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Abstract
Next generation sequencing has unlocked a wealth of genotype information for microbial
populations, but phenotyping remains a bottleneck for exploiting this information,
particularly for pathogens that are difficult to manipulate. Here, we establish a method
for high-throughput phenotyping of mixed cultures, in which the pattern of naturally
occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes
which can be read out by sequencing. We demonstrate that our method can correctly
deconvolute strain proportions in simulated mixed-strain pools. As an experimental test
of our method, we perform whole genome sequencing of 66 natural isolates of the
thermally dimorphic pathogenic fungus Coccidioides posadasii and infer the strain
compositions for large mixed pools of these strains after competition at 37°C and room
temperature. We validate the results of these selection experiments by recapitulating
the temperature-specific enrichment results in smaller pools. Additionally, we
demonstrate that strain fitness estimated by our method can be used as a quantitative
trait for genome-wide association studies. We anticipate that our method will be
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broadly applicable to natural populations of microbes and allow high-throughput
phenotyping to match the rate of genomic data acquisition.

Author summary
The diversity of the gene pool in natural populations encodes a wealth of information 1

about its molecular biology. This is an especially valuable resource for non-model 2

organisms, from humans to many microbial pathogens, lacking traditional genetic 3

approaches. An effective method for reading out this population genetic information is 4

a genome wide association study (GWAS) which searches for genotypes correlated with 5

a phenotype of interest. With the advent of cheap genotyping, high throughput 6

phenotyping is the primary bottleneck for GWAS, particularly for microbes that are 7

difficult to manipulate. Here, we take advantage of the fact that the naturally occurring 8

genetic variation within each individual strain can be used as an intrinsic barcode, which 9

can be used to read out relative abundance of each strain as a quantitative phenotype 10

from a mixed culture. Coccidioides posadasii, the causative agent of Valley Fever, is a 11

fungal pathogen that must be manipulated under biosafety level 3 conditions, precluding 12

many high-throughput phenotyping approaches. We apply our method to pooled 13

competitions of C. posadasii strains at environmental and host temperatures. We 14

identify robustly growing and temperature-sensitive strains, confirm these inferences in 15

validation pooled growth experiments, and successfully demonstrate their use in GWAS. 16

Introduction 17

The rules by which genotype dictates phenotype are encoded in the genetic and 18

phenotypic variation of natural populations. These rules can be decoded by 19

statistical-genetic scans for polymorphisms that are co-inherited with, and potentially 20

causal for, traits of interest among the progeny from controlled matings or among 21

members of an outbred population. In many organismal systems, such efforts have been 22

accelerated by pooled genotyping methods. This approach, originally called bulk 23

segregant analysis in laboratory crosses [1] [2], has become an industry standard for 24

invertebrate animals, eukaryotic microbes, and plants. The modern incarnation is to 25

mix genetically distinct individuals, subject the resulting pool to selection for a 26

phenotype of interest, and isolate DNA en masse from the subsets of the pool that pass 27

or fail the selection [3]. From the resulting sequencing data, allele counts at each locus 28

in turn then serve as input into statistical-genetic tests [4]. Against a backdrop of years 29

of success, the pooled phenotyping-by-sequencing framework does have a key limitation: 30

it does not quantify phenotypes of the individuals of the initial population. As a 31

consequence, pooled methods preclude advanced statistical-genetic analyses at the 32

haplotype and chromosomal level, including scans for genetic interactions between loci, 33

calculations of polygenic risk scores, and population admixture control [5]. 34

Strategies to infer individual strain abundances from sequencing of a complex pool 35

have been developed in a related literature, that of microbial metagenomics. Can these 36

tools be brought to bear on pooled statistical-genetic experiments? In metagenomics, a 37

typical application requires simultaneous inference of each strain’s genotype and 38

abundance in an ecological sample. To cut down on the resulting large search space, 39

current methods make strong assumptions about pool membership (e.g. reference 40

strains likely to be in the sample [6] [7], and/or small numbers of strains likely to 41

dominate [8] [9] [10] [11]) whose validity in many cases may be unknown. But these 42

caveats are not relevant in a statistical-genetic application using a pool of individuals 43

whose genotype is known a priori. In such a scenario, inferring the prevalence of pool 44
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members from phenotyping-by-sequencing may be expected to work particularly well. 45

