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Abstract 

Alcohol use disorder (AUD) induces complex transcriptional and regulatory changes 
across multiple brain regions including the caudate nucleus, which remains 
understudied. Using paired single-nucleus RNA-seq and ATAC-seq on caudate 
samples from 143 human postmortem brains, including 74 with AUD, we identified 17 
distinct cell types. We found that a significant portion of the alcohol-induced changes in 
gene expression occurred through altered chromatin accessibility. Notably, we identified 
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novel transcriptional and chromatin accessibility differences in medium spiny neurons, 
impacting pathways such as RNA metabolism and immune response. A small cluster of 
D1/D2 hybrid neurons showed distinct differences, suggesting a unique role in AUD. 
Microglia exhibited distinct activation states deviating from classical M1/M2 
designations, and astrocytes entered a reactive state partially regulated by JUND, 
affecting glutamatergic synapse pathways. Oligodendrocyte dysregulation, driven in part 
by OLIG2, was linked to demyelination and increased TGF-β1 signaling from microglia 
and astrocytes. We also observed increased microglia-astrocyte communication via the 
IL-1β pathway. Leveraging our multiomic data, we performed cell type-specific 
expression quantitative trait loci analysis, integrating that with public genome-wide 
association studies to identify AUD risk genes such as ADAL and PPP2R3C, providing 
a direct link between genetic variants, chromatin accessibility, and gene expression in 
AUD. These findings not only provide new insights into the genetic and cellular 
mechanisms in the caudate related to AUD but also demonstrate the broader utility of 
large-scale multiomic studies in uncovering complex gene regulation across diverse cell 
types, which has implications beyond the substance use field. 

 

Introduction 

Excessive alcohol use creates many serious physical, emotional, and social problems 
and is responsible for about 3 million deaths worldwide each year.1 Many deaths in the 
United States result from alcohol use disorder (AUD) (nccd.cdc.gov/DPH_ARDI). AUD 
is a serious and common psychiatric disorder that is characterized by excessive alcohol 
consumption and consequent psychological and interpersonal problems stemming from 
preoccupation with and a loss of control over drinking.2 The risk of developing alcohol 
use disorder (AUD) depends on both genetic and environmental factors. While recent 
large-scale genome-wide association studies (GWAS) have identified hundreds of 
variants associated with alcohol consumption3,4 and AUD5-7 it is not yet clear how these 
variants contribute to AUD.  

Beyond these predisposing differences in the genome, AUD is likely associated with 
dynamic alterations in gene expression and chromatin conformation, plausibly in brain 
regions associated with onset and maintenance of motivated and rewarding behaviors, 
stress responsivity and cognitive control. Early studies using microarray analysis to 
study the effects of chronic ethanol consumption in rats found significant changes in 
expression in genes in several brain regions, including the nucleus accumbens,8,9 
extended amygdala,10,11 and ventral tegmental area,12 and studies in human 
lymphoblastoid cell lines and postmortem tissue identified expression changes 
associated with alcohol dependence.13,14 Subsequent bulk RNA-sequencing (RNA-seq) 
studies have uncovered differentially expressed genes in several brain regions, 
including the rat hippocampus, prefrontal cortex15, raphe nuclei,16 and periaqueductal 
gray17, in human lymphoblastoid18 and neuroblastoma19 cell lines, and in human 
postmortem tissue from the hippocampus,20 prefrontal cortex,21,22 and striatum.23  
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However, the individual brain regions contain a diversity of cell types that may bear 
unique transcriptional signatures that cannot be detected in bulk RNA sequencing data 
even with computational deconvolution techniques. Single-cell/single-nucleus RNA 
sequencing has enabled measurement of the distribution and characterization of 
different cell types in a tissue sample and of gene expression in each of these individual 
cells. An early single-nucleus RNA sequencing (snRNA-seq) study examined gene 
expression in nuclei from the prefrontal cortex of individuals with and without AUD.24 
Despite a small sample size (7 individuals), they identified seven major cortical cell 
types and found differences in expression associated with AUD within six cell types, 
particularly in astrocytes, oligodendrocytes and microglia, some in neuroinflammation-
related genes.  

Changes in gene expression may have manifold etiologies. One likely epigenetic 
precursor is the accessibility of chromatin, which exerts a cis-regulatory effect on gene 
expression. For example, a recent study using an assay for transposase-accessible 
chromatin with sequencing (ATAC-seq25) found differences in chromatin accessibility 
associated with chronic and acute alcohol exposure in the rat amygdala.26 However, 
AUD-associated linkages between open chromatin regions and gene expression are 
likely to be regionally and cell-type specific. The advent of single nucleus multiome 
experiments (sn-multiome), assaying both chromatin accessibility and gene expression 
within the same cell, provides remarkable opportunities to draw causal inferences 
regarding mechanisms underlying AUD-associated gene expression. 

The caudate nucleus forms part of the dorsal striatum (and more broadly, the basal 
ganglia), a key component of the executive control loop that is recruited in the onset and 
maintenance of AUD.27 The caudate has been implicated in cue-elicited activation, 
dopamine increase, and in subjective reports of craving.28,29 In animal models, chronic 
ethanol exposure alters neural circuits in the basal ganglia30,31 with a recent study 
reporting differences in gene expression in the dorsal striatum of alcohol-preferring 
rats32. A transcription-wide association study found that among 13 human brain tissues, 
the caudate was the region with the most genes whose predicted expression was 
associated with problematic alcohol use (PAU), a trait that combines AUD with 
problematic alcohol drinking.5 However, the caudate harbors multiple cell-types33 and 
cell-type-specific characterization of the AUD-associated transcriptome in the human 
caudate is lacking.  

To meet this gap in knowledge, we sought to provide a comprehensive view of AUD-
related differences in gene expression and chromatin accessibility in specific cell types 
within the human caudate nucleus and infer mechanisms underlying these changes. We 
performed a high-throughput snRNA-seq experiment on human postmortem samples 
from the caudate nucleus of 143 donors, 74 with and 69 without AUD, obtaining 
transcriptomic data from over 1.1 million cells. To compare the transcriptome with the 
open chromatin status of the same cells, we also performed an sn-multiome analysis 
from these same caudate samples. Sn-multiome experiments have been used in recent 
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years to study human brain development34,35 and neuropsychiatric diseases such as 
Alzheimer’s disease,36,37 but these studies have been limited by small sample sizes or 
shallow sequencing approaches, or studies in which sn-multiome data were 
supplemented with single-cell data generated in separate datasets.38 Here, we 
performed both a sn-multiome and a deep high-throughput snRNA-seq experiment in 
the same large sample cohort, allowing us to both robustly identify rare cell types and 
measure small differences in both gene expression and chromatin accessibility in the 
same nuclei.  

We profiled AUD-associated differences in gene expression and chromatin accessibility 
in different cell types, the biological pathways underlying these differences, and AUD-
associated differences in transcription factor activity and cell-cell communication in 
major glial cell types (Fig. 1). This study provides a comprehensive profile of AUD-
related differences in the caudate nucleus and identifies potential mechanisms of AUD 
and novel directions for further exploration. Our novel experimental approach highlights 
the broader utility of large-scale multiomic studies for identifying regulatory 
mechanisms, which can be applied to other neurological and psychiatric conditions.  

 

Results 

Characterization of 17 Major Cell Types in the Caudate Nucleus  

Samples from the caudate nucleus of post-mortem brains from the New South Wales 
Brain Tissue Resource Centre at the University of Sydney were sequenced in the sn-
multiome assay, in which transcription levels and chromatin accessibility were 
measured in the same nuclei; most were also sequenced using the 10X HT snRNA-seq 
assay. After demultiplexing and data processing, samples with < 200 cell barcodes were 
removed, leaving 163 samples – 82 with and 81 without AUD; 128 male and 34 female. 
Low quality nuclei were filtered out from further analyses based on number of genes, 
number of molecules, and percentage of mitochondrial DNA (see ‘Initial Quality Control’ 
in Online Methods), leaving gene expression levels for 1,307,323 nuclei and chromatin 
accessibility (ATAC-seq) for 267,100 of these nuclei (Demographics are in 
Supplementary Tables 1-2, and detailed experimental procedures are in Online 
Methods). Graph-based clustering of the snRNA-seq data of the 163 samples identified 
17 distinct cell clusters (Fig. 2A, B). Three subtypes of medium spiny neurons (MSNs, 
the GABAergic projection neurons of the striatum) were identified: D1-type MSNs, D2-
type MSNs, and a third subtype marked by both DRD1 and DRD2 expression (D1/D2 
neurons). Four small populations of GABAergic interneurons were identified, including 
parvalbumin-expressing fast-spiking (FS), neuropeptide Y/somatostatin/nitric oxide 
synthase-expressing low threshold-spiking (LTS), calretinin-expressing (CR), and 
cholecystokinin-expressing (CCK). A small cluster of cholinergic neurons was also 
identified (Ach). In addition to neurons, several glial cell populations were observed, 
including oligodendrocytes (the most prevalent cell type; 28.2% of the nuclei), 
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oligodendrocyte progenitor cells (OPCs), astrocytes, ependymal cells, and microglia. 
Other cell types included non-microglial macrophages, endothelial cells, and vascular 
smooth muscle cells.  

