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Abstract:

Complex group behavior can emerge from simple inter-individual interactions. Commonly, these
interactions are considered static and hardwired and little is known about how experience and
learning affect collective group behavior. Young larvae use well described visuomotor
transformations to guide interindividual interactions and collective group structure. Here, we use
naturalistic and virtual-reality (VR) experiments to impose persistent changes in population
density and measure their effects on future visually evoked turning behavior and the resulting
changes in group structure. We find that neighbor distances decrease after exposure to higher
population densities, and increase after the experience of lower densities. These adaptations
develop slowly and gradually, over tens of minutes and remain stable over many hours.
Mechanistically, we find that larvae estimate their current group density by tracking the
frequency of neighbor-evoked looming events on the retina and couple the strength of their
future interactions to that estimate. A time-varying state-space model that modulates agents’
social interactions based on their previous visual-social experiences, accurately describes our
behavioral observations and predicts novel aspects of behavior. These findings provide
concrete evidence that inter-individual interactions are not static, but rather continuously evolve
based on past experience and current environmental demands. The underlying neurobiological
mechanisms of experience dependent modulation can now be explored in this small and
transparent model organism.

Introduction:

Collective behavior is crucial for animal survival, and can emerge from simple local interactions
among individuals (1–8). Understanding the exact nature of these local interactions, or the
behavioral ‘rules’ that animals use to respond to their group mates has been the focus of
extensive experimental and theoretical studies (1–14).
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Importantly, moving animal groups, such as schooling fish or flocking birds, can exhibit a
diversity of stable collective states such as schooling (directed group motion), swarming
(disordered motion) and milling (circular motion around a center point) and the ability to
dynamically switch between states. Theoretical and experimental studies indicate that such
diversity of collective states can emerge from local interactions among individuals that are
commonly considered static and hardwired. Specifically, simulated groups of moving agents
exhibit different emergent collective states depending on the initial and boundary conditions of
the system (2, 15–18). Experimental evidence in schooling fish support these theoretical
findings, indicating that groups can transition between multiple stable behavioral regimes, or
states, while implementing static interactions among individuals (19–24).
However, assuming inter-individual interaction rules to be static and hardwired ignores the fact
that all living systems require plasticity and feedback regulation to maintain homeostasis. In
particular, social interactions need to be flexible to allow individuals in groups to respond to
evolving social and environmental demands. Yet, little is known about if and how animals can
adaptively modulate their inter-individual interactions and the resulting collective behaviors,
based on previous experiences, internal states and behavioral goals.

One key macroscopic feature of groups that animals may need to adaptively control is
population density (25). Group density is a prominent factor that affects key animal behaviors,
such as foraging (26–28), mating (29) and predator avoidance (27, 28, 30), and affects parasite
and disease transmission (31). The need for density sensing and control seems to be a general
feature for all taxa, from bacteria that use quorum sensing to assess local population density
(32, 33) to humans responding to pedestrian flow (34). To achieve such control, animals must
be able to continuously sense or estimate the density of neighbors in their current environment,
overcome local fluctuations and noise in their assessment and to adaptively modulate their
behaviors in response to these estimates (1, 35–38). The mechanisms that allow fish to sense,
internalize, and change behaviors in response to different population densities are not known.

Larval zebrafish is an emerging animal model in behavioral neuroscience, and recently, the
inter-individual interactions underlying collective behavior in larval, juvenile and adult zebrafish
were described (10, 12, 13, 38–40). It was shown that at younger ages, up to 7dpf (days post
fertilization), these fish exhibit primarily repulsive inter-individual forces which lead to
overdispersed group structures. Around 14 dpf, attractive forces and aggregation tendencies
start to emerge which become robustly expressed at 21 dpf (12, 13, 41). Yet, little is known
about the ability of larval zebrafish to adaptively modify their inter-individual interactions based
on recent social experiences. In contrast, long term modulation of low level sensorimotor
programs and algorithms was shown to affect individual behaviors such as hunting (42) and
defensive strategies (43, 44) already at the larval stage. Therefore, the simple social
interactions exhibited at early developmental stages together with the unique ability to study the
nervous system at the whole-brain single-cell resolution at these times, offers a unique
opportunity to tap into the behavioral and neural mechanisms of experience dependent
modulation of collective behavior.
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Here, we use naturalistic and virtual-reality (VR) experiments and explore how young larval
zebrafish - at 7 dpf - modulate their repulsive interactions in response to persistent changes in
population density. We infer the specific visual cues that fish use to estimate their current group
density and we precisely track experience-dependent modulation of inter-individual avoidance
behavior in response to these estimates. We show that modulation is a slow and stable process
that develops within tens of minutes and lasts for many hours. Finally, we present a time-varying
computational model that implements experience dependent gain changes in the sensorimotor
transformations that connect the visual inputs generated by conspecifics into concrete swim and
turn behaviors. This model accurately accounts for the experience-dependent modulation of
collective behavior in groups of larval zebrafish, and reproduces our behavioral findings. Our
results demonstrate how even at a very early age, when collective social behavior is just
beginning to emerge, larval zebrafish are already able to adjust their social interactions and the
resulting collective behavior to adaptively cope with changing social conditions.
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Results:

Previous social experience of larvae modulates their collective behavior

To study how recent social experiences of young larvae modulate their collective behavior, we
divided 7 dpf (days post fertilization) larvae into groups of either 5 (low density) or 20 (high
density) animals, allowed each group to swim together for 4 hours in opaque circular arenas
(diameter = 6.5cm) and measured their collective swimming behavior (Fig. 1a-b, Methods). We
then redistributed fish into groups of the opposite density and measured their collective
swimming behavior again (Fig.1a-b)(Movies 1). This procedure allowed us to compare fish
swimming in similar group densities that differ only in their history of social experiences (Fig. 1a,
compare dotted blue to solid blue and dotted orange to solid orange).
As previously shown (12, 41), 7 dpf larvae tend to swim in overdispersed groups in both high
and low densities, with average nearest neighbor distances that are higher than those of
shuffled controls (NN5=1.41 0.11 [mean SD], NN5

Shuffled=1.32, NN20=0.65 0.03, NN20
Shuffled=0.6± ± ±

dashed horizontal lines, p5= ,p20= , Wilcoxon sign rank test)(Fig. 1c-d). When3. 4 · 10−6 5. 6 · 10−6

comparing the effects of previously experienced social density on the current behavior of fish we
found that group structure was modulated by past social experience: Fish swimming in low
density groups that were previously exposed to high density swam closer to their neighbors
(NN5=1.41 0.11, NN20 5=1.34 0.1 [mean SD], p=0.0007, Wilcoxson rank sum test, Cohen’s± → ± ±
d=-0.65), and conversely, fish swimming in high density groups that were pre-exposed to low
density swam farther away from one another (NN20=0.65 0.03, NN5 20=0.67 0.02, p=0.0462,± → ±
Cohen’s d=0.58)(Fig. 1c-d, Fig. S1a). Importantly, previous social experiences did not
consistently change other individual and group properties such as distance to the walls, average
swimming speed, average distance traveled in a bout and the bout rate of the fish (Fig. S1b-f).
The change in inter-individual distances due to previous social experience is likely the result of
the modulation of inter-individual interactions. Larval zebrafish are known to use retinal
occupancy of neighbors to guide their inter-individual interactions (12). Specifically, 7 dpf larvae
were found to turn away from the more occupied eye, which was shown to fully explain the
over-dispersion phenotype in these young animals (12, 41).
Here, we confirmed these results for larvae swimming in groups of either 5 or 20 animals, and
show that fish in our experiments also tend to turn away from the more occupied eye (Fig. 1e).
Critically, we found a history dependent modulation of these inter-individual interactions that
explains the changes in collective swim behavior described in Figure 1c,d: larvae swimming in
groups of 5 animals showed a reduced tendency to turn away from the more occupied eye, after
experiencing a higher density (experimental condition 20→5), while larvae swimming in groups
of 20 animals showed an increased tendency to turn away, after experiencing a lower density
(experimental condition 5→20)(Fig. 1e).
Taken together, these results show that collective behavior depends on the previous social
experiences of the larvae, and that fish can either increase or decrease the strength of their
social interactions, depending on the specific experienced history.
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Figure 1 - Previous social experience modulates collective swimming behavior. A. High
throughput experimental design to study experience dependent modulation in groups. Fish behavior is
monitored in high and low densities. Groups are then combined or split to study the opposite density. b.
Example of the joint trajectories of groups of 5 or 20 fish over 20 seconds. Colors represent different
fish. C. Time dynamics of the average nearest neighbor distance of groups swimming in either low
(dashed blue) or high (dashed red) neighbor density, and for groups that were previously exposed to
the opposite density (solid lines). Individual group data are averaged in 60s blocks. Shaded areas are
SEM. d. Average nearest neighbor distance of groups (N5=44, N20 5=45, N20=27, N5 20=14). Dots→ →
represent individual groups, error bars are mean SEM. Black dashed lines represent average values±
of shuffled controls (Methods). Previous experience with an opposite social density modulates group
structure. e. Probability to turn away from the more occupied eye as a function of difference in retinal
occupancy (higher occupied eye - lower occupied eye). Lines represent mean turning probability
calculated as the fraction of turns away from the more occupied side out of all turns in 5o (groups of 5)
or 10o (groups of 20) bins. Shaded areas are SEM. Previous social experience modulates fish
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responses to retinal occupancy.

Interactions with virtual neighbors elicit similar modulations of collective behavior

To precisely characterize the history-dependent modulation of larval collective behavior and to
infer the mechanisms at the basis of this modulation we utilized a high throughput virtual-reality
(VR) assay that allowed us to study how larvae modulate their behavior when exposed to
different spatial and temporal retinal occupancy patterns (Fig. 2a ,Movie 2, Methods). To this
end we projected dots that mimicked the size and motion of real groups of fish, and measured
the behavior of a single fish interacting with these virtual neighbors (Fig. 2a-b, S2a, Methods).
This virtual-reality assay allowed us to easily transition between neighbor densities (Fig. 2a,
right) without the need to physically disturb the fish or move them between groups, and also to
fully control the physical and dynamic properties of the simulated virtual neighbors (see Fig. 3
and below).
To test the effects of previous social experiences in virtual-reality on inter-individual distances,
we first exposed fish to either a high or low density of virtual neighbors (4 or 19 virtual
neighbors, Methods) (Fig. S2a). We then switched the virtual neighbor densities (from low to
high or vice versa) and recorded the responses of the fish before and after density switches
(Fig. 2b).
We found that similar to experiments with real groups of larvae, fish swimming with 4 virtual
neighbors that were previously exposed to 19 virtual neighbors swam closer to their neighbors
compared to fish that did not experience a change in density (NN5=1.59 0.17, NN20 5=1.45± → ±
0.09 [mean SD], p=0.007 Wilcoxson’s rank sum test, Cohen’s d=-1.03)(Fig. 2c, S2b). In±
contrast, fish that swam with 19 virtual neighbors and were previously exposed to 4 virtual
neighbors swam farther away from their neighbors (p=0.0546, NN20=0.6 0.04, NN5 20=0.63± → ±
0.04 [mean SD], Wilcoxson’s rank sum test, Cohen’s d=0.75)(Fig. 2c, S2b). Similar to the±
group swimming experiments, changes in virtual densities did not consistently affect other swim
properties such as larvaes’ distance to the walls, swim bout rates and distance traveled in each
bout (Fig. S2d-f).
Here again, we could trace the change in inter-individual distances to the strength of responses
to difference in retinal occupancy between the eyes: fish that were previously exposed to high
density of virtual neighbors, exhibited a reduction in tendency to turn away from the more
occupied eye, while fish that previously experienced a lower density of virtual neighbors showed
an increase in the probability to turn away from the more occupied eye (Fig. 2d).
These results confirm that visual social interactions control collective behavior of 7 dpf larvae
and also that history-dependent modulation of social interaction strength can be reliably induced
in a VR setting.
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History dependent modulation of collective behavior is slow, stable and reversible