With this motivation, we set out to develop a method to fit the strain composition 46

from full genome sequencing of a pooled sample, given individual genome sequencing of 47

each member of that pool. As a test case for application of the approach, we focused on 48

the fungal pathogen Coccidioides posadasii. Coccidioides species are the causative 49

agents of Valley Fever and are endemic to California, Arizona, and other desert regions 50

in the Americas [12]. Coccidioides grows as saprophytic hyphae in the environment [13]. 51

The hyphae produce asexual spores, called arthroconidia, which, upon inhalation by 52

mammalian hosts, convert to a unique pathogenic spherule morphology. The spherule 53

undergoes internal segmentation to generate cells called endospores, which are released 54

from spherules and presumably disseminate in the host. The genetic basis of these 55

behaviors remains largely unknown. Many screening approaches that could fill the 56

knowledge gap are out of reach because Coccidioides experiments can only be done 57

under biosafety-level 3 containment laboratory conditions. Given the need for cheap and 58

efficient experimental design in this system, forward genetics with 59

phenotyping-by-sequencing methods is of particularly keen interest. We thus pioneered 60

a scheme of pooling naturally varying strains of C. posadasii for growth and trait 61

mapping. We implemented our model-fitting approach to infer strain abundance from 62

the resulting data, and we then used relative abundances measured by this method as 63

quantitative traits for association mapping, including control of population structure. 64

Results 65

Sequencing genetically distinct, clinical isolates of Coccidioides 66

posadasii 67

With the ultimate goal of pooled growth assays and phenotyping-by-sequencing in C. 68

posadasii, we sequenced 77 C. posadasii clinical isolates from Pima County, Arizona, of 69

which 11 have been independently sequenced (Table S1), and we also resequenced the 70

type strain of C. posadasii, Silveira [14]. The full set of sequencing data was combined 71

with genomes of previously published strains to generate a phylogeny (Fig 1) which 72

revealed that the Pima isolates in our pool corresponded to at least three previously 73

identified populations [15]. 74

As a model trait for pooled phenotyping assays, we chose a phenotype that could 75

vary across our strains and be mapped by a genome-wide association study (GWAS) in 76

a pooled format. Given that mammalian body temperature is both a cue for the fungal 77

morphological transition and a stress that must be overcome to persist in the host, we 78

chose differential growth at environmental (room temperature, RT) and host (37°C) 79

temperatures as a useful test case for this purpose. As described in the following 80

sections, we developed a method for fitting strain abundances to sequencing of a mixed 81

culture seeded with a pool of C. posadasii strains, validated the method on simulated 82

data, and we applied the method to real strain pools grown at 37°C or RT. 83

Mixed pools can be deconvoluted by fitting a binomial model 84

For a pool of M strains that differ at N biallelic single-nucleotide polymorphisms 85

(SNPs), we modeled the observed major allele read counts, c, out of total counts, n, at 86

each variant position, i, based on a binomial distribution: 87

P (ci) =
(

ni

ci

)
pci

i (1 − pi)n−ci (1)
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Fig 1. Phylogenetic distribution of Coccidioides poasadasii isolates. IQ-TREE
inferred tree of the newly C. posadasii isolates relative to previously published strains.
Strains included in the mixed culture experiments are highlighted in orange (55 strain
pool only) or blue (55 strain and 5 strain pools).

where the probability of observing the major allele, pi, is the total proportion of 88

strains, M , harboring that allele: 89

pi =
M∑
j

δijfj (2)
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where fj is the proportion of strain j and δij = 1 for strains, j, with the major allele 90

at position i and 0 otherwise. 91

The total likelihood of the observed read counts over all biallelic positions is then: 92

L =
N∏
i

P (ci) (3)

The unknown strain proportions can be estimated by finding the value of the vector, 93

F , of strain proportions, fj , that maximizes the likelihood function. We found the 94

maximum likelihood solution by minimizing a related objective function: 95

E[F ] = min
F

−
N∑
i

ci1 log pi1 + (ni − ci1) log(1 − pi1) (4)

using simulated annealing [16,17] (Fig S1). 96

An extended derivation of Eq 4 is given in the Materials and methods. 97

Validation of strain abundance inference method by simulation 98

In order to validate our fitting method, we first simulated sequencing results from 99

pooled growth of C. posadasii Silveira and 53 Pima County C. posadasii strains (the 100

setup that we ultimately implemented experimentally; see below) by sampling reads 101

from our single-isolate sequencing for chosen ground-truth proportions (Fig 2, top row). 102