Unexpectedly, glutamatergic neurons were found, although the caudate is known not to 
contain cell bodies of excitatory neurons. Their presence could reflect inadvertent 
inclusion of another brain region at the time of dissection; therefore, twenty samples that 
contained >10% of glutamatergic neurons were removed from all subsequent analyses 
(Supplementary Tables 1, 2), leaving 143 samples (74 with AUD, 69 without; 115 male, 
28 female) with gene expression data for 1,121,762 nuclei, 250,537 of which also had 
ATAC data. There was no significant difference in relative abundance of cell types 
between samples from individuals with and without AUD (Extended Data Figure 1).  

Graph-based subclustering was performed for several cell types separately, using data 
from the 143 samples. There were four subclusters of microglia, which roughly 
correspond to different states of microglial activation (Fig. 2C, Extended Data Fig. 2, 
Supplementary Tables 3-4). Subcluster 1 ("Resting Microglia") uniquely expressed 
genes specific to quiescent microglia, such as P2RY12 and CX3CR1, and was enriched 
for pathways relating to microglia migration. Subclusters 2 and 3 were both enriched for 
immune response-related genes, with subcluster 2 (“Inflammatory Microglia”) highly 
expressing genes involved in inflammation, such as TLR2. Subcluster 3 (“CD83+ 
Microglia”) was enriched for genes governing microglia activation, such as CD83.39 
Subcluster 4 (“Phagocytosing Microglia”) was marked by high expression of genes 
involved in endocytosis and phagocytosis. There was a significant increase in the mean 
proportion of “Inflammatory Microglia” (subcluster 2) in individuals with AUD: 31%, as 
opposed to 23% in those without AUD (adjusted p value (padj) = 0.027). Also, 70% of 
individuals that had at least half of their microglia cells in the inflammatory state 
(subcluster 2) had AUD, while only 52% of individuals who had below half of their 
microglia in the inflammatory state had AUD (Fig. 2D). 

A large astrocyte subcluster (“Synaptic Astrocytes”) was marked by higher expression 
of excitatory amino acid transporters 1 and 2 (glutamate transporters), glutamate 
receptor 2 (an AMPA receptor subunit), and glutamate synthase, suggesting that these 
astrocytes may play a role in maintaining glutamatergic synapses (Fig. 2E, 
Supplementary Tables 5-6). The other subcluster (“Structural Astrocytes”) was marked 
by high expression of cytoskeleton-related protein-coding genes GFAP and DCLK1, 
extracellular matrix protein tenascin C, and CD44, coding for a protein involved in cell 
adhesion and migration, and thus may be involved in structural support or tissue repair. 

Finally, there were two subclusters of both D1 and D2-type neurons, representing matrix 
and striosome compartments,40 based on expression of genes specific to either the 
matrix or striosome regions of the striatum41 (Extended Data Fig. 2-3). 80% of D1 
neurons and 83% of D2 neurons were within the matrix compartment, which makes up 
approximately 85% of the striatum.40 There was no significant difference in subcluster 
proportion by AUD status in either astrocytes or D1 and D2-type neurons. 
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AUD-Associated Differences in Gene Expression 

We performed differential gene expression analyses in thirteen major cell types in which 
there were greater than 50 cells of that type in more than 10 individuals with and 10 
without AUD. We utilized a pseudobulk approach, summing counts across cells within 
each sample for each cell type, with sex, age, and ethnic origin as covariates. Samples 
were removed on a cell type-specific basis if the sample contained less than 50 cells of 
that cell type (See Supplementary Table 7 for a summary of the number of pseudobulk 
samples created for each cell type).  

Eight cell types each contained over 700 differentially expressed genes (DEGs) (padj < 
0.2) (Fig. 3A, Supplementary Table 7). We identified many changes in astrocytes, 
microglia, and in neurons, especially D1 and D2 medium spiny neurons.  The 
magnitude of gene expression changes in neurons was generally smaller than in the 
astrocytes and microglia. In each of these cell types, more genes had higher expression 
in individuals with AUD than had lower. Many of the DEGs were differentially expressed 
in multiple cell types. Notably, astrocytes and oligodendrocytes had 833 DEGs in 
common, and D1 and D2 neurons had 538 DEGs in common (Extended Data Fig. 4). 
The differences in gene expression within D1 neurons and D2 neurons were highly 
correlated with each other (Pearson correlation = 0.83), while differences within other 
neuronal and non-neuronal cell types were more weakly correlated (Pearson correlation 
ranges = 0.10-0.46 for neuronal cell types and 0.05-0.27 for non-neuronal cell types; 
Fig. 3B, Supplementary Table 8). Interestingly, expression differences within D1/D2 
neurons were much less correlated with either D1 or D2 neurons (r = 0.41 and 0.39 
respectively). 

Gene set enrichment analysis using pathways from the Reactome database42 showed 
that genes that differ in expression with respect to AUD were enriched in hundreds of 
pathways in many cell types (Fig. 3C, Supplementary Table 9). Successive hierarchical 
and manual grouping of pathways revealed that many immune response pathways – 
such as the adaptive immune system, innate immune system, and cytokine signaling in 
immune system – were enriched in multiple cell types from individuals with AUD. In 
individuals with AUD, DEGs in oligodendrocytes were enriched for several pathways 
associated with synaptic regulation and depolarization, such as “Neurotransmitter 
Receptors and Postsynaptic Signal Transmission” and “Voltage Gated Potassium 
Channels”. D1/D2 and FS neurons had decreases in gene expression within pathways 
related to translation and metabolism.  

 

AUD-Associated Differences in Chromatin Accessibility 

For the 267,100 cells in which both gene expression and chromatin accessibility data 
were available (see Extended Data Fig. 5 for cell type distribution for snATAC-seq 
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cells), the chromatin accessibility (combined reads for each cell type) showed a strong 
signal near the transcription start sites (TSS) of its respective marker genes of several 
cell type-specific genes (Extended Data Fig. 6). Thirty-six percent of all open chromatin 
regions were shared among neuronal and non-neuronal cell types, while 34% of the 
peaks were unique to neurons and 30% unique to non-neurons (Fig. 4A). D1 neurons 
and D2 neurons had very similar open chromatin regions (Jaccard index = 0.8) and 
were less similar to D1/D2 neurons (Jaccard index = 0.47). Astrocytes, 
oligodendrocytes, and OPCs had moderately similar open chromatin regions, with 
Jaccard indices of approximately 0.4 between these cell types (Fig. 4B, Supplementary 
Table 10).  

To determine the AUD-associated differences in chromatin accessibility for each cell 
type, we calculated the differentially accessible chromatin regions (DARs) – i.e., open 
chromatin regions that differed in accessibility between individuals with AUD and those 
without, again using a pseudobulk method. Samples were removed on a cell type-
specific basis if the sample contained less than 50 cells of that cell type (See 
Supplementary Table 12 for a summary of the number of pseudobulk samples created 
for each cell type). We identified DARs for eight cell types (Supplementary Table 12); of 
those, only oligodendrocytes, astrocytes, D1 neurons, and D2 neurons had over 50 
DARs (padj < 0.2; Fig. 4C). Just as with the DEGs, most of the differences were in the 
positive direction – chromatin was on average more open in samples from individuals 
with AUD. However, most of these chromatin accessibility differences were relatively 
small – only in oligodendrocytes did any DARs surpass an absolute log2 fold change of 
0.5.   

We compared the magnitude and direction of chromatin accessibility differences to the 
gene expression differences in genes that had at least 1 DAR in the promoter region, a 
total of 4,915 genes across all cell types. The AUD-associated DARs and DEGs were in 
the same direction for most genes in the four largest cell clusters (88%, 90%, 73%, and 
77% in oligodendrocytes, astrocytes, D1 neurons, and D2 neurons, respectively), and 
genes containing DARs were enriched among DEGs in the same four cell types (padj < 
1e-8; Fig. 4D-G). These results together suggest that AUD-associated differences in 
chromatin accessibility can potentially lead to a corresponding change in cis-gene 
expression. 

 

Identifying Genes Contributing to AUD Risk 

To find genes likely to contribute to AUD risk, we performed an integrative analysis by 
combining the differentially expressed gene list with GWAS findings and cell type-
specific eQTL loci. Our assumption is that if a genetic variant is associated with the 
expression levels of a nearby gene (eQTL) and the gene locates in a GWAS locus of an 
AUD-related trait, the increased or decreased expression level of the gene is more likely 
to contribute to the trait. Several large-scale GWAS have found genetic loci associated 
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with AUD-related traits: 496 independent loci associated with number of drinks per 
week,3 and 90 independent loci associated with PAU5, including 5 loci associated with 
both traits. There are 3,406 and 749 genes, respectively, within these loci, of which 147 
were associated with both traits, a total of 4008 unique genes (Supplementary Table 
13). Of these, 518 were differentially expressed (padj < 0.2) in astrocytes in our snRNA-
seq data, 861 in oligodendrocytes, 318 in D1 neurons, and 329 in D2 neurons. 
Differentially expressed genes within an associated locus are more likely than the 
others to play a role in these traits. Among these, genes whose expression is also 
associated with a nearby genetic variant are even more likely to be potential driver 
genes for AUD (Fig. 5A). Variants within open chromatin near such differentially 
expressed genes are strong candidates for those that affect the traits. 