Next, we analyzed the quantitative dynamics of experience dependent modulation and the
stability of behavioral changes. We focused on the modulation caused by previous exposure to
high densities, as it resulted in a more robust change in group behavior (Fig. 1c-d and Fig. 2c).
To measure the temporal dynamics of collective behavior modulation, we compared group
behavior at low neighbor density (4 virtual neighbors) before and after exposing the fish to
varying times (5 to 40 minutes) of high neighbor density (19 virtual neighbors)(Fig. 2e,
Methods). We found that longer exposure times to high neighbor density caused a stronger
decrease in the distances that fish kept from their virtual neighbors (Fig. 2e). Surprisingly, the
decrease in inter-individual distances due to exposure to high neighbor density (19 virtual
neighbors for 20 min), remained stable for more than 2 hours after switching back to a low
neighbor density (Fig. 2f).
To explore ways to reverse these behavioral modulations, we tested whether subsequent
exposure to the lowest possible density (0 neighbors), can negate the effects of exposure to
high neighbor density. Indeed, we found that increasing times of exposure to 0 neighbors can
reverse this effect and bring inter-individual distances among fish back to baseline in
approximately 50 minutes (Fig. 2g, Fig. S2g-h).
These results indicate that exposure to high density results in a slow cumulative change in the
collective behavior of the fish, characterized by closer proximity of neighbors, a phenomenon
that remains stable over many hours. This process can be reversed by removing all virtual
social stimuli, which causes the inter-individual interactions and distances between fish to slowly
decay back to their baseline measured values.
We note that the behavioral adaptations observed in VR must rely exclusively on visual
experiences. In order to isolate the precise visual features of neighbors that trigger this
modulation we independently tested the ability of specific visual features, such as the object's
density, their retinal occupancy and their motion statistics, to elicit behavioral modulation.
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Figure 2 - Dynamics of experience dependent modulation. a. High throughput VR assay to study
experience dependent modulation of collective behavior. Single fish are exposed to virtual neighbors
moving according to real, pre-recorded trajectories. The density of virtual neighbors is switched mid
experiment. b. Example trajectories (over 20s) of single real fish (red/blue) and their virtual neighbors
(black) while fish are exposed to either low (blue) or high (red) virtual neighbor densities. c. Average
nearest neighbor distance of real fish from their virtual neighbors. Dots represent individual fish, error
bars are mean SEM (N=16 for all conditions). Previous experience with an opposite virtual social±
density modulates nearest neighbor distances. d. Probability to turn away from the more occupied eye
as a function of difference in retinal occupancy (higher occupied eye - lower occupied eye). Lines
represent mean turning probability calculated as the fraction of turns away from the more occupied eye
out of all turns in 5o (4 virtual neighbors) or 10o (19 virtual neighbors) bins. Shaded areas are SEM.
Previous social experience modulates fish responses to virtual retinal occupancy. e. Average change
(after-before) in nearest neighbor distances of fish swimming in a low neighbor density after exposure
to increasing times of high neighbor density (Nt=5=11, Nt=10=15, Nt=20=17, Nt=40=18). f. Average change
(after-before) in nearest neighbors distances of fish swimming in a low neighbor density after exposure
to a high density of virtual neighbors (20 min). Bars represent averages over fish in blocks of
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consecutive 20 minutes after exposure to high density. Lines connect individual fish (N=20). g. Average
change (after-before) in nearest neighbor distance of fish swimming in a low neighbor density after
exposure to 20 min of high virtual neighbor density followed by increasing times of 0 neighbors
(Nt=0=19, Nt=10=16, Nt=20=13, Nt=50=21). In panels (e-g) top panels represent experiment conditions,
single dots are individual fish and error bars represent mean SEM.±

Persistent changes in retinal occupancy drive modulation of preferred neighbor
proximity