Given that we sampled from real sequencing runs, the simulations should incorporate 103

the same positional and sequence biases, sequencing errors, etc., as in a real experiment. 104

In particular, this simulation method is independent of the assumptions of our model 105

and assumes only that there are no strain-specific biases in isolation of the DNA of the 106

pool. We simulated mock pools at a depth of 30 million reads, a lower limit of the 107

sequencing depth of our true pooled experiment below. 108

2800 steps of simulated annealing were sufficient for the fit to converge in each case 109

(Fig S2), and the fit strain proportions recapitulated ground truth to within 1% (Fig 2, 110

bottom row). As expected, the exception to the rule was a pair of genetically 111

indistinguishable clonal strains present in the true strain set (green circles in Fig 2B and 112

see Methods). Similar results were obtained when we used only a transposon-free region 113

between the KU70 and HSF1 genes (coordinates: CP075070.1:4382963..5065814), 114

representing about 5% of the genome (Fig S2). 115

Inferring strain abundances from experimental pooled sequencing 116

To apply our approach to real data, we performed a first set of competition experiments 117

for 54 well-germinating strains of C. posadasii at host (37°C) and environmental (RT) 118

temperatures. 119

The procedure was repeated in two batches, with three pools grown at each 120

temperature for each batch, for a total of 12 pools. In each case we inoculated 121

arthroconidia into liquid culture and incubated to allow germination and hyphal growth. 122

We then isolated DNA from each, carried out sequencing, quantified alleles at SNPs, 123

and inferred strain abundance with our fitting method. In each fit, simulated annealing 124

converged (Fig S3). Inferred strain abundances varied more among the pools cultured at 125

37°C than those at RT (Fig 3A), but significance testing was still highly powered to 126

resolve temperature differences in abundance for eight strains (blue and red points, Fig 127

3B). Two other strains exhibited evidence for jackpotting in the cultures, with very high 128

abundance independent of temperature (purple points, Fig 3B). 129
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Fig 2. Validation of model with simulated data. Shown are results from
simulations of three pools with different strain proportions (A, B, and C). In the top
row of plots, each point reports the true abundance of one strain in the respective
simulated pool, as a proportion of total biomass. In the bottom row of plots, each point
reports the abundance of one strain fit by the model (y-axis) and the true simulated
abundance (x-axis) for the respective simulated pool. Clonal pair (strains 3284 and
3291) indicated in green. Strains absent from the simulated pools indicated in magenta.

In order to validate the strain-specific temperature biases measured by our inference 130

approach, we carried out a second, smaller pooled competition experiment consisting of 131

the two C. posadasii strains that had dominated cultures in the first round (3301 and 132

3457), two of the 37°C enriched strains from the first round (3224 and 3326), and one of 133

the RT enriched strains from the first round (3292). We grew the smaller pools in 134

triplicate at 37°C and RT and again isolated and sequenced DNA from each replicate. 135

Running our inference method on the resulting sequencing data correctly identified the 136

five strains present in these pools (Fig S4). Furthermore, the temperature-dependent 137

abundance patterns in this experiment recapitulated the trends we had seen in the first 138

round, with strains 3224 and 3292 again exhibiting 37°C and RT biases, respectively 139

(insets, Fig 3B). As in the larger pools, strains 3301 and 3457 did not show a 140

temperature bias in abundance. They did not, however, show evidence for jackpotting 141

in the smaller pools. Instead, in the latter, strain 3292 was the most abundant strain at 142

either temperature (insets, Fig 3B; Fig S4). Taken together, these results show that 143

despite variation in jackpotting effects across experimental designs, strain differences in 144

growth rate between conditions are reproducible across different C. posadasii pool 145

compositions and can be inferred robustly with our fitting approach. In principle, strain 146

variation in temperature tolerance could derive from differences in the ability to cope 147

with thermal stress or to differential response to the cue of host temperature. 148

Application to GWAS 149

We reasoned that the inferred abundances from our larger pooled growth experiment 150

could be used as the basis for genetic dissection of variation in temperature-dependent 151

growth, via GWAS. Given the population structure in our sampled C. posadasii strain 152
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Fig 3. Strain proportions fit from real pool sequencing. (A) Heatmap showing
fit proportions for each of 54 strains (columns) in each of 12 pooled liquid cultures
(rows) grown for 14 days at 37°C or RT. (B) In the main plot, each point reports
abundance as a median across replicate pools of the indicated temperatures from (A).
Strains are colored based on whether they were: highly abundant at both temperatures
(purple), enriched at 37°C (red), enriched at RT (blue), or not detectably
temperature-dependent (green). Insets show proportions for strains 3326, 3224 and 3292
when retested in a 5 strain pool (p-values from Wilcoxon tests).