We identified genotypes of the 143 individuals using our snATAC-seq data. For all cell 
types with at least one DEG, we tested variants overlapping cell type-specific open 
chromatin regions for an association with expression of nearby differentially expressed 
genes (see Online Methods). In nine of the eleven cell types tested, we found at least 
one gene containing a variant in our snATAC-seq data overlapping an open chromatin 
region that was associated with a differentially expressed GWAS-associated gene. Six 
cell types contained over 10 genes with such an eQTL (Fig. 5B), and some genes 
contained eQTLs in multiple cell types. For example, PPP2R3C, within a locus 
associated with PAU, was associated with an eQTL with a negative effect size at variant 
rs1056879 in oligodendrocytes, D1/D2 MSNs, and fast-spiking interneurons (Extended 
Data Fig. 7). PPP2R3C was expressed at lower levels in both cell types from individuals 
with AUD. Combined, these findings suggest that AUD is associated with 
downregulation of this gene’s expression. ADAL, in a locus positively associated with 
alcohol drinks/week, was differentially expressed in D1, D2, D1/D2 and fast-spiking 
neurons, with a cis-eQTL at rs3742971 negatively associated with ADAL expression in 
all four of these cell types (Extended Data Fig. 7). 

For a specific variant in the regulatory region, when the direction of the GWAS effect is 
in the same or opposite direction as its association with the expression of a nearby 
gene, the higher or lower expression level of the gene may contribute to the trait. These 
genes are considered risk or protective genes to AUD. We therefore compared the log2 
fold change of differentially expressed genes with the GWAS effect size multiplied by 
the sign of the eQTL effect size of the same gene. We identified multiple genes in 
several cell types that had expression changes in the same direction as the 
GWAS*eQTL effect, including PPP2R3C in oligodendrocytes and D1/D2 MSNs (Fig. 
5C-D), and ADAL in all MSNs (Fig. 5D-F). The expression of these genes was either 
positively associated with AUD (genes in the first quadrant) – i.e., risk genes, like ERF 
in oligodendrocytes – or negatively associated (genes in the third quadrant) – i.e., 
protective genes, such as PPP2R3C in oligodendrocytes. 
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Cell Type-specific Gene-Regulatory Mechanisms in AUD  

To determine which transcription factors and their target genes become more or less 
active in individuals with AUD, we used LINGER,43 a recently developed tool for 
inferring gene regulatory networks from paired single-cell expression and chromatin 
accessibility data (see Online Methods). We pooled the pseudobulk data tested for 
differential accessibility across all cell types to construct the regulatory network. From 
this network, we extracted key transcription factor-target gene subnetworks (modules). 
Several regulatory modules were significantly enriched for genes from the two GWAS 
studies utilized in our analyses. Modules 1, 2, 3, and 10 were enriched for genes 
associated with PAU,5 and modules 3 and 8 were enriched for genes associated with 
drinks per week3 (Fig. 6A).  

Among the 10 modules detected, several showed differential expression between those 
with and without AUD (Fig. 6A, Supplementary Table 14): module 2 genes in astrocytes, 
module 7 in D1/D2 MSNs (also marginally significant in oligodendrocytes, padj = 0.054), 
and module 1 in microglia (padj < 0.05). Module 7 target genes were enriched for 
several pathways from GP Cellular Component database, including collagen-containing 
extracellular matrix (padj = 0.003), vesicle (padj = 0.007) and basement membrane 
(padj = 0.007).  

Notably, genes in module 2 in astrocytes and in module 1 in microglia both had lower 
expression in individuals with AUD and were enriched for genes from the PAU GWAS.5 
Module 1 contained only one transcription factor, ZBTB16, which is a negative regulator 
of inflammation,44 including in microglia.45,46 Module 1 contained 6 target genes that 
were enriched for neurodegeneration in the Human Phenotype Ontology (HP:0002180, 
padj = 0.017), including KLB, a gene associated with alcohol consumption.47    

Module 2, with lower expression in astrocytes from those with AUD, contained 24 
transcription factors and 451 target genes. To determine which of these genes were 
more likely to be regulated together, we performed weighted gene co-expression 
network analysis (WGCNA48) of astrocyte single-nucleus data, which revealed ten 
groups of co-expressed genes (Supplementary Table 15). Co-expression group 3 
(Co.E3) was enriched for differentially expressed genes, particularly those with lower 
expression in individuals with AUD. There were 75 genes in Co.E3 that overlapped with 
regulatory module 2 (Fig. 6B), suggesting that these genes not only show similar 
expression patterns but also have similar patterns of regulation. Functional enrichment 
analysis identified several enriched pathways, including pathways relating to 
glutamatergic synapses, nervous system development, and negative regulation of Wnt 
signaling pathways from GO Biological Process and Cellular Component (Fig. 6C). 

Next, we identified several key regulatory transcription factors in each cell type using 
the expression and accessibility of all target genes within the trans-regulatory network 
constructed by LINGER43 (Extended Data Fig. 8). For example, in D2 medium spiny 
neurons, the transcription factor predicted to have the most significant altered activity in 
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AUD, based on the chromatin openness of its target genes, was FOXO1 (Forkhead 
transcriptional factor O1, Extended Data Fig. 8), which has been previously shown to 
regulate energy homeostasis in neurons49 and was linked to depression in multiple 
recent studies.50,51  

In astrocytes, six transcription factors were implicated in regulating AUD-associated 
differences in both expression and chromatin accessibility, including the gene JUND 
(JunD proto-oncogene), which had increased regulatory activity in individuals with AUD 
in astrocytes (Extended Data Fig. 8). We found 142 transcription factor motifs with 
significantly higher enrichment in those with AUD (p < 0.05) using chromVAR.52 15 of 
the top 20 enriched motifs (by p-value) with significantly higher activity in cells from 
individuals with AUD are annotated by JASPAR53 as being associated with bZIP 
transcription factors (p <= 0.005; Supplementary Table 16). The bZIP transcription 
factor motif for JUND had significantly higher enrichment in astrocytes in individuals with 
AUD (p = 0.01, Fig. 6D-E). Astrocytes with high JUND motif enrichment were largely in 
regions with high complement component 3 (C3) expression, a marker of reactive 
astrogliosis.54 There was higher expression of C3 in individuals with AUD (1.65 fold, 
padj = 0.0007; Fig. 6F). 

We saw a modest decrease in expression of myelin basic protein (MBP), a major 
component of myelin, in oligodendrocytes from individuals with AUD (padj = 0.11). 
Graph-based subclustering of oligodendrocytes revealed three major subclusters, one 
of which had significantly lower MBP expression than the other two (Fig. 6G). This 
cluster was marked by high expression of OLIG2. We found 616 motifs with activity 
significantly associated with AUD (p < 0.05), including OLIG2 (p = 0.028, 
Supplementary Table 17) (Fig. 6H). This gene was identified as a ‘driver’ by LINGER, 
having higher regulatory activity in individuals with AUD based on the chromatin 
accessibility of its target genes.  

Several genes implicated in the gene regulatory analysis were also implicated in our 
integrative GWAS/eQTL/differential expression analyses, including three target genes in 
astrocytes from regulatory module 2: BTBD3, LRRC4C, and PTBP2 (Extended Data 
Fig. 9). Because these three genes are (1) differentially expressed in AUD, (2) part of a 
differentially expressed regulatory module identified in gene regulatory network 
analysis, (3) cis to a variant associated with gene expression, and (4) associated with 
drinks per week, they have strong evidence linking them as potential driver genes of 
alcohol consumption and/or AUD in the caudate. 

 

Activated Microglia Induce Reactive Astrocytes and Oligodendrocytes 

We measured changes in ligand-receptor signaling pathways between microglia, 
astrocytes, and oligodendrocyte cells using MultiNicheNet55. We identified three ligand-
receptor pairs that signal from microglia to astrocytes with high downstream gene 
activity: IL1B-IL1R1, OSM-OSMR, and TNF-TNFRSF1A (Fig. 6I, see Supplementary 
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Table 18 for all ligand-receptor pairs). These three pairs have been shown to work 
synergistically to induce pro-inflammatory cytokines in astrocytes.56 Predicted 
downstream target genes of IL1B-IL1R1 in astrocytes included C3, the widely used 
marker of reactive astrocytes, as well as bZIP family TFs FOSL1, XBP1, and CEBPD. 
We identified a single ligand-receptor pair from both astrocytes and microglia to 
oligodendrocytes with a high ligand activity: TGFB1-ITGB8 (Extended Data Fig. 10). 

 

Discussion  

In this study we present the first integrated profile at the single-nuclei level of 
differences between individuals with and without AUD in gene expression, chromatin 
accessibility, and cell state in the caudate nucleus, and determined potential regulatory 
mechanisms underlying these differences. By combining single-nucleus RNA 
sequencing (RNA-seq) with chromatin accessibility profiling (ATAC-seq) within the 
same cells at large scale, using both sn-multiome and snRNA-seq experiments, we 
discovered novel patterns of gene expression within different cell types and novel 
regulatory mechanisms behind them. This integrative dual approach demonstrates the 
power of large-scale multiomic studies to uncover cell-type-specific regulatory 
mechanisms in complex brain disorders. Such methodologies can be applied to 
investigate other neuropsychiatric and neurodegenerative conditions, expanding the 
utility of this approach across the field of neuroscience. 

