein interactions, and gene expression were ob-
tained as described above (see the “Data sources” section). Profile
similarities (ρ) were computed as described in the notes for each
data type. Gene pairs were sorted (highest to lowest) by the similar-
ity of their profiles. Recall was defined as the number of functionally
related gene pairs with ρ > α (for decreasing values of α). Precision
was calculated as the fraction of functionally related gene pairs
among all gene pairs with ρ > α. In the global analysis, a gene
pair was considered functionally related if both genes were co-an-
notated to the same GO biological process term, protein complex,
or biochemical pathway. In the stratified analysis, a gene pair was
considered functionally related if both genes were co-annotated to
a functional group from a specific set (e.g., only GO biological
process terms). AUPR was calculated as the ratio between the area
under the true precision-recall curve and the area under an ideal
precision-recall curve, which would occur if all functionally
related gene pairs were ranked higher than all other gene pairs.

Principal components analysis
AYeast Phenome data matrix (4554 genes × 8372 screens) was pre-
pared by excluding gene expression data from Kemmeren et al. (4)
because only ~1500 knockout mutants were tested. The principal
components (PCs) were computed using eigendecomposition of
the covariance matrix, implemented in NumPy. Knockout
mutants projected on the first PC were examined using GO slim

annotations. Specifically, we identified GO terms such that at least
50% of their members were present among the top 20% genes
within the (i) highest or (ii) lowest coordinates in PC1. These GO
terms included the following: (i) Golgi vesicle transport, endocyto-
sis, endosomal transport, exocytosis, and vesicle organization and
(ii) cytoplasmic translation, mitochondrial translation, ribosomal
RNA processing, ribosomal large and small subunit biogenesis, ri-
bosomal subunit export from nucleus, ribosome assembly, and
tRNA aminoacylation for protein translation. Knockout projections
on the second PC were compared to mutant growth rate, which was
estimated by averaging gene-specific NPVs across 10 screens of
growth in standard laboratory conditions (screen IDs 26, 540,
758, 4776, 5257, 5395, 16183, 16187, 16487, and 16490).

Phenotype rate analysis
Phenotype rate for a knockout mutant i was defined as Pi = Ns/N,
where N is the total number of screens in which the knockout i was
tested andNs is the number of screens in which knockout i displayed
a strong phenotype, i.e., |NPV| > 3. To avoid biases, gene expression
data from Kemmeren et al. (4) were excluded from this analysis
because only ~1500 knockout mutants were tested.

Constructing the phenotypic similarity map
The Yeast Phenome data matrix was restricted to 1586 genes with at
least 1% phenotype rate and 8260 phenotypic screens with more
than 1500 tested mutants [i.e., we excluded the gene expression
data from Kemmeren et al. (4)]. All genes were projected onto a
2D space using the Python implementation of Uniform Manifold
Approximation and Projection (UMAP) (62) with the following pa-
rameters: n_neighbors = 10,min_dist = 0.75, n_components = 2, and
metric = ‘cosine’.

The UMAP was annotated using GO Slim biological process
terms (see the “Data sources” section) and a modified version of
SAFE (5). Briefly, for each gene, we define a local neighborhood
as the set of genes located with a Euclidean distance of d from it.
In this case, d was defined as 7% of the map diameter, i.e., the
maximum distance between two genes on the map. At this d thresh-
old, a typical neighborhood included 41.03 ± 14.28 genes (mean ±
SD). Each neighborhood is tested for enrichment for all GO terms
using a standard Fisher’s exact test. The GO term with the lowest
enrichment P value is assigned to the gene at the center of the
neighborhood.

SAFE was also applied for annotating the UMAP with the results
of quantitative phenotypic screens. Each phenotypic screen is asso-
ciated with a set of NPVs. The NPVs for all genes in a neighborhood
were summed to produce a neighborhood phenotypic value ΣNPV.
The NPVs were then randomized 1000 times, and a distribution of
random cumulative phenotypic values was produced for each
neighborhood. An empirical enrichment P value was calculated
by comparing the observed phenotypic values (ΣNPV) to the
random ones. The P value can be interpreted as the probability of
observing a neighborhood phenotypic value as high or higher than
ΣNPV by random chance (and the opposite for lower values).

Analysis of phenotypic similarity versus intergenic distance
Chromosomal coordinates for all genes in the yeast genome were
obtained as described in the “Data sources” section. Intergenic dis-
tance was calculated as the difference between the leftmost coordi-
nate of the upstream gene and the rightmost coordinate of the
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downstream gene. The relationship between intergenic distance and
phenotypic similarity was examined by sorting all gene pairs by
their distance, splitting the genes into groups of 1000 pairs each
and computing the average distance and phenotypic similarity
within each group.

The upper distance boundary for excess phenotypic similarity
(i.e., the inflection point in the relationship between phenotypic
similarity and intergenic distance) was estimated as follows: (i)
Compute a Pearson correlation coefficient between the intergenic
distance (on a log scale) and phenotypic similarity for all gene
pairs located within a distance d, (ii) repeat the calculation for a
range of d values, and (iii) choose the value of d that corresponds
to a local optimum of Pearson correlation (i.e., the negative peak
with a range of similar d values). The same approach was used for
analyzing gene expression and human gene knockout data.