set (Fig 1), our association test used a linear mixed model as implemented in 153

GEMMA [18] to correct for kinship effects. We formulated the phenotype of each strain 154

as the log fold-change of the difference in inferred abundance between pooled growth 155

experiments at RT and 37°C. A genomic scan for variants associated with this trait 156

revealed a single locus with 12 associated SNPs passing a 10% false discovery rate (7 157

SNPs at nominal p = 2.18e-05 and adjusted p 0.083; 5 SNPs at nominal p = 2.5e-05 158

and adjusted p = 0.1; Fig 4A-C). The same locus emerged as the top hit from 159

association test schemes that did not correct for population structure, including a linear 160

model (LM) with no kinship terms (nominal p = 2.18e-05) and a non-parametric 161

Wilcoxon test (nominal p = 9.69e-6), attesting to the robustness of the signal 162

irrespective of admixture effects. All of the associated SNPs at the locus fell in a single 163

predicted gene of unknown function, D8B26_001557, unique to the Onygenales. In 164

expression profiles of the C. posadasii type strain [19], this gene was induced in the 165

pathogenic spherule form of the fungus relative to the vegetative hyphal form and 166

depended on the transcription factor Ryp1, a driver of temperature-evoked development 167

in C. posadasii [19] and other fungal pathogens (Fig 4F). 168

In our association results, seven of the SNPs in D8B26_001557 associated with 169

temperature-dependent strain abundance drove non-synonymous changes (Fig 4D). 170

They defined three haplotypes across our Pima County C. posadasii strain set (Fig 4D 171

and 4E): haplotype A, associated with higher abundance at RT and present in 16 of the 172

strains; haplotype C, associated with higher abundance at 37°C and present in 18 173

strains ; and haplotype B, generated by a single crossover between haplotypes A and C 174

and present in a single strain with similar abundance at both temperatures. 175

Comparison against four strains of the pathogen relative C. immitis (RS, RMSCC 2394, 176

RMSCC 3703, and H538.4) revealed an invariant haplotype in C. immitis, distinct from 177

the C. posadasii haplotypes (Fig 4D). 178

We conclude that variants in D8B26_001557 represent a compelling candidate 179

determinant of the variation in temperature-dependent growth across our C. posadasii 180

strains. This discovery validates our pipeline of pooled growth, 181
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inferred temperature-dependent growth across C. posadasii strains. The y-axis reports
the uncorrected p-value from an assocation test via a linear mixed model in the
GEMMA package with admixture correction, and the x-axis reports genomic location.
Horizontal dashed red line indicates 10% false discovery rate based on 1000
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boundaries. (B) Each column reports the distribution of inferred
temperature-dependent phenotypes among strains harboring the indicated allele at the
top GWAS hit locus, in D8B26_001557. (C) Schematic of D8B26_001557, with
locations of SNPs whose association significance passed a 10% false discovery rate
threshold in orange (missense) or blue (silent). (D) Each row reports the sequence in
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(S) or hyphal-inducing (H) conditions (data from [19]).

August 2, 2024 8/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.05.606565doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606565
http://creativecommons.org/licenses/by/4.0/


phenotyping-by-sequencing in pools, and inferred strain abundance as a highly-powered 182

strategy for statistical genetics. 183

Discussion 184

Pooling approaches for statistical genetics, though powerful, typically preclude the use 185

of chromosome- or haplotype-level advanced mapping methods. Here, we adapt 186

mathematical techniques originally developed for deconvolution of strain data from 187

metagenomic sequencing to infer the relative proportions of strains of a single species in 188

a mixed culture. We show that this approach can be used to score quantitative 189

phenotypes for differential growth between two conditions in a pooled format and that 190

these phenotypes can be applied to GWAS in Coccidioides. 191

Progress in the molecular understanding of microbial pathogens is often hampered 192

by the difficulty of genetic screening tools. Indeed, our work represents a first-ever 193

whole-genome functional-genomic screen in Coccidioides. To date, only 10 genes related 194

to virulence [20] [21] [22] [23] [24] [25] [26] [27] and morphology [19] [28] are known in 195