Our large sample size allowed us to identify 17 distinct cell types in the human caudate, 
including rare interneuron and non-neuronal populations not previously identified in 
single-cell studies such as a recent single-cell atlas of the brain57. These include a 
population of cholecystokinin/vasoactive intestinal polypeptide-expressing neurons 
detected in small numbers in animal models but previously not detected in the human 
striatum,33 a population of calretinin-expressing neurons, knowledge of which has been 
extremely limited,33 and a small cluster of vascular smooth muscle cells, a cell type 
which has recently been linked to neurovascular coupling;58 a recent study linked 
neurovascular coupling with chronic alcohol exposure in mice.59 

We identified thousands of genes differentially expressed in a range of cell types and 
characterized the accompanying differences in chromatin accessibility. The differentially 
expressed genes and differentially accessible regions were highly correlated between 
D1- and D2-type medium spiny neurons, which are components of the direct and 
indirect pathways, respectively, of the basal ganglia. Pathways enriched in individuals 
with AUD related to RNA processing (‘RNA Metabolism’, ’Processing of Capped Intron-
Containing pre-mRNA') and immune response (‘Innate Immune System’, complement-
related pathways). Recent studies have also found dysregulation of neuroimmune 
genes in neurons in several brain regions in mice.60, Gene regulatory network analysis 
allowed us to identify transcription factors possibly regulating these differences. For 
example, FOXO1 was shown to have significantly lower activity in D2 medium spiny 
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neurons from individuals with AUD, based on the chromatin openness of its target 
genes. FoxO1 in mice has been linked to regulation of energy homeostasis in 
neurons,49 and a lack of FoxO1 in the brain caused a depressive-like phenotype.50,51 
This could represent a novel regulatory gene in neurons in AUD, as AUD and major 
depression frequently co-occur.61 

We observed a small cluster of medium spiny neurons expressing both D1 and D2 
dopamine receptor genes. This MSN type, variously described as eccentric MSNs, 
D1H, and D1/D2 hybrid MSNs,41,62 has been observed in mice,62,63 primates,41 and 
humans,64 but its association with AUD has thus far been unknown. The pattern of gene 
expression changes in these neurons was less correlated with the other MSN types and 
different biological pathways were enriched: ‘HDMs Demethylate Histones’ was the 
most highly enriched pathway in individuals with AUD, while many metabolic and 
translational control pathways had lower than expected expression in those with AUD. 
These differences from the classical D1 and D2 neurons suggest that D1/D2 hybrid 
MSNs play a distinct role in the caudate. These neurons have been shown in a recent 
study in mice to be morphologically distinct from D1 and D2-type MSNs, with a smaller 
cell body, less expansive dendrite structure, and fewer spines, and were differently 
affected by treatment with a denervating agent.63 Genes involved in collagen-containing 
extracellular matrix and vesicular pathways were upregulated in those with AUD. 
Collagen is a major component of the blood-brain barrier,65 so these neurons could play 
a role in its integrity or regulation, processes which may be disrupted in  AUD.  

We identified four distinct states of microglial cells that did not adhere closely to the 
classical M1/M2 (inflammatory/anti-inflammatory) distinction66, although some of these 
cell clusters were enriched for markers of inflammation  Indeed, recent studies are 
beginning to question the biological accuracy of the widely-cited M1/M2 classification.67 
One subcluster was distinguished by high CD83 expression, a gene implicated in 
regulating both inflammatory and anti-inflammatory processes.39 An increased 
proportion of microglia showed an inflammatory gene expression profile in those with 
AUD. Chronic alcohol exposure has been shown to cause microglial activation in mice, 
leading to neuroinflammation.68 Our analyses found that expression of ZBTB16, a 
negative regulator of inflammation,44 was a key regulator of gene module 1, and 
ZBTB16 expression was decreased in those with AUD.  Thus, the increased 
inflammatory response in microglia in AUD could be due in part to decreased ZBTB16 
activity. ZBTB16 is known to counteract microglial M1 activation,45 and its knockout in 
mice caused increased microglia and autism-like and schizophrenia-like behaviors,46 
but it had not been implicated in AUD. 

In astrocytes from individuals with AUD there was significantly higher expression of 
astrocyte reactivity marker C3. This extends to the caudate evidence from studies that 
demonstrated that inflammation evoked by ethanol exposure is accompanied by 
reactive astrogliosis.8,69 The cells with increased C3 expression also had significantly 
higher predicted activity of bZIP transcription factors such as JUND, suggesting that 
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changes in these transcription factors may be regulating astrocytes as they undergo 
reactive astrogliosis. Gene regulatory network analysis identified a group of genes with 
similar patterns of trans-regulation that had decreased expression in AUD. These genes 
were overrepresented within gene sets related to glutamatergic synapses, consistent 
with previous work linking the disruption of glutamate homeostasis in astrocytes to 
AUD.69 Other enriched pathways in these co-expressed and regulatory genes in 
astrocytes include nervous system development and negative regulation of Wnt 
signaling. A recent study implicated the disruption of Wnt signaling in the striatum of rats 
as an effect of high cocaine self-administration,70 but its potential link with alcohol is 
novel. Together this suggests that decreased regulation of Wnt signaling, especially in 
astrocytes, may play an important role in alcohol addiction. 

In oligodendrocytes, we observed differences in expression and chromatin accessibility 
in thousands of genes, and enrichment in biological pathways relating to 
neurotransmitter uptake and depolarization. The gene encoding myelin basic protein 
had slightly, but significantly, lower expression in individuals with AUD. There is 
evidence that action potential propagation through axons can be regulated by 
oligodendrocyte depolarization.71 In pathological conditions such as excitotoxicity, 
excessive neurotransmitter release from neurons can lead to an excessive intracellular 
Ca2+ flux into oligodendrocytes, damaging myelinating processes.72 Lower MBP 
expression was limited to cells marked by higher expression of OLIG2 (Fig. 6G-H). 
OLIG2, a master regulator in mature and developing oligodendrocytes, has been shown 
to have higher activity after brain injury,73 and is linked to myelination: replacing Olig2 
with its dominant-active form in rodents led to decreased expression of MBP,74 and 
deletion of the Olig2 gene accelerated remyelinating processes.75 This suggests that 
our observed increase in OLIG2 activity in individuals with AUD may in part lead to 
dysregulation of myelination in oligodendrocytes. Indeed, alcohol consumption and 
alcohol use disorder have been found to be associated with white matter 
degeneration,76,77 but prior to this study, there had not been a direct link between AUD, 
demyelination, and specific genes such as OLIG2. 

The AUD-associated chromatin differences were correlated with expression differences, 
as expected. In every cell type, genes implicated in immune pathways – such as 
cytokine/interferon response, innate immune system, and complement cascades – were 
overrepresented among those differentially expressed. This extends previous findings 
that chronic alcohol exposure is associated with an increased neuroimmune response in 
neurons, glia and astrocytes.78,24   

Leveraging single-cell transcriptomic data to identify AUD-associated differences in 
communication pathways between cell types allowed us to integrate the transcriptomic 
and epigenetic alterations in each cell type into predictions of upstream signaling 
events. Signaling from microglial cells to astrocytes that involves proinflammatory 
molecules IL-1β, TNF, and oncostatin M is higher in individuals with AUD, concordant 
with the hypothesis that activated microglia induce neurotoxic reactive astrocytes.54 
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These three molecules have been shown to work synergistically in astrocytes and other 
cells to induce pro-inflammatory and neurotoxic molecules such as nitric oxide79 and 
prostaglandin E(2).56 Although reactive astrocytes can induce death of neurons and 
oligodendrocytes, we did not observe a significant difference between individuals with 
and without AUD in relative proportions of neuronal cell types or oligodendrocytes. We 
found increased signaling via TFGB1-ITGB8 from both microglia and astrocytes to 
oligodendrocytes. TGF-β1 signaling is known to increase after injury, and studies have 
shown that ethanol exposure induces TGF-β1 signaling in rats.80,81 Previous work 
showed that TGF-β1 expression increases in astrocytes and microglia in animal models 
of cerebral ischemia,82 and another study has shown that TGF-β1 signaling plays a role 
in myelination in oligodendrocytes.83 

The nature of AUD does not normally allow us to differentiate between pre-existing 
genetic differences and those due to the chronic alcohol consumption that is the 
hallmark of AUD. Some AUD-associated differences we observed (e.g., changes in 
inflammatory and myelinating processes) appear to be associated with the 
consequences of AUD. However, pre-existing genetic information (GWAS data and 
eQTL) allows us to identify possible causes of the disease and genes driving the effects 
we observed and inferred. We found several genes in multiple cell types with strong 
evidence of being linked to AUD. For example, the variant rs1412825, located within a 
locus positively associated with drinks per week,3 was negatively associated with 
expression of the gene Serine/threonine-protein phosphatase 2A regulatory subunit B'' 
subunit gamma (PPP2R3C) in both oligodendrocytes and D1/D2 MSNs. This, combined 
with our finding that PPP2R3C had significantly lower expression in oligodendrocytes 
and D1/D2 MSNs in individuals with AUD, suggests that PPP2R3C could be protective 
against AUD. Interestingly, expression of PPP2R3C was recently shown to be 
significantly associated with PAU in the nucleus accumbens – another part of the 
striatum – using a transcriptome-wide association analysis.15  A single variant, 
rs3742971, within a locus positively associated with PAU,5 was negatively associated 
with expression of the gene encoding the adenosine deaminase-like protein (ADAL) in 
four neuronal cell types (D1 MSNs, D2 MSNs, D1/D2 MSNs, and FS interneurons). 
ADAL had lower expression in individuals with AUD in these cells. In mice, elevated 
Adal levels contribute to low alcohol preference.84 This suggests that ADAL may be an 
important factor in the development of AUD. Our integrative analyses found three genes 
in astrocytes with strong evidence of being drivers of AUD. One of these, BTB/POZ 
domain-containing 3 (BTBD3, a transcription factor), has been shown to regulate 
compulsive-like behavior in mice,85 further evidence of this gene’s potential importance 
in addiction.  