To test which statistics of the visual scene are used by larvae to modulate their turning
responses, we varied the size and motion statistics of virtual neighbors independently from their
density, and measured their ability to elicit modulation of preferred nearest neighbor distances
(Fig. S3a-b). We found that increasing either the size or the speed of virtual neighbors, while
keeping their numbers constant, also caused fish to reduce their tendency to turn away from
neighbors, and consequently swim closer to each other (Fig. S3a-b). We did not observe any
change in group structure or inter-individual distances when replacing virtual neighbors with a
whole-field black background as a stimulus, indicating that the modulation is not a simple
adaptation to global luminance (Fig. S3c)(45). In addition, presenting fish with high density of
stationary neighbors also failed to elicit modulation of preferred neighbor proximity (Fig. 3a,
Movie 3).
These results indicate that changes in the perceived motion energy (translational, looming, or
both) of neighbors on the retina are at the basis of collective behavior modulation. We therefore
sought to determine the specific contributions of each of those components. To that end, we
presented fish with two sets of stimuli each isolating either looming or translational motion: a
high density of virtual neighbors (19 neighbors) that are stationary but randomly increase and
decrease in size (looming, not moving), or a high density of virtual neighbors moving on
concentric circles around the focal fish (moving, not looming)(Fig. 3a, Movie 3, Methods).
We found that only changes in looming energy caused a reduction in inter-individual distances,
while changes in rotational motion energy were insufficient to induce any modulation (∆
NNstationary=0.03 0.13, NNTranslational=-0.025 0.17, NNLooming=-0.09 0.15 [mean SD];± ∆ ± ∆ ± ±
pStationary=0.394, pTranslational=0.440, pLooming=0.011, Wilcoxon signed rank test)(Fig. 3a, Movie 3).
The reduction of inter-individual distances was not associated with consistent changes in other
individual swim properties such as the path traveled in a bout or the bout rates of these fish (Fig.
S3e-f).

To further corroborate these findings, we directly manipulated translational and looming motion
using a single dot stimulus, mimicking a neighboring fish swimming in the vicinity of the focal
fish, and tested its ability to elicit modulation of inter-individual interactions (Fig. 3b, Movie 4,
Methods)(12). The single dot stimulus moves in bouts 'rotationally’ around the fish from 75o to±
30o for 5 seconds (with fish heading taken as 0o). We either kept the size and distance of the±

dot constant to elicit only translational motion on the retina, or slowly changed the size of the dot
or its distance to the fish, to add a looming component.
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We find that all stimulus sets elicit robust turning responses (Fig. 3b, bottom, Block 1), as shown
previously (12) and similar to the case of multiple virtual neighbors (Fig. 2d).
However, the addition of looming, significantly reduced future response probabilities to the
single dot stimulus, whereas fish kept responding robustly to a moving dot stimulus with no
looming component (Fig. 3b, bottom, Blocks 4-5).
We next tested whether changes in response probability to the single dot stimulus also translate
into changes in nearest neighbor distances in a group context. We found that after training with
single dot looming stimuli, fish swam closer to their virtual neighbors, while there was no
apparent change in neighbor distances after exposure to a non looming stimulus (∆
NNmoving=-0.01 0.14, NNmoving closer=-0.05 0.12, NNmoving and growing=-0.06 0.14 [mean SD],± ∆ ± ∆ ± ±
pmoving=0.19, pmoving closer=0.03, pmoving and growing=0.034, Wilcoxson’s signed rank test)(Fig. 3c).
Taken together, these results demonstrate that modulation of collective behavior is caused by
repeated looming events as, for example, evoked by the movement of neighbors in the vicinity
of the animal.
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Figure 3 - Persistent changes in retinal occupancy drive experience-dependent modulation of
collective behavior. a. Average change (after-before) in nearest neighbor distances of fish swimming
in low density (4 virtual neighbors) after exposure to 20 min of high density (19 virtual neighbors) with
different motion statistics (Nstationary=21, Nrotation=24, Nlooming=22, Methods). b. Top: Experiments testing
the ability of a single dot stimulus with different motion statistics to elicit changes in nearest neighbor
distance (Methods). Bottom: Probability per bout to turn away from a moving dot in the 3 conditions.
Bold lines are the mean probability over fish, and shaded areas are SEM. Probability is calculated as
the fraction of turns away from the presented side out of all turns, and each block is the average of 60
stimulus presentations. Dotted lines represent no preference in turning direction. c. Average change
(after-before) in nearest neighbor distance of fish swimming in a low density group after exposure to 30
min of single dot stimuli as shown in b. (Nmoving=24, Nmoving closer=24, Nmoving and growing=23). Single dot stimuli
with a looming component to their motion cause a subsequent reduction in nearest neighbor distances
of fish in a group.
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Modeling experience-dependent modulation of collective behavior

We devised a modeling framework that links visually based inter-individual interactions to the
history of experienced visual scenes (Fig. 4a-c). The model has two time varying components -

an interaction function that defines the way a larval zebrafish will respond to the retinal 𝑓(𝑣
→

)

occupancy generated by its neighbors, and an unobserved internal state variable that𝑣
→

𝑠(𝑡)
represents a cumulated value of previously experienced retinal occupancy changes and

modulates the response to visual occupancy .𝑓[𝑣
→

, 𝑠(𝑡)]
Previously, we have shown that larval zebrafish base their turning responses on precise retinal
occupancy computations: fish spatially integrate retinal occupancy in the vertical dimension at
different visual angles and these integrated values elicit directional turning biases. Turn biases
are then horizontally averaged within each eye and the resulting values are compared between

the two eyes to elicit a turning response (12)(Fig. 4b, Methods). We estimated based on𝑓(𝑣
→

)
these algorithms, in the low density case (4 virtual neighbors) before and after exposure to high
density (19 virtual neighbors)(Methods). As expected, the estimated probability to turn away
from the more occupied eye is weaker after exposure to high density (Fig. 4b, right).
Next, we linked the transition between stronger and weaker responses, to the history of
experienced changes in retinal occupancy by the fish. To that end, we allow agents to update an
internal state variable , by introducing a leaky integrator module that temporally integrates𝑠(𝑡)
looming events, which we hypothesize to be extracted at the level of each retina and then
combined in a downstream retinofugal region (43, 46, 47)(Fig. 4c-d). This module is represented
by the linear differential equation:

τ 𝑑𝑠
𝑑𝑡 = 𝑠

𝑟𝑒𝑠𝑡
− 𝑠(𝑡) + 𝑟 · 𝐼𝑛𝑝𝑢𝑡(𝑡) (1)

where represents the time constant of the process, is the experienced maximal loomτ 𝐼𝑛𝑝𝑢𝑡(𝑡)
at time , is a scaling variable, and is the value the process will relax to in the absence of𝑡 𝑟 𝑠

𝑟𝑒𝑠𝑡

any input. Based on the temporal dynamics observed in our experiments (Fig. 2e,g) we
equipped this integrator module with a very slow time constant ( ) of ~6 hours (Methods). Weτ
then linearly link the strength of the evoked turning response to this internal state variable,
where higher integrated values result in a weaker turning response, and small values of in a𝑠(𝑡)
stronger bias to turn away (Fig. 4c-d, Methods).
We note that, based on the slow time constant, the linear differential equation governing our
model (Eq. 1), has a steady state (equilibrium) solution that is only reached after many hours,
which implies that the model operates largely in the initial, linear, domain, where sensitivity to
changes in the input is high (Methods).
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Figure 4 - Time varying models of experience-dependent modulation of collective behavior a. A
sketch of a time varying model with two components - a hidden state variable and an observed𝑠(𝑡)
response to retinal occupancy of neighbors that depends on the hidden state variable. b. Left:𝑓[𝑣

→
, 𝑠(𝑡)]

The response to retinal occupancy depends on the difference in average retinal occupancy within𝑓(𝑣
→

)
each eye (12)(Methods). Right: Estimating from fish responses to virtual neighbors reveals𝑓[𝑣

→
, 𝑠(𝑡)]

that fish turn away from the more occupied eye and that responses are modulated due to previous
exposure to a different social density (Methods) c. A leaky integrator module tracks the values of the
hidden state variable . The input to the integrator is the experienced maximal increases in retinal𝑠(𝑡)
occupancy (i.e. looming motion on the retina). d. Top: Example of experienced looming events when
fish are exposed to a low-high-low density experimental design. Bottom: The values of the internal
state variable and the corresponding change in P(turn away) in response to a constant average𝑠(𝑡)
difference in retinal occupancy. Increasing values of cause a reduction in directed turning𝑠(𝑡)
responses and vice versa.

The model accurately predicts experience dependent modulation of collective behavior

We tested the ability of the model to explain and predict our behavioral observations (Fig. 1-3).
To that end we first quantified the behavior of a single simulated fish (agent) exposed to virtual
neighbors of different group sizes, as described for real fish in Fig. 2 (Fig. 5a, Methods). We find
that the nearest neighbor distances of an agent interacting with neighbors in low density
conditions (4 virtual neighbors, swimming according to the pre-recorded trajectories used in VR
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experiments) were similar to those exhibited by real fish in VR experiments (Fig. S4a). The
transition to high density (19 virtual neighbors) was accompanied by a linear increase in values
of the internal state variable (due to the related increase in looming events, Fig. S4a) and a
corresponding decrease in the strength of fish turning responses, which resulted in a decrease
in nearest neighbor distances (Fig. 5b). This new group structure then remained stable for more
than 2 hours of simulation time, in line with the long time constant of the leaky integrator
module, which captured the stability of the modulation observed in VR experiments (Fig. 2f).
Increasing the exposure time to high density of virtual neighbors caused a corresponding
decrease in the average nearest neighbor distance (Fig. 5c), accurately capturing similar trends
observed in VR experiments (Fig. 2e). Furthermore, removing all visual stimulation after
exposure to high density, caused the strongest decrease in internal state variable values (Fig.
S4a) and an exponential return to baseline nearest neighbor distances in about ~50 minutes of

simulated times ( 0.99)(Fig. 5d), which again matched the experimental𝑅
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