this organism, most initially identified via secretion from the pathogenic spherule 196

form [20] [21] [22] [23] [24] [25] [26] [27] or by hypotheses based on the biology of other 197

fungi [24] [25] [26] [27] [19] [28]. Forward genetic screens are likely to be of great utility 198

in advancing the field, and a recent small-scale screen of 24 Coccidioides insertional 199

mutants for virulence in Galleria serves as an additional foundation for this 200

principle [29]. Given the success of GWAS in fungal model systems, plant pathogens 201

and commensals, and opportunistic animal pathogens, we expect the natural 202

variation-based approach to be equally powerful in human pathogens, especially with 203

the pooled growth paradigm we establish here. 204

As temperature is both an important developmental cue and a stress inherent to the 205

host environment, we chose growth of Coccidioides at 37°C as an easily controlled model 206

trait to test our pooled GWAS method. Our inference of variation in 207

temperature-dependent growth across C. posadasii strains from the pooled experimental 208

format is consistent with a previous survey of growth across temperatures in a 209

strain-by-strain setting [30], and our discovery of D8B26_001557 as a candidate 210

determinant of these differences serves as an additional proof of concept for our 211

approach. Regulation of this gene by the Ryp1 transcription factor is consistent with 212

the control of its ortholog in Histoplasma ohiense G217B, I7I48_061291, by Histoplasma 213

Ryp1 [31]. Ryp1 is a master regulator of the temperature-dependent transition of 214

Histoplasma from hyphae to yeast [32] [19] and is likewise required for spherule 215

formation in Coccidioides [19]. Given the role of Ryp1 in temperature-dependent 216

transcriptional regulation, it is appealing to discover a Ryp1 target associated with 217

temperature-dependent growth. Of additional interest is that fact that the Ryp1 218

regulon is associated with pathogenesis in many fungi [33] [34] [35] [36] [37] [38] [39] [40]. 219

Many of the known virulence factors of Histoplasma are direct Ryp1 targets [31], and 220

the Coccidioides virulence factors SOWgp, MEP1, and urease are Ryp1 regulated [19]. 221

Thus it is tempting to speculate that our GWAS hit locus, D8B26_001557, may 222

ultimately prove to have relevance for virulence behaviors. We observe that C. posadasii 223

Silveira has the haplotype that favors growth at RT, consistent with the previous 224

observation of compromised growth at high temperature for this strain [30]. 225

Our GWAS of temperature-dependent growth in C. posadasii from pooled 226

experimental measurements opens a window onto the study of natural variation in other 227

virulence-relevant traits in this pathogen, including development of infectious spherules. 228

More generally, our strategy should be applicable to phenotyping of pools of genetically 229

1HISTO_ZT.Contig1089.Fgenesh_histo.56.final_new in [31]
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distinct strain sets in many organismal systems. Our current likelihood function 230

assumes a haploid genome but could readily be extended to the diploid case. The 231

approach is expected to have particular impact in statistical-genetic scans that use 232

population structure correction, as we have implemented it here for C. posadasii, and 233

other multi-locus mapping tools. Our method will also be of use in applications beyond 234

statistical genetics per se – for example, correlation analysis of multiple phenotypes or 235

rapid surveys of a set of isolates to select strains with extreme phenotypes for 236

comparative ’omics. 237

In summary, the pooled phenotyping format has become a linchpin of the field, 238

especially for non-model systems like pathogens; and with adaptations like ours, 239

powerful genomic methods, even those originally developed for classical phenotyping on 240

one individual at a time, come within reach for the cheap, expedient pooled 241

experimental design. 242

Materials and methods 243

Strains and growth conditions 244

All strains were received from J.G. and collected from a single hospital site in Tucson 245

(Southern Arizona Veterans Administration Health Care Service). 246

Strains were transferred from the B.M.B. lab at NAU to the A.S. lab at UCSF as 247

follows: Slants containing 2xGYE (2% glucose, 1% yeast extract) were inoculated with 248

glycerol stocks (1% glucose, 1% yeast extract, 10% glycerol) of previously harvested 249

arthroconidia. 250

Arthroconidia from 54 isolates of C. posadasii used in this study were generated by 251

cultivation on solid glucose yeast extract medium (GYE 2X: glucose 20 g/L, yeast 252

extract 10 g/L, agar 15 g/L) in 125 ml vented suspension flasks for 4-6 weeks at 30°C. 253