There are several limitations to our study. The use of postmortem brain samples means 
that both pre-existing differences that increase risk for AUD and differences associated 
with the extended, excessive alcohol consumption characteristic of it are both present. 
We cannot clearly delineate which differences are consequences and which are causes 
of AUD, although our incorporation of GWAS and eQTL information allowed us to infer 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.08.02.606355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606355
http://creativecommons.org/licenses/by-nc-nd/4.0/


some of the latter. Experimental studies such as high-throughput CRISPR inhibition or 
activation of the genes identified herein in cell models could confirm some of the 
networks and regulatory pathways,86 but cellular studies will not allow confirmation of 
effects on behavior of individuals. Another limitation is that those who drink heavily are 
more likely to smoke. A recent study found that 63.3% of drinkers at risk of alcohol 
dependence were smokers compared with 18.2% among drinkers not at risk, and 
19.2% among non-drinkers.87 Thus, some differences might be attributed in part to 
smoking. Finally, our results are primarily from males genetically closely related to the 
1000 Genomes European samples, and therefore do not capture the transcriptional and 
epigenetic diversity across ancestry groups or sexes.88  

In conclusion, we provide a detailed picture of the vast transcriptional and epigenetic 
differences between individuals with and without AUD in many different cell types within 
the caudate nucleus that illuminates biological mechanisms underlying these 
differences and identifies potential driver genes causing these differences. Our work 
adds novel insights into the etiology associated with AUD, pointing to key pathways and 
regulatory genes, and underscores the potential of large-scale multiomic datasets to 
provide novel insights into brain regions and diseases. 
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Figure 3: Characterization of AUD-associated changes in gene expression in the caudate nucleus. a, Barplot showing number of genes differentially 
expressed in individuals with AUD for the eight cell types which have over 100 differentially expressed genes. Red and blue indicate positively and negatively 
differentially expressed genes, respectively. See Fig. 2A caption for cell type abbreviations. b, Heatmap of Pearson correlation of gene expression changes (log2 
fold changes) between cell types, hierarchically clustered by Pearson correlation. Black-outlined squares indicate groups of cell types with moderate correlation, 
namely, D1, D2, and D1/D2 neurons, and OPCs, astrocytes, and oligodendrocytes. c, Heatmap of biological pathways from the Reactome database enriched in 
brain samples from individuals with AUD in each cell type. The top 100 enriched pathways (based on smallest Benjamini-Hochberg adjusted p values) across all 
cell types are shown and were hierarchically clustered based on the number of genes shared between the pathways. Heatmap cell color indicates adjusted p 
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Figure 4: Characterization of AUD-associated changes in chromatin accessibility in the caudate nucleus. a, Venn diagram of overlap between the union of open 
chromatin regions from all neuronal cell types and the union of regions from all non-neuronal cell types. b, Heatmap of Jaccard similarity between open chromatin 
regions in each cell type, hierarchically clustered by Jaccard similarity. c, Barplot showing number of differentially accessible regions identified in oligodendrocytes, 
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d-g, Top, scatterplot of ATAC peak log(2) fold changes and RNA-seq log(2) fold changes for genes with at least one differentially accessible region (padj < 0.2). Genes 
are colored based on whether the gene is also differentially expressed (padj < 0.2). Bottom, GSEA enrichment plot of enrichment of the same ATAC-significant genes, 
split into two sets based on positive or negative effect size, across genes ranked by differential expression fold change. Normalized enrichment scores (NES) and 
Benjamini-Hochberg adjusted p values (padj) for each GSEA test are shown; d, oligodendrocytes; e, astrocytes; f, D1-type MSNs; g, D2-type MSNs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.08.02.606355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606355
http://creativecommons.org/licenses/by-nc-nd/4.0/


N
um

be
r o

f e
Q

TL
s

Cell Type

GWAS * sign(eQTL)

D
E 

lo
gF

C

D1/D2 Neurons

D
E 

lo
gF

C

Oligodendrocytes

GWAS * sign(eQTL)

D
E 

lo
gF

C

GWAS * sign(eQTL)