To examine the impact of gene pairs with existing evidence of
functional co-clustering, we excluded from the analysis all gene
pairs that fit any of the following criteria (see the “Data sources”
section): (i) Gene pairs co-annotated to the same protein
complex, (ii) gene pairs co-annotated to the same biochemical
pathway, (iii) gene pairs co-annotated to the same moderately spe-
cific GO biological process term, (iv) gene pairs in the 75th percen-
tile of coexpression values (cosine ρ > 0.15), (v) genes co-regulated
by the same transcription factor, and (vi) duplicated gene pairs. To
examine the potential effect of gene copy number amplification in
human cancer cell lines, we identified 5423 genes that present a copy
number greater than 4 in at least three of the cancer cell lines used in
our analysis (see the “Data sources” section). All correlations involv-
ing any of these genes were removed from the analysis.

Strain construction
All single-deletion mutants used for validation, as well as an isogen-
ic wild-type control, were taken from the Prototrophic Deletion
Collection (table S5) (63). The double deletion for dap1∆
yhr045w∆ (ABY004) was constructed by transforming dap1∆
(ABY002) with a NatMX cassette polymerase chain reaction
(PCR)–amplified from pRS40_Nat/pFvL099 (64). The amplifica-
tion primers (Nat_F and Nat_R; table S6) contained 40 bp of the
flanking region (upstream and downstream) of YHR045W. The
double deletion was confirmed by PCR and selection on clonNat
and G418. Strains overexpressing ERG11were constructed by trans-
forming wild type (ABY001), dap1∆ (ABY002), and yhr045w∆
(ABY003) with either an ERG11 multicopy 2-μm plasmid or
empty vector from the MoBY-ORF 2.0 collection (65). All transfor-
mations were confirmed by leucine selection.

Plasmids used for yhr045w∆ complementation assays were con-
structed using a pRS412-NatNT2 plasmid backbone. The natNT2
fragment from pFA6a-natNT2 was PCR-amplified with primers in-
corporating both 5′ and 3′ BglII restriction sites (natNT2_F and
natNT2_R; table S6). This fragment was inserted into pRS412 cut
with BglII to remove the adenine (ADE) selection site. The NCP1
and DAP1 plasmids for complementation were constructed by am-
plifying the entire ORF by PCR using oligonucleotide primers
(NCP1_HindIII, NCP1_XbaI, DAP1_HindIII, and DAP1_XbaI;
table S6) that incorporate 5′ HindIII and 3′ XbaI restriction
enzyme sites to allow cloning into the pRS412-NatNT2 vector.
The YHR045W ORF was synthesized from GenScript and inserted
into a pUC57-Mini plasmid. The pRS412-NatNT2 and pUC57-
Mini-YHR045W plasmids were amplified, digested with NotI and

EcoRV restriction sites, and ligated before direct transformation
into Escherichia coli. All plasmids were confirmed by Sanger se-
quencing before transformation into the deletion strains.

The plasmid used for ygl117w∆ complementation was taken
from the MoBY-ORF 2.0 collection (65). Transformation was con-
firmed by leucine selection.

Spot assays
Single colonies were grown overnight in 5 ml of yeast extract,
peptone, and dextrose (YPD) culture until saturation. They were
diluted to an optical density of 1.0 in the morning and washed
three times with water. The cells were then resuspended with 1 ml
of YPD. A series of 10-fold serial dilutions were prepared in a 96-
well round-bottom plate and spotted using a sterilized 48- or 96-pin
pronger onto the appropriate growth medium. All experiments
were repeated at least twice (biological replicates).

Media
YGL117W validation
Cells were spotted on either synthetic complete (SC), SC-Trp, or
SC-Trp-Tyr-Phe agar plates. All media contained yeast nitrogen
base with ammonium sulfate (5 g/liter) supplemented with 2%
glucose. SC and SC-Trp media were supplemented with SC mix
(2 g/liter; Sunrise, catalog no. 1300) and SC-Trp (1.98 g/liter;
Sunrise, catalog no. 1305), respectively. For SC-Trp-Tyr-Phe,
amino acids were prepared and added back individually according
to the concentrations listed in the description of synthetic complete
media (Sunrise, catalog no. 1300), but excluding tryptophan, tyro-
sine, and phenylalanine.
YHR045W validation
Yeast extract and peptone (YP) agar (1.1×) was microwaved for ap-
proximately 3 to 5 min until fully boiled. The solution was then
cooled to 50°C in a water bath, and 20% glucose stock solution
was added to a final concentration of 2%. Forty milliliters of
media was poured into each empty OMNI plate, and chemical com-
pounds (from Sigma-Aldrich) were added at the following concen-
trations: fluconazole (35 μM), heme (20 μM), hydroxyurea (80
mM), itraconazole (35 μM), and methyl methanesulfo-
nate (0.020%).

Supplementary Materials
This PDF file includes:
Notes S1 to S4
Figs. S1 to S18
Tables S1 to S6
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