Arthroconidia were harvested using phosphate buffer (PBS) and a cell scraper to 254

dislodge arthroconidia from grown mycelium. The hyphal/spore mixture was filtered 255

through miracloth to isolate the arthroconidia from hyphal mass. The spores were 256

washed twice with PBS before being stored at 4°C for long term storage. The spore 257

solutions were quantified with a hemocytometer and adjusted to working concentrations 258

of 105 arthroconidia/µL. An additional isolate, C. posadasii RMSCC 1043, did not 259

germinate well and did not yield sufficient material for sequencing. We eliminated 260

RMSCC 1043 from simulation studies and analyses of real experimental data (see 261

below) under the assumption that it would not contribute to mycelial pools. 262

Pooled competition experiments 263

Arthroconidia from C. posadasii Silveira and 53 clinical isolates of C. posadasii (plus 264

RMSCC 1043) were grown in competition under conditions associated with the host or 265

the environment. For each clinical isolate, 12.74 µL of the 105 arthroconidia/µL stocks 266

was added to 6.3 mL of PBS in a 15mL conical, resulting in a total spore concentration 267

of 107 spores/ml. Six flasks containing 25mL of GYE 2X liquid media were inoculated 268

with 550 µL of the spore mixture, representing 105 spores per isolate in each culture. 269

The cultures were incubated for 14 days on an orbital shaker at 120 RPM either at 270

room temperature or at 37°C in the presence of 5% CO2. 271

The mycelium from each culture was collected in miracloth filters, washed with PBS 272

to remove carryover media, then pat dried on paper towel to remove excess moisture. 273

Dried mycelium from each culture was subsequently frozen in liquid nitrogen and 274

pulverized by cryo milling with a Retsch MM400 (30 Hz for 1 minute). 0.02-0.06 g 275

pulverized frozen mycelium was transferred to a 2 mL screw cap tube containing 700 µL 276
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lysis buffer (0.05 M Tris pH 7.2, 0.05 M EDTA, 3% SDS, 1% β-mercaptoethanol) 277

thoroughly mixed and heated for 1 hour at 65°C. Subsequently 800 µL 278

phenol:isopropanol:isoamylalcohol (25:24:1) was added to each tube and mixed by 279

inverting several times. Tubes were centrifuged at (max speed) for 15 minutes and 280

genomic DNA was precipitated from the aqueous phase by pipetting it into and mixing 281

with 450 µl 2-propanol + 20 µl sodium acetate (3 M) then pelleted by centrifugation at 282

(max speed) for two minutes. The DNA pellets were washed twice with 70% ethanol 283

then dried at 50°C for 5-10 minutes. DNA was eluted into 200 µl TE 1X (10 mM Tris, 1 284

mM EDTA, pH 8) + 2 µl RNAse A (10 mg/mL) then stored at -20°C. 285

NGS-library preparation and sequencing 286

Genomic DNA from each sample was prepared for next generation sequencing using the 287

Nextera DNA Flex Library Prep kit (Illumina). In brief, 500 ng of gDNA from each 288

pooled competition experiment were used as input and tagmented (process to fragment 289

and tag the DNA with adapter sequences) with Bead-Linked Transposomes. After 290

washing, the tagmented DNA was amplified with unique combinations of i7 and i5 index 291

adapters. Library qualities were assessed using an Agilent High Sensitivity DNA chip 292

run on a 2100 Bioanalyzer Instrument. Equal molar amounts of each library were 293

multiplexed to a final concentration of 5-10 nM. 294

Individual strains were multiplexed in four batches and sequenced on the Illumina 295

HiSeq 4000 platform at the UCB QB3 core or at the UCSF Center for Advanced 296

Technology (CAT). 297

Pooled cultures were multiplexed in three batches and sequenced on the Illumina 298

HiSeq 4000 platform at the UCSF CAT or the Illumina NovaSeq S2 platform at the 299