D1 Neurons D2 Neurons

Differentially 
Expressed 

Genes

eQTLs

GWAS Loci

Potential Driver
Genes

a b

dc

e
f

0

20

40

OPCs
CR
FS

D1/D2
D2
D1

Oligo
Astro

2

17
9

35

2 13 1
4 2 1

25

11

20

11 1

54

111

20

9

GWAS Trait
PAU

Both

Drinks/Week

ADAMTSL4−AS1

CLN6

FBLN7

LINC02594

PPFIA2−AS1

SLC38A11

ADGRV1

BCL7B

BNIP3L

DPYSL5

ERF
FAM135B

LINC01122

PDPRPPP2R3CSPNS1
TBL2

TBX6

−0.2

0.0

0.2

0.4

−0.02 −0.01 0.00 0.01

FBLN7

EPB41L4A

ARID3BRAD9B

−0.175

C16orf74EML3

PAQR3

PPP2R3C

WBP2NL

ADAL

STIMATE

ARL14EP
RCN2

−0.2

−0.1

0.0

0.1

−0.02 −0.01 0.00 0.01−0.15

DLG5

FZD6

RAB29

CHST6

ZNF589

DCAF13
DOCK10

GUCY2D

LINC00294

MLXIPL

SH2B2
SNX33

TNFSF11−0.2

0.0

0.2

0.4

0.6

−0.02 −0.01 0.00 0.01

ADAL FBXW12

−0.15

ARHGEF26−AS1

FBXW12

CHST6

GRIA1

SLC9A8

ZNF589

ADAL
DCAF13

DOCK10

LINC00294

SNX33

−0.2

0.0

0.2

0.4

−0.02 −0.01 0.00

DLG5

D
E 

lo
gF

C

0.01−0.15

PPP1R21 DDX31

Figure 5: Integration of eQTL analysis with GWAS data and differential gene expression. a, Overview of DEG-GWAS-eQTL integration. Potential driver genes 
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Figure 6: Cell type-specific gene regulatory networks associated with AUD. a, Gene regulatory network analysis of samples from individuals with and without 
AUD comparing the average expression of genes within 10 regulatory modules (M1-M10; see Online Methods). Dot size represents Benjamini-Hochberg adjusted 
p-value and color represents t-value of the difference in average gene expression. Asterisk indicates significance (<0.05). Left two columns display enrichment of 
module genes in the set of genes significantly associated with problematic alcohol use (GWAS(PAU)) and drinks per week (GWAS(Drkwk)). b, Astrocyte co-
expression modules. Left two columns are the same as (a). Top (red heatmap), Jaccard index between genes belonging to the 10 regulatory modules, and 10 co-
expression modules (Co.E0-Co.E9), as calculated by WGCNA. Bottom (blue heatmap), Benjamini-Hochberg adjusted p-value of a t test of the difference in average 
expression of genes in each co-expression module, between individuals with and without AUD. DEG_1>0 indicates higher expression in samples from individuals 
with AUD, and DEG_0>1 indicates higher expression in those without AUD. Bold number “75” indicates number of genes overlapping between the regulatory 
module and co-expression module. c, Gene Ontology (GO) functional enrichment for the 75 genes overlapping regulatory module 2 and co-expression module 3 
shown in (b). Numbers marked by asterisk indicates Benjamini-Hochberg adjusted adjusted p-value of enrichment. d, UMAP of astrocytes from individuals without 
AUD (left plot) and with AUD (right plot). Dot color indicates the enrichment of the JUND motif (red) and the log-normalized C3 expression (green). Yellow indicates 
high expression of C3 and high JUND motif enrichment. e, Boxplot of the log of chromvar motif activity score for the JUND motif in astrocytes for samples from 
individuals with and without AUD. f, Boxplot of the log of C3 expression in astrocytes for samples from individuals with and without AUD. g, Left, UMAP of 
oligodendrocytes, clustered and annotated into three subclusters using graph-based clustering. Right, dotplot of MBP and OLIG2 expression for each of the three 
oligodendrocyte subclusters. Dot size indicates percentage of cells expressing the gene, and dot color indicates average expression of the gene. h, Boxplot of the 
log of chromvar motif activity score for the OLIG2 motif in oligodendrocytes for samples from individuals with and without AUD. i, Circos plot showing the top five 
ligand-receptor interactions (determined by scaled ligand activity score from MultiNicheNet) between astrocytes, oligodendrocytes, and microglia. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.08.02.606355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606355
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figure 1: Proportion of each cell type for each of the 163 samples, grouped by AUD 
classification, for all snRNA-seq barcodes used in cell clustering and cell type annotation (see Fig. 1).
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Extended Data Figure 2: D1 medium spiny neurons subtypes. a, UMAP of D1 MSN cells, colored by 
compartment (either matrix or striosome). b, UMAP of D1 MSN cells, colored by expression of marker genes 
used to assign compartment. c, Dotpot of expression and prevalence of representative marker genes for 
matrix and striosome compartments.
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Extended Data Figure 3. D2 medium spiny neurons subtypes. a, UMAP of D2 MSN cells, colored by 
compartment (either matrix or striosome). b, UMAP of D2 MSN cells, colored by expression of marker genes 
used to assign compartment. c, Dotpot of expression and prevalence of representative marker genes for 
matrix and striosome compartments.
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Extended Data Figure 4: Number of differentially expressed genes in multiple cell types. Upset plot 
shows the number of genes with expression significantly associated with AUD (padj < 0.2) in different 
combinations of cell types.  
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Extended Data Figure 5: snATAC-seq cell landscape. UMAP plotting each cell for which snATAC-seq data 
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Extended Data Figure 7: Normalized pseudobulk expression of PPP2R3C (above) and ADAL (below) 
for each sample. Plotted by genotype for the significant expression quantitative trait loci (eQTL) in the cell 
types in which the eQTL was significant.
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Extended Data Figure 8: Cell type-specific driver gene scores. a, Dotplot of all driver genes found, using 
LINGER’s driver score, based on chromatin accessibility of target genes of that transcription factor. Size of dot 
corresponds to p-value and color indicates t-value, of change in driver score between AUD and control 
individuals. Left two columns correspond to membership in regulatory modules. Genes ordered by cell type with 
most significant difference in driver score. b, Dotplot of all driver genes found, using LINGER’s driver score, 
based on gene expression of target genes of that transcription factor. Size of dot corresponds to p-value and 
color indicates t-value, of change in driver score between AUD and control individuals. Left two columns 
correspond to membership in regulatory modules. Genes are ordered alphabetically.
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Extended Data Figure 10: Downstream genes of AUD-associated ligand-receptor pairs. a. Microglia to 
astrocytes ligand-receptor pairs from MultiNicheNet cell-cell communication. All ligand-receptor pairs and target 
genes with high expression correlation (Spearman or Pearson > 0.50), having some prior knowledge to support 
their link (in the top 250 predicted target genes for the ligand, ‘prior score’ as predicted by MultiNicheNet), and 
being within the top 50 ligand-receptor pairs associated with AUD (as calculated by MultiNicheNet) are shown. 
Size of dots indicate Pearson correlation between expression of ligand-receptor pair and target gene. Color of 
dot indicates prior score for link between ligand-receptor and downstream gene. b, As a, with astrocytes to 
oligodendrocytes pairs (above) and microglia to oligodendrocyte pairs (below)
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Online Methods 

Sample Collection 

The caudate from post-mortem brains of 183 donors were initially included in this study. 
Tissue was obtained from the New South Wales Brain Tissue Resource Centre 
(NSWBTRC), University of Sydney, Australia (https://sydney.edu.au/nsw-brain-tissue-
resource-centre).89  

 

Genotype Data Processing and Imputation 

NSWBTRC samples were genotyped using the UK Biobank Axiom® Array 
(ThermoFisher Scientific, Waltham, MA, U.S.A.). Before imputation, palindromic SNPs 
and SNPs with genotyping rate <95%, minor allele frequency (MAF) <1%, or Hardy-
Weinberg equilibrium P-value < 1E-4 were excluded. Genotype data was imputed by 
using the TOPMed Imputation Server.90 Eagle v291 was used to phase the genotypes 
and Minimac4 v1.2.490 was used for imputation. Data from the Trans-Omics for 
Precision Medicine (TOPMed r3)92 was used as the reference genomes. 

 

Single-cell Multiome Assay 

Nuclei Isolation for Single-cell Multiome  

183 fresh-frozen post-mortem caudate brain samples were utilized in the assay. The 
183 specimens were divided into 23 pools, with 8 in each pool. The donors in each pool 
were both condition (with or without AUD) and sex balanced. For each pool, around 20 
mg tissue from each donor specimen was collected and combined into a sterilized 2 ml 
Dounce homogenizer. 2 ml chilled NP40 lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM 
NaCl, 3 mM MgCl2, 0.1% Nonidet P40 Substitute, 1mM DTT, 1 U/µl RNase inhibitor) 
was added to the Dounce homogenizer before the tissues were thawed. The tissues 
were homogenized 15x using pestle A, and 10x using pestle B, and were transferred 
into a centrifuge tube to incubate for 2 minutes on ice. After that, 2 ml wash buffer 
containing PBS, 1% BSA and 1 U/µl RNase inhibitor was added and mixed well. The 
lysed tissue was centrifuged at 500 rcf for 5 minutes at 4°C, then washed twice more 
with wash buffer and filtered through 70 µm and then 40 µm cell strainer separately. 
The pellet was resuspended in 2 ml wash buffer and mixed with 3.6 ml Sucrose 
Cushion Buffer I (nuclei PURE prep isolation kit, Sigma) containing 1 U/µl RNase 
inhibitor. 2 ml Sucrose Cushion Buffer I with 1 U/µl RNase inhibitor was added into one 
15 ml Beckman Coulter centrifuge tube.  After that, the 5.6 ml nuclei suspensions were 
gently added to the top of Sucrose Cushion Buffer I without mixing, and followed 
by centrifuging at 13,000 x rpm (30,000 rcf) (Beckman Coulter ultracentrifuge) with rotor 
SW40Ti for 45 minutes at 4°C. The purified nuclei pellet was washed by centrifuging at 
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300 rcf for 5 min at 4°C with wash buffer, and the washed nuclei pellets was 
resuspended in wash buffer to target ~ 1000 nuclei/μl.   

10X Single-cell Multiome Library Preparation and Sequencing  

Paired ATAC and gene expression libraries were generated following the Chromium 
Next GEM Single Cell Multiome ATAC + Gene Expression User Guide 
CG000338_RevB (10X Genomics, Inc). In brief, the isolated nuclei from a pool of 
samples were first incubated in a transposition mix. The single nuclei master mixture 
containing tagmented single nuclei suspension was loaded into two well of a Next GEM 
Chip J, along with the single cell multiome gel beads and partition oil. The chip was then 
loaded to the Chromium X Controller for GEM generation and barcoding. Barcoded 
transposed DNA and cDNA were amplified after GEMs being released. At each step, 
the quality of cDNA, ATAC library and cDNA library was examined by Bioanalyzer 2000. 
The final single indexed ATAC libraries and the dual indexed gene expression libraries 
were sequenced on an Illumina Novaseq 6000, with index reads of 10 bp + 24 bp, and 
100 bp paired-end reads. 

Cell Ranger ARC Analysis  

Cell Ranger ARC (cellranger-arc-2.0.0, http://support.10xgenomics.com/) was utilized to 
process the raw sequence data derived from the single-cell multiome libraries. Both the 
ATAC and gene expression FASTQ files were processed with the cellranger-arc count 
algorithm. The reference refdata-cellranger-arc-GRCh38-2020-A-2.0.0 (10x Genomics) 
was used. The filtered gene-cell barcode matrices and fragment files were used for 
further analysis. 

 

Single-nuclei RNA-seq Assay 

Nuclei Isolation for Single-nuclei RNA-seq  

170 fresh-frozen post-mortem caudate brain samples (same individuals as in the 
multiome assay) were grouped into 17 pools, with 10 in each pool. The donors in each 
pool were both condition (with or without AUD) and sex balanced. The nuclei isolation 
for each pool is similar to the procedure described for the aforementioned single cell 
multiome assay. Zero point two (or One fifth) unit per microliter of RNase inhibitor was 
used in the buffers. 

10X HT Single-nuclei RNA-seq Library Preparation and Sequencing  

The Chromium Next GEM single cell 3’ HT reagent kits v3.1 (user guide CG000416, 
10X Genomics, Inc.) was used for the single-nuclei RNA-seq assay. The single nuclei 
suspension from a pool of 10 donor tissue samples were loaded into two wells of a 
Chromium Next GEM chip M to target 60,000 cell recovery per well. The chip was run 
on a Chromium X (10x Genomics). Single cell gel beads in emulsion containing 
barcoded oligonucleotides and reverse transcriptase reagents were generated. cDNA 
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was synthesized and amplified following cell capture and cell lysis, The quality and 
quantity of cDNA and resulting libraries were examined by Bioanalyzer. The final 
libraries were sequenced on an Illumina NovaSeq 6000. 100-bp reads including cell 
barcode and UMI sequences and 100-bp RNA reads were generated. 

Cell ranger Count Analysis  

Cell Ranger Count (cellranger-count-7.0.1, http://support.10xgenomics.com/) was 
utilized to process the raw sequence data derived from the single-cell multiome 
libraries. The gene expression FASTQ files were processed with the cellranger count 
algorithm. The reference refdata-cellranger-GRCh38-2020-A (10x Genomics) was used. 
The filtered gene-cell barcode matrices and fragment files were used for further 
analysis. 