2 =

observations in VR (Fig. 2g).
The model also accounts for more subtle observations in our experiments. Simulated agents
exposed to a high density of stationary objects (non-moving neighbors), did not show a
decrease in their response to neighbors, or their inter-individual distances, capturing the finding
that occupancy changes due to own motion are insufficient to elicit behavioral modulation (Fig.
S4b, Fig. 3a). Exposure to even higher neighbor densities (39 virtual neighbors compared to 19
virtual neighbors) caused a stronger decrease in nearest neighbor distances in both
experiments and simulation (Fig. S4b, Fig. S3d). Similar to experimental findings, exposure to
low density of faster moving neighbors (4 virtual neighbors moving at 4 times the original speed)
caused a subsequent decrease in nearest neighbor distances (Fig. S4c, Fig. S3b). In addition,
simulated agents exhibited an increase in the distance kept from the walls of the arena after
exposure to high neighbor density mimicking the effect observed in real fish (Fig. S4d, Fig. S2h),
even though no explicit change to wall interactions was introduced into the model. The model
also predicts that priming fish with 0 neighbors before introducing a low neighbor density (4
virtual neighbors) should cause an increase in inter-individual distances. Experiments priming
fish with 0 neighbors confirmed this prediction (Fig. S4e).
Finally, we replaced the non-interacting virtual neighbors with groups of fully responsive,
interacting agents (Fig. 5e-f, Methods, Movie 6) and compared their behavior to those of real
animals swimming together in groups of varying densities (Fig. 1a-d). Here again, agents that
were previously exposed to high density groups (20 interacting agents) and were randomly
picked out of the cohort and virtually ‘transferred’ to a low density group (Methods), exhibited a
decrease in nearest neighbor distances and swam closer to their neighbors (Fig. 5f, S4f).
Conversely, simulated agents that were exposed to a low density scenario (5 interacting agents)
and were virtually ‘combined’ to create a high density group, swam at higher distances from
their neighbors (Fig. 5f, S4f).
Taken together, these results show that simulated agents that are equipped with an internal
state variable that integrates and ‘remembers’ the history of experienced retinal occupancy
changes, can comprehensively account for most if not all observations of collective behavior
modulation in larvae.
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Figure 5 - Models accurately predict experience dependent modulation of collective behavior. a.
Example trajectories (20s) of simulated agents (blue), interacting with ‘virtual neighbors’ (red) based on
the model presented in Fig 4. (Methods). b. Average change (after-before) in nearest neighbors
distances of simulated agents swimming in a low neighbor density after exposure to a high density of
virtual neighbors (20 min). Bars represent averages over blocks of consecutive 20 minutes after
exposure to high density. Lines connect individual agents. c. Average change (after-before) in nearest
neighbor distance of simulated agents in a low neighbor density after exposure to increasing times of
high ‘virtual neighbor’ density. d. Average change (after-before) in nearest neighbor distance of
simulated agents in a low ‘virtual neighbor’ density after exposure to 20 min of high ‘virtual neighbor’
density followed by increasing times of 0 neighbors. In panels (b-d) top panels represent simulation
conditions, single dots are individual agents (N=24), error bars (blue) represent mean SEM of±
simulated data. Dark red circles and error bars represent mean SEM of the real fish data presented in±
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(Fig. 2e-g). e. Example trajectories (20s) of groups of simulated agents interacting according to the
model presented in Fig. 4 (Methods). Simulated agents are virtually ‘split’ and ‘combined’ to mimic the
experimental design used for real groups of fish and presented in Fig. 1a. f. Average nearest neighbor
distances of groups of simulated agents that swim in low (left - blue) and high (right - orange) group
densities, solid lines show simulated groups that were pre-exposed to the opposite density. Dots
represent individual groups of agents, error bars are mean SEM in simulations. Dark red circles and±
error bars represent mean SEM of the real fish data presented in (Fig. 1d). N=24 for all simulations.±

Discussion

The ability to respond to changes in social density is a crucial behavioral component across
taxa, from bacteria to humans (34, 48–50), offering flexibility in coping with changing social
environments. In zebrafish, young larvae swim in overdispersed groups, presumably to optimize
their personal space and to avoid potentially harmful collisions with each other (12, 39).
Nonetheless, the tendency to disperse and maximize nearest neighbor distance ought to be
regulated to match different contexts. For example, tight aggregation might be unavoidable in
the presence of local attractors such as food sources, or restricted areas of preferred
temperature, luminance, flow or salinity. It is critical in such cases to attenuate and balance the
drive to disperse with the tendency to aggregate around a spatially attractive location. Since the
spatial profile of such sensory attractants usually changes slowly over time, the corresponding
time constants with which desired population density setpoints are adjusted should change with
comparable dynamics.
Interestingly, we find that the temporal modulations of inter-individual interactions of young
larvae indeed have relatively long time constants, with notable modulations in behavior
appearing after tens of minutes and lasting for several hours. We hypothesize that these long
time constants are related to the natural occurrences of density modulation in the larvae’s
environment, allowing fish to filter out and ignore fast, abrupt and stochastic changes in local
population densities (51).

The mechanisms that allow zebrafish to estimate their population density are largely unknown.
A few studies have looked into the role of olfactory (52) and somatosensory (38, 39) cues that
larval zebrafish can use to estimate the presence of neighbors. In the current study, we show
that fish also strongly rely on visual information to estimate population density by integrating
looming events on their retina over time. In contrast, translational motion and retinal occupancy
estimations, that were shown to guide the acute turning responses of fish to their neighbors (12,
41), seemed to play no role in modulating and adjusting the strength of repulsive interactions
(Fig. 3). Notably, visual looming events are particularly informative in identifying conspecifics
invading one's ‘personal space’ since the invader’s perceived expansion velocity is a highly
non-linear function of its distance (46). We found that modulations of avoidance behavior
induced by such persistent looming events cause stable changes in collective behaviors. We
predict that our findings will also generalize to older ages of larvae, when fish begin to
aggregate and to exhibit both repulsive and attractive interactions with their neighbors, as early
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as 14 dpf (12, 13, 41). At these later developmental stages, exposure to high densities might
cause fish to similarly attenuate only their repulsive interactions, resulting in tighter
aggregations, or alternatively to attenuate both attractive and repulsive interactions,
consequently forming more loose aggregations. Future studies can analyze history-dependent
modulation in older zebrafish larvae and to test these different hypotheses.

To quantify the history dependent modulation of collective behavior we introduced a time varying
state-space model (53, 54) that accurately describes both the static and dynamic features of
collective behavior in varying social densities. This model deviates from the common
approaches to modeling collective motion which rely only on static interaction rules (3, 5). Here,
we propose a transition to a more general framework for describing collective motion, that can
naturally incorporate additional modulating factors such hunger or stress, and varying
environmental contexts such as presence of prey, water currents and changes in temperature.