Chan Zuckerberg Biohub. 300

Simulations 301

Mock pools were simulated by sampling read pairs from the individual isolates in the 302

required proportions by reservoir sampling (“Algorithm R” of Vitter [41]). 303

Phylogenetics 304

FASTQ files for previously published C. posadasii strains [42] [15] were downloaded 305

from SRA:PRJNA274372 and SRA:PRJNA438145. The C. posadasii reference genome 306

and annotations [43] were downloaded from BioProject PRJNA664774. We used 307

RepeatMasker 4.1.2 [44] to identify regions of the C. posadasii reference genome with 308

low complexity or simple repeats, or mapping to a library of known Coccidioides 309

transposable elements [45]. 310

For each isolate and GWAS pool, we aligned reads from the FASTQ file to the C. 311

posadasii reference genome using BWA MEM 0.7.17 [46], then sorted and indexed the 312

aligned reads using SAMTOOLS 1.8 [47]. We used PILON 1.23 [48] with the –variant 313

flag to create VCF (Variant Call Format [49]) files from the aligned reads. Variant sites 314

in each VCF were filtered as follows: variants annotated as “LowCoverage” by pilon or 315

with depth greater than three times the average depth of the sample were removed. We 316

also removed variants within the repetitive regions identified by RepeatMasker. 317

Vcf2phylip.py (https://doi.org/10.5281/zenodo.2540861) was used to convert from a 318

VCF containing all biallelic sites with minor allele frequency of at least 5% and no 319

missing data to phylip format. We used this file as input to the ModelFinderPlus model 320

of IQ-TREE 1.6.12 [50] [51] [52], which identified the TVM+F+ASC+R5 model as 321

optimal using Bayesian information criterion. We bootstrapped this model with 1000 322

replicates using the SH-like approximate likelihood ratio test and ultrafast bootstrap 323
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approximation methods. The consensus tree from the ultrafast bootstrap approximation 324

was visualized with iTOL [53]. The 12 resequenced strains were included in the tree 325

inference, were correctly identified as redundant by IQ-TREE, and are not shown in Fig 326

1. 327

Read alignment 328

Paired-end reads from individual isolates and simulated and real pools were aligned to 329

the Coccidioides posadasii var. Silveira genome assembly using BWA MEM [46] with 330

default parameters. 331

SNP calling from individual isolates 332

For the purpose of fitting proportions in simulated and real pools, SNPs were defined 333

from the individual isolate read alignments as nucleotide positions covered by at least 10 334

reads from each isolate, with at least 85% of the reads from each isolate supporting a 335

single allele, and with exactly two total alleles over all isolates. 336

Model and fitting procedure 337

We give here an extended derivation of the objective function from Eq 4 from the 338

Results section. 339

Given major allele counts, ci, for each biallelic position, i, out of N total biallelic 340

positions over M strains, we would like to find the strain frequencies F that best fit the 341

allele counts under the constraints that the frequencies are positive, 0 ≤ fj ≤ 1∀j, and 342

sum to 1,
∑M

j fj = 1. 343

The probability that a count at i is due to strain j is its frequency: 344

pij = fj (5)

Therefore, the probability of observing ci counts at a position where strain j is the 345

only strain with the major allele is given by the binomial distribution: 346

P (ci) =
(

ni

ci

)
pci

j (1 − pj)n−ci (6)

For positions where more than one strain has the major allele we need to account for 347

all of the different ways that the ci counts could be partitioned among the strains. As 348

this is already built into Eq 6 via the binomial coefficient, it is easiest to first sum the 349

individual strain probabilities and then insert this total major allele frequency into that 350

equation: 351

pi =
M∑
j

δijpij (7)

P (ci) =
(

ni

ci

)
pci

i (1 − pi)n−ci (8)

where δij is 1 if strain j has the major allele at i and 0 otherwise. 352

The total likelihood of the observations, C, given a candidate solution, F , is: 353

L =
N∏
i

P (ci) (9)
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which can be maximized by minimizing the negative log likelihood: 354

− log L = −
N∑
i

log
(

ni

ci

)
+ ci log pi + (ni − ci) log(1 − pi) (10)

Note that the binomial coefficient is a fixed term that depends only on the observed 355

allele ratio, so it can be dropped for the minimization: 356

E[F ] = min
F

− log L = −
N∑
i

ci log pi + (ni − ci) log(1 − pi) (11)

which is Eq 4 from the Results section. 357

GWAS 358

For GWAS, we considered all strains in the pool except for RMSCC 1043 (not 359

sequenced), C. posadasii (not a Pima isolate), and the two jackpotting strains (3301 360

and 3457), leaving 51 strains. We selected a total of 8552 SNPs outside of LTR 361

transposon-rich regions (defined as in [54]) and in coding sequence with at least 25% 362

minor allele frequency (MAF) relative to the 51 analyzed strains. 363

Per strain phenotypes were calculated as the difference in median log2 proportions 364