 

Demultiplexing 

Cells from each of the 40 sequencing pools (23 from the single-cell multiome assay and 
17 from the single-nuclei RNA-seq assay) were demultiplexed back into their samples of 
origin using the tool Demuxlet93 with default parameters, which uses genotype variant 
information for each sample to predict the sample of origin for each cell barcode, as well 
as identify doublet cells, artifactual libraries generated when two cells are captured in 
the same droplet during library preparation. Between 55% and 75% of cells from each 
pool were identified as singlets and assigned to a sample. The remaining cells 
(identified as doublets or ambiguous) were removed from further analysis.  

After demultiplexing, seven samples from the HT assay and twenty-three samples from 
the multiome assay with either no genotype info available or less than 100 cell barcodes 
assigned were removed from all further analyses. Raw data from the barcodes from 
these samples are publicly available, see “Data Availability”, below. These samples – 
163 from the HT experiments, and 161 from multiome – were used for all following 
processing and analyses until the filtering step detailed in ‘Sample Filtering’, below.  

 

Initial Quality Control 

Unless specified differently, all following analysis was performed in R (version 4.3.1), 
predominantly utilizing the Seurat94 (v5) and Signac95 (v5) packages.  

A Seurat object was created from the data from each pool from the HT assay using the 
gene expression count matrix from the Cell Ranger output (17 objects total). Cells with 
below 800 or above 11,250 genes, above 125,000 molecules, or above 10% 
mitochondrial RNA were removed from further analysis. These are commonly used 
quality control metrics to remove low-quality cells or multiplets. Each pool was then 
normalized using the scTransform() function in Seurat.  
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A Signac object, containing both RNA and ATAC-seq data, was created for each pool 
from the multiome assay from the hdf5 file from the Cell Ranger output (23 objects 
total). Cells with below 800 or above 20,000 genes, below 800 or above 500,000 
detected RNA molecules, or above 20% mitochondrial RNA were removed from further 
analysis. An additional round of filtering was performed using the ATAC-seq data. The 
following cells were removed from further analysis:  

• Cells with less than 100 or over 100,000 features; 
• Less than 100 or over 1,000,000 counts; 
• TSS enrichment less than 2; 
• Nucleosome signal greater than 4; 
• Percentage of reads in peaks less than 15%; 
• Total number of fragments in peaks less than 800 or over 100,000; 
• Ratio reads in genomic blacklist regions greater than 0.05 

Between both assays, 1,307,323 unique barcodes passed all QC filters.  

 

RNA-seq Integration and Visualization 

After the above quality control, all cells from the Seurat objects for each pool were 
integrated into the same Seurat object for visualization in the same 2D space. The 
atomic sketch integration method was used, a dictionary learning based procedure 
recently developed in Seurat for large datasets (see 
https://satijalab.org/seurat/articles/parsebio_sketch_integration). Briefly, 5,000 
representative cells were selected from each pool (based on statistical leverage). 
Integration was performed on these sketched cells using the reference-based 
RPCAIntegration method. Then, each cell from each pool was placed in this integrated 
space as well using the ProjectIntegration function.  

To visualize all cells in the same plot, we used functionality in the Seurat v5 and 
BPCells packages to convert each pool to an on-disk BPCells matrix.96 This allowed us 
to merge each object in a memory-efficient way. After merging, the function RunUMAP 
was run on the combined object for 2D visualization.   

 

Cell Type Annotation 

The 1,307,323 cells were divided into 49 clusters using the FindNeighbors and 
FindClusters functions in Seurat. Cell clusters were annotated into known striatal cell 
types based on expression levels of a combination of marker genes curated from 
established studies (Figure 2B).32,33,41,62,97   

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.08.02.606355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606355
http://creativecommons.org/licenses/by-nc-nd/4.0/


ATAC-seq Integration, Visualization 

Each of the 23 Signac objects were processed using the standard ATAC-seq procedure 
in Signac – FindTopFeatures, RunTFIDF, RunSVD – and all objects were then 
integrated using the IntegrateEmbeddings command.  

Cell type labels were transferred to the ATAC-seq object using the assignments for 
each barcode determined from the snRNA-seq data. Barcodes without a matching QC-
passed snRNA-seq barcode were excluded, leaving 250,537 cells from 159 samples. 
UMAP visualization was calculated with the RunUMAP command, using the 
integrated_lsi reduction determined in the previous integration step.  

 

Sample Filtering 

Following the above analyses, 20 samples with a proportion of glutamatergic neurons 
greater than 10% were removed from both the processed RNA-seq and ATAC-seq 
data, because such a cell-type composition indicates potential contamination with non-
caudate tissue, leaving 143 samples for the following downstream analyses. 

 

Cell Subtype/Substate Annotation and Testing 

Microglia and astrocyte clusters were further divided into four and two subclusters, 
respectively, by performing another iteration of FindNeighbors and FindClusters on 
these individual clusters, using cells from the 143 samples. Subcluster-specific genes 
were determined by using the "roc" test within the FindMarkers function in Seurat (see 
https://satijalab.org/seurat/reference/findmarkers). The top 50 genes (based on myAUC 
statistic) were used as input into g:Profiler for each subcluster to determine enriched 
biological pathways specific to that subcluster.  

For testing for a difference in the proportion of cell states in individuals with AUD, the 
mean proportion of cells in each cluster were calculated for each sample, and an 
ANOVA was performed to determine if the mean proportion significantly changed in 
samples from individuals with AUD as compared to those without. Age, sex, and ethnic 
origin were used as covariates. For this test, we removed samples with fewer than 50 
cells of the cell type being tested, as these samples contain very few cells of each 
subcluster and thus their mean is more unreliable. 

 

Differential Expression Analysis 

RNA Pseudobulk Samples Creation 

Due to the sparsity of single-cell data, differential expression methods designed to be 
run on the single-cell level often lack high statistical power. To account for this 
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challenge, we utilized a pseudobulk approach. To create the pseudobulk data, for each 
cell type, the gene expression matrices of each cell of that cell type were combined 
(summed) by sample ID. Samples were removed on a cell type-specific basis if the 
sample contained less than 50 cells of that cell type. See Supplementary Table 7 for a 
summary of the number of pseudobulk samples created for each cell type. Due to a low 
number of samples (less than 10 individuals with AUD and 10 without) meeting the 
>=50 cell criteria, differential gene expression analysis was not performed for 
cholinergic interneurons, vascular smooth muscle cells, CCK interneurons, and 
macrophages. These pseudobulk samples were used for the differential expression 
analysis, below.  

Differential Gene Expression Analysis 

Differential gene expression analysis between samples from individuals with and 
without AUD was performed for each cell type, as well as the two subclusters of 
astrocytes and four subclusters of microglia, using DESeq2,98 a statistical package 
designed for bulk RNA-seq data, with the default parameters. Briefly, the tool estimates 
the variance of gene expression and then fits a negative binomial distribution to each 
gene, which accounts for the over-dispersion of RNA sequencing data, which can result 
in more accurate p-values. Sex, age (as a continuous variable), and ethnic origin were 
included as covariates in the models. Genes with p values of less than 0.2 (corrected for 
multiple-hypothesis testing using the Benjamini-Hochberg method) were deemed 
significant.  

 

Gene Set Enrichment Analysis 

Gene set enrichment analysis was performed for each cell type that underwent 
differential expression analysis, using the fgsea R package,99 which uses a preranked 
list of genes to determine gene sets that are enriched based on the gene rankings. In 
this case, the log2 fold changes from the differential expression analysis were used as 
the ranks, and pathways from the Reactome database were used as gene sets. See 
Supplementary Table 9 for full fgsea results for each cell type. For visualization, the top 
30 enriched pathways (based on smallest Benjamini-Hochberg-adjusted p values) in 
each cell type were selected and hierarchically clustered based on number of genes 
shared between the pathways. Clustered pathways were then manually labeled into 25 
groups. 

 

Creation of Cell Type-specific ATAC-seq Profiles 

CoveragePlot function in Signac was used for visualization of ATAC-seq signal for 
marker genes. 
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Peak calling was performed separately for cells from each of the 16 cell types 
(excluding glutamatergic neurons) using the CallPeaks function in Signac with default 
parameters. The function uses MACS2100 for peak calling.  

For comparing similarity of peaks called between cell types, the Jaccard index was 
used, defined here as the number of peaks in one cell type overlapping a peak in the 
other cell type, divided by the union of the peaks in both cell types. 

All cells from the integrated ATAC-seq object, from the 143 samples determined after 
the ‘Sample Filtering’ step, above, were used for the procedures in this section. 

 

Differential Chromatin Accessibility Analysis 

ATAC Pseudobulk Samples Creation 

In the same way as the RNA-seq data, pseudobulk chromatin accessibility data was 
created for the ATAC-seq data: For each cell type, the ATAC-seq counts matrices of 
each cell of that cell type were combined (summed) by sample ID, for the 143 samples. 
Samples were removed on a cell type-specific basis if the sample contained less than 
50 cells of that cell type. See Supplementary Table 12 for a summary of the number of 
pseudobulk samples created for each cell type. Due to a low number of samples 
meeting the >=50 cell criteria, differential accessibility analysis was not performed for 
cholinergic interneurons, vSMCs, CCK interneurons, macrophages, ependymal cells, 
LTS interneurons, or endothelial cells. 