This algorithmic modeling framework facilitates the generation of realistic circuit models that
implement the underlying computations (12, 55). An explicit example of such a model, that
implements directed turning in response to retinal occupancy, has been described previously
(12). Here, we provide the experimental and behavioral framework that allows us to extend this
particular circuit model to include how such turning behavior is modulated by exposure to
persistent looming events. A core element of the extended model would be a population of
looming sensitive neurons that exerts modulatory control on the critical, turning inducing nodes.
Explicit circuit implementations underlying the detection of looming objects have been described
previously in various organisms, including 7dpf larval zebrafish (43, 46, 47). We propose that
the dedicated retino-tectal circuitry in the zebrafish is well poised to extract looming specific
information (43, 47, 56). Our results suggest that looming events can then be integrated over
longer time scales and lead to the updating of modulatory circuits possibly located in the dorsal
raphe, the habenula or the hypothalamus. Such modulatory networks are well poised to change
internal-state dependent output patterns as described, for example, for stress and hunger (57,
58).

The validation of such anatomically inspired circuit models requires functional interrogation at a
brain wide level and at cellular resolution in a behaving animal (55, 59, 60). Our ability to detect
experience dependent modulation of collective behaviors as early as 7 dpf, facilitates such
investigation of the underlying biological and neural mechanisms, since larval zebrafish at this
early stage are especially amenable to various brainwide neuroimaging and optogenetic
perturbation approaches (61).

Our description of experience-dependent modulation of social interactions in larval zebrafish
shows that even young animals, which are sometimes considered to have only a few simple and
reflexive behaviors, can achieve increased behavioral diversity and cope with dynamic
conditions. We hypothesize that other behavioral paradigms such as position holding in a
moving stream and hunting moving prey might also be influenced by internal state variables
such as we described here for population density (42, 62, 63). The behavioral assays and
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modeling framework developed here lend themselves readily to conduct future studies testing
these hypotheses.
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Supplementary figures:
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Figure S1 - Previous social experience modulates collective behavior. a. Density maps depicting
the 2d positions of nearest neighbor fish with respect to a focal fish situated at the center of the map
pointing north. Maps are calculated from fish swimming in low (top row) and high (bottom row) neighbor
densities that were either exposed to the opposite neighbor density in the past (right column) or to a
similar density. Arrows point to areas of marked differences in density maps due to previous social
experiences. b. Average wall distance of groups (Wall distance5=1.16 0.16, Wall distance20 5=1.23± → ±
0.15 [mean SD], p=0.0143, Wilcoxson’s rank sum test; Wall distance20=1.14 0.12, Wall distance5± ± →

20=1.16 0.09 [mean SD], p=0.77, Wilcoxson’s rank sum test). c. Probability to turn right as a function± ±
of distance and direction (left or right) to the nearest wall for groups of 5 (blue colors) and 20 (red
colors) fish. Lines represent mean turning probability calculated as the fraction of right turns out of all
turns in 0.25 cm bins. Shaded areas are SEM. d. Average swimming speed of fish in groups
(Speed5=0.16 0.05, Speed20 5=0.19 0.05 [mean SD] p=0.0287, Wilcoxson’s rank sum test;± → ± ±
Speed20=0.16 0.05, Speed5 20=0.19 0.06 [mean SD], p=0.11, Wilcoxson’s rank sum test). e.± → ± ±
Average path traveled in a bout of fish in groups (Bout path5=0.15 0.03, Bout path20 5=0.17 0.04± → ±
[mean SD], p=0.0157 Wilcoxson’s rank sum test; Bout path20=0.16 0.03, Bout path5 20=0.18 0.03± ± → ±
[mean SD], p=0.0962, Wilcoxson’s rank sum test) f. Average bout rate of fish in groups (Bout±
rate5=1.57 0.3, Bout rate20 5=1.61 0.26 [mean SD], p=0.71 Wilcoxson’s rank sum test; Bout± → ± ±
rate20=1.51 0.27, Bout rate5 20=1.56 0.29 [mean SD], p=0.42, Wilcoxson’s rank sum test). In panels± → ± ±
(b,d-f) Dots represent individual groups, error bars are mean SEM.±
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Figure S2 - Virtual reality reveals the temporal characteristics of experience dependent
modulation. a. Position density of real fish trajectories used as stimulus fish in VR experiments.
Trajectories are characterized by some naturally occurring inhomogeneities. Using simulated
trajectories instead of real fish trajectories, did not qualitatively change our findings. b. Density maps
depicting the 2d positions of virtual nearest neighbors with respect to a focal fish situated at the center
of the map pointing north. Maps are calculated from fish swimming in low (top row) and high (bottom
row) virtual neighbor densities that were either exposed to the opposite neighbor density in the past
(right column) or to a similar density (left column). Arrows point to areas of marked differences in
density maps due to previous social experiences. c. Average nearest neighbor distance of real fish that
did not experience a change in virtual neighbor density ( NN5=1.547 0.19, NN5 5=1.544 0.14 [mean± → ± ±
SD], p=1 Wilcoxson’s signed rank; NN20=0.615 0.04, NN20 20=0.594 0.04 [mean SD], p=0.02± → ± ±
Wilcoxson’s signed rank). d. Average wall distance of real fish (Wall distance5=1.29 0.23, Wall±
distance20 5=1.31 0.22 [mean SD], p=0.9 Wilcoxson’s rank sum; Wall distance20=1.49 0.15, Wall→ ± ± ±
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distance5 20=1.35 0.29 [mean SD], p=0.057 Wilcoxson’s rank sum). e. Average path traveled within a→ ± ±
bout of real fish (Bout path5=0.2 0.02, NN20 5=0.22 0.05 [mean SD], p=0.067 Wilcoxson’s rank sum;± → ± ±
Bout path20=0.2 0.03, NN5 20=0.2 0.03 [mean SD], p=1 Wilcoxson’s rank sum). f. Average bout rate± → ± ±
of real fish (Bout rate5=0.67 0.2, NN20 5=0.82 0.2 [mean SD], p=0.062 Wilcoxson’s rank sum; Bout± → ± ±
rate20=0.7 0.2, NN5 20=0.73 0.2 [mean SD], p=0.777 Wilcoxson’s rank sum). g. Nearest neighbor± → ± ±
distance of real fish before and after exposure to high density and after subsequent exposure to 0
virtual neighbors (NN5=1.54 0.1, NN5 20 5=1.49 0.15 [mean SD], p=0.005 Wilcoxson’s signed rank;± → → ± ±
NN5=1.54 0.1, NN5 20 5 0 5=1.54 0.15 [mean SD], p=0.7 Wilcoxson’s signed rank). h. Top: Wall± → → → → ± ±
distance, bout rate and position density of real fish before and after exposure to high density and after
subsequent exposure to 0 virtual neighbors (Wall distance5=1.22 0.28, Wall distance5 20 5=1.39 0.29± → → ±
[mean SD], p=0.0002 Wilcoxson’s signed rank; Wall distance5 20 5=1.39 0.29, Wall distance5 20 5 0± → → ± → → → →