between 37°C and RT. 365

GWAS analysis was then carried out using GEMMA [18] 0.98.4 to infer the kinship 366

matrix from the SNP matrix: 367

gemma -g genotypes.bimbam.gz -p phenotypes.txt -gk \ 368

-outdir gwas -o kinship 369

to fit a full linear mixed model (LMM): 370

gemma -g genotypes.bimbam.gz -p phenotypes.txt -n 1 \ 371

-k gwas/kinship.cXX.txt -lmm 4 -outdir gwas -o lmm4 372

and to fit an equivalent linear model (LM) without random effects (i.e., assuming no 373

population structure): 374

gemma -g genotypes.bimbam.gz -p phenotypes.txt -n 1 \ 375

-k gwas/kinship.cXX.txt -lm 4 -outdir gwas -o lm4 376

We likewise carried out GWAS assuming no population structure and without the 377

assumption of linearity by using a Wilcoxon test as implemented in R [55]. 378

p-values from the LMM fit were corrected for multiple hypothesis testing by 379

re-running the analysis for 1000 random permutations of the phenotype vector and 380

counting the frequency at which the unadjusted p-values occurred in these permuted 381

controls. 382

Protein sequences for the C. immitis orthologs of D8B26_001557 were obtained from 383

GenBank (GCA_000149895.1_ASM14989v1 RMSCC 2394, 384

GCA_000150085.1_ASM15008v1 RMSCC 3703, GCF_000149335.2_ASM14933v2 RS, 385

and GCA_000149815.1_ASM14981v1 H538.4) and aligned to the C. posadasii sequence 386

with PROBCONS 1.12 [56]. 387
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Fig S1. Fitting strain proportions with simulated annealing. (Top) Objective
function for each simulated annealing step for a simulated pool (blue line). Values of
the objective function are shown as dashed lines for a uniform strain distribution (red)
and for the known correct distribution (green). (Bottom) Estimated proportions of the
top ten strains or the remaining strains (“rest”) plotted as stacked relative proportions
for each simulated annealing step. For both the top and bottom plots, the true solution
is plotted to the right of the vertial dashed line.

Supporting information 388

S1 Table. Table of strains used in this work as tab-delimited text file. 389

Publication_ID gives the strain name used in the main text and figures. Additional 390

identifiers that have been associated with a strain are given in Preliminary_ID, 391

Collection_ID, ALT_ID, UCSF_ID, and FASTQ_prefix. Collection details are given 392

in SPECIES, COUNTRY, CITY/LOCATION, STATE/COUNTRY, 393

ISOLATION/DISEASE_INFO, and YEAR. Strains used in the first set of pools, the 394

retesting set of pool, or the GWAS analysis are indicated with “True” in the Pool1, 395

Pool2, or GWAS columns respectively. Previously sequenced strains are indicated by 396

SRA run ID in the Previously_sequenced column. Strains newly sequenced or 397

resequenced in this work are indicated with “True” in the Sequenced column. 398

August 2, 2024 14/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.05.606565doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606565
http://creativecommons.org/licenses/by/4.0/


180

200

ob
je

ct
iv

e/
1e

5

A Full genome

4.0

4.5

5.0
KU70/HSF1 region

190

195

200

ob
je

ct
iv

e/
1e

5

B

4.5

4.6

4.7

4.8

4.9

0 5000 10000 15000 20000 25000

iteration

185

190

195

200

ob
je

ct
iv

e/
1e

5

C

0 5000 10000 15000 20000 25000

iteration

4.4

4.6

4.8

Fig S2. Simulated annealing converges to ground truth for simulated pools.
Objective function at each simulated annealing step for the simulated pools A, B, and C
(blue). Values of the objective function are shown as dashed lines for a uniform strain
distribution (red) and for the known correct distribution (green). Curves are plotted for
SNPs identified from the full genome (left) or from the transposon-free region between
KU70 and HSF1, representing about 5% of the genome.

S2 File. Code. Zip archive of the python code implementing our fitting method and 399

the Jupyter notebooks required to generate the figures in the paper. 400

Data availability 401

Sequencing reads have been deposited in the NCBI short read archive (SRA) under 402

accessions PRJNA1143091 (individual strains) and PRJNA1143168 (pools). 403

Remaining data (SNP matrices and simulated pools) will be deposited in Data 404

Dryad upon publication. 405
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