Differential Accessibility Analysis 

Differential chromatin accessibility analysis between individuals with and without AUD 
was performed for each cell type using DESeq2 with the default parameters. Sex, age, 
and ethnic origin were included as covariates in the models. Genes with p values of less 
than 0.2 (corrected for multiple-hypothesis testing using the Benjamini-Hochberg 
method) were deemed significant. Regions residing in promoter regions of genes was 
determined using R package ChIPSeeker.101 Namely, the function annotatePeak() was 
used, with parameters: TxDb = TxDb.Hsapiens.UCSC.hg38.knownGene, 
annoDb="org.Hs.eg.db", and tssRegion = c(-1000, 1000). 

Comparison of Differentially Accessible Genes and Differentially Expressed Genes 

To calculate the association between gene expression and chromatin accessibility 
differences for each gene, we assigned to each gene with at least 1 DAR in the 
promoter region the log2 fold change of the DAR with the highest ATAC signal, as well 
as the log2 fold change of the gene’s expression. 

For the GSEA analyses, the log2 fold changes from the differential expression analysis 
were used as the ranks, and genes with at least 1 DAR in the promoter region were 
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used as the gene sets, separated into genes with positive log2 fold changes, and those 
with negative log2 fold changes. 

 

Identifying Genes Containing Significant GWAS Loci 

The two GWAS studies (Saunders, et al.3 and Zhou et al.5) utilized in this study defined 
a locus as the region including all variants in linkage disequilibrium of r2> 0.1. For the 
present study, all 1,307 loci associated with the drinks per week (DrnkWk) phenotype 
from Saunders et al. were selected. To find genes overlapping with these regions, gene 
annotations from UCSC Genome Browser for the hg38 genome assembly (implemented 
in the TxDb.Hsapiens.UCSC.hg38.knownGene R package102) were used. This identified 
3,406 genes. A comparable process was used to select genes overlapping loci from the 
Zhou et al. study. All 75 loci associated with the problematic alcohol use phenotype 
were selected, which overlapped with 750 known genes from the UCSC annotations.  

 

Variant Calling 

Integrated snATAC-seq data were split into single bam files for each of the 143 
individuals using sinto (https://timoast.github.io/sinto/). Duplicated bam files for the same 
sample were merged together with samtools.103 For variant calling, the Sentieon 
germline variant calling pipeline104 was used, namely: 

Removal of duplicate RNA molecules; 

Recalibration of base quality score using GATK’s Base Quality Score  
 Recalibration; 

Variant calling was performed for each sample using the Sentieon’s Haplotyper 
 algorithm; 

Joint variant calling was performed using the DNAseq algorithm; 

Variants were recalibrated using GATK’s Variant Quality Score Recalibration105 
algorithm; variants not passing the recalibration test were filtered out for further 
analyses. 

 

eQTL Analysis 

Expression quantitative trait loci (eQTL) analysis was performed for all SNPs in each 
cell type within 100,000 bases of a differentially expressed gene overlapping a GWAS 
loci and within an ATAC-seq peak from that cell type. tensorQTL106 was used to perform 
the analysis using the map_cis function with default parameters. Variants with minor 
allele frequency < 0.05 were excluded from the analysis. Sex, age, and ethnic origin 
were used as covariates. 
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Gene Regulatory Mechanisms Prediction 

chromVAR107 

Prediction of motif activities for each cell was performed using the RunChromVAR 
command in Signac. Briefly, chromVAR identifies motifs associated with variability in 
chromatin accessibility between cells107). Differential testing on the chromVAR z-score 
was performed using the FindMarkers function, setting mean.fxn=rowMeans and 
fc.name="avg_diff", so that the fold-change represents the average difference in z-score 
between the groups.  

To make these differential activity motif results more robust, we utilized a pseudobulk 
approach: averaging per-cell motif scores for all cells within a sample of a given cell 
type, taking the log, and then using an ANOVA – with sex, age, and ethnic origin as 
covariates – to test for differences between those with and without AUD. All samples 
used for differential accessibility testing (see ‘ATAC Pseudobulk Samples Creation’) 
were used for this analysis. 

Gene Regulatory Network Inference 

To build the cell population gene regulatory network, we used LINGER, as described in 
Yuan & Duren, 2024.43 We generated pseudobulk-level expression and chromatin 
accessibility data for each donor and each cell type. Here we used the union set of 
peaks (described above) for ATAC-seq data. as well as a covariate matrix, with sex, 
age, and ethnic origin as covariates to the model. All samples used for differential 
accessibility testing (see ‘ATAC Pseudobulk Samples Creation’) were used for this 
analysis. 

Trans-regulatory module detection by matrix factorization 

To detect key TF-TG subnetworks (modules) from the cell population TF–TG trans-
regulation, we used non-negative matrix factorization (NMF). Before matrix factorization, 
We normalized the trans-regulatory potential matrix by standardizing each row (TF) and 
each column (TG) independently. The standardization of each TF ensures that for each 
TF, the average regulatory potential across TGs becomes zero, and the variation in 
regulatory potential across genes has a standard deviation of one. The same 
normalization was applied to each TG, so that the effect of the regulator side was also 
normalized. We took the average of these two standardized matrices and set the 
negative values to zeros, which was used for downstream analysis. Next, we performed 
NMF on the preprocessed matrix to decompose it into two non-negative matrices, 𝑊 
and 𝐻, representing module membership of TGs and TFs, respectively. 𝑊 is a 𝑚 by 𝑘 
module weight matrix for TF, representing module weight of TF, where m is the number 
of TF. 𝐻 is a 𝑘 by 𝑛 matrix, representing module weight for TGs, where n is the number 
of TG. To assign TF and TG into specific modules, we normalized the module weight 
matrix to equal sum for different modules. For each gene, we converted the normalized 
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weight matrix into proportions by dividing the sum of weights across modules. We 
sorted genes based on their highest proportion across all modules to select the top 10% 
of genes and assign them to modules for which the gene has the largest score.  

This procedure was applied to TF module W matrix and the TG module 𝐻 matrix. Here, 
we identified 10 trans-regulatory modules. 

To uncover AUD-associated regulatory programs in each cell type, we performed 
differential module expression analysis. We first pre-processed the pseudo-bulk gene 
expression count matrix by: (1) normalizing for cell depth, (2) log-transforming, and (3) 
z-scoring expression across all donors. We then estimated module activity in each 
donor as the mean expression of module genes. Using a two-tailed two-sample t-test, 
we identified differentially active modules between individuals with and without AUD. 

Identification of cis and trans driver TFs. 

We identified cis and trans driver TFs underlying epigenetic and transcriptome changes 
between individuals with and without AUD using a linear regression model, 𝑌 =  𝐴𝛽 +𝛽଴ + 𝜀. For transcriptome drivers, the regression model predicted the log transformation 
of the gene expression fold change between individuals with and without AUD (Y) from 
cell type-specific TF-TG trans-regulation (A). For epigenetic drivers, the model predicted 
chromatin accessibility changes (Y) from the cell type-specific TF-regulatory element 
cis-regulation (A). Significant TFs from each model indicated TFs driving differential 
expression and chromatin states between conditions through direct epigenetic or 
transcriptome regulation. 

 

Cell-cell Communication Analysis 

To analyze cell-cell communication differences in individuals with AUD, we used 
MultiNicheNet,55 an R package for differential cell-cell communication analysis using 
single-cell data with multi-sample, multi-condition designs. All samples used for 
differential expression testing (see ‘RNA Pseudobulk Samples Creation’) were used for 
this analysis. User-set parameters were set as the following:  

o MultiNicheNet’s analysis uses a pseudobulk approach, and the minimum 
number  of cells per cell type per sample was set to 10, the recommended 
default; 

o Sex, ethnic origin, and age were used as covariates in the design;  
o For a differentially expressed gene to be further considered when calculating 

ligand activity, we choose for a minimum log2 fold change of 0.50, maximum 
adjusted p-value of 0.2, and minimum fraction of expression of 0.05;  

o For the NicheNet ligand-target inference, the top 250 predicted target genes 
 were considered; 
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o The weights of the prioritization of expression, differential expression and  
 NicheNet activity information was set to the recommended defaults (see   
 https://github.com/saeyslab/multinichenetr); 

o Sender cell types were defined as astrocytes, microglia, and oligodendrocytes; 
o Receiver cell types were defined as astrocytes, microglia, and oligodendrocytes; 

Visualization of top 5 ligand-receptor pairs in individuals with AUD, based on scaled 
ligand activity score, was created using the make_circos_group_comparison function. 

 

Data Availability 

The GWAS datasets utilized in this study were obtained from Saunders, et al.3,5 – 
summary statistics of which can be found at 
https://conservancy.umn.edu/handle/11299/241912 – and Zhou, et al.5 – of which full 
summary-level information can be found at https://medicine.yale.edu/lab/gelernter/stats/ 
and dbGaP (accession number phs001672). 

The data generated here, including raw sequencing data in the form of BAM files and 
processed data in the form of Seurat RDS objects will be available at time of 
publication. 

 

Code Availability 

No custom computational packages or extensive computer code were developed in this 
study. However, R or Python scripts used to utilize existing packages are available from 
the corresponding author upon request. 
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