5=1.39 0.29 [mean SD], p=0.81 Wilcoxson’s signed rank). Bottom: position density maps of real fish± ±
in the 5 subsequent experimental conditions. In panels (c-h) dots represent fish, lines connect data
from same fish, error bars are mean SEM.±
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Figure S3 - Persistent changes in retinal occupancy drive experience-dependent modulation of
collective behavior. a. Average nearest neighbor distance of fish swimming in a low density group
before and after 20 min of exposure to the same number of virtual neighbors, but with a larger size -
rlarge=4 rsmall (NN5=1.58 0.15, NN5 5 big 5=1.51 0.18 [mean SD], p = 0.067 Wilcoxon signed rank). b.· ± → → ± ±
Average change (after-before) in nearest neighbor distance of fish swimming in a low density group
after 20 min of exposure to the same density of neighbors swimming in different speeds ( NNspeed∆
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x1=0.017 0.12, NNspeed x2=-0.076 0.0.14, NNspeed x4=-0.048 0.1 [mean SD], pspeed x1=0.8, pspeed± ∆ ± ∆ ± ±
x2=0.013, pspeed x4=0.032 Wilcoxson signed rank). c. Average nearest neighbor distance of fish swimming
in a low density group before and after exposure to 20 min of a black whole-field background (
NN5=1.51 0.1, NN5 black 5=1.515 0.14 [mean SD], p = 0.98 Wilcoxon signed rank). d. Average± → → ± ±
change (after-before) in nearest neighbor distance of fish swimming in a low density group after
exposure to 20 min of different high densities of neighbors ( NNstationary 20=0.032 0.13, NN20=-0.075∆ ± ∆ ±
0.18, NN40=-0.1 0.15 [mean SD], pstationary 20=0.387, p20=0.059, p40=0.03 Wilcoxson signed rank). e.∆ ± ±
Average change (after-before) in bout rate of fish swimming in a low density group after exposure to 20
min of high density of neighbors with different motion statistics ( bout ratemoving=-0.16 0.16, bout∆ ± ∆
ratemoving closer=-0.11 0.22, bout ratemoving and growing=-0.13 0.24 [mean SD], pmoving=0.0003, pmoving± ∆ ± ±
closer=0.0072, pmoving and growing=0.015 Wilcoxson signed rank). f. Average change (after-before) in bout path
of fish swimming in a low density group after exposure to 20 min of high density of neighbors with
different motion statistics ( bout pathmoving=-0.0064 0.012, bout pathmoving closer=-0.0067 0.011, bout∆ ± ∆ ± ∆
pathmoving and growing=-0.0026 0.014 [mean SD], pmoving=0.018, pmoving closer=0.0033, pmoving and growing=0.465± ±
Wilcoxson signed rank). In panels (a-f) dots represent fish, error bars are mean SEM.±
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Figure S4 - Models accurately predict experience dependent modulation of collective behavior.
a. Left: Nearest neighbor distances of simulated agents swimming in different densities of virtual
neighbors starting from low (4 neighbors), switching to high (19 neighbors), 0 neighbors and returning
to low again. Dots represent different simulated agents (N=24). Right: Value of the internal state
variable over time for the same agents shown on the left. Different colors represent different𝑠(𝑡)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2024. ; https://doi.org/10.1101/2024.08.02.606403doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606403
http://creativecommons.org/licenses/by/4.0/


simulated agents responding to the same neighbor stimuli. increases sharply with the switch to𝑠(𝑡)
high density and decays more slowly with the switch to 0 neighbors. After switching back to low density
it remains stable for the 20 minutes period. b. Average change (after-before) in nearest neighbor
distance of fish swimming in a low density group after exposure to 20 min of different high densities of
neighbors. c. Average change (after-before) in nearest neighbor distance of agents swimming in a low
density group after exposure to a low density of virtual neighbors swimming at different speeds. d.
Average wall distance of agents swimming in a low density group before and after exposure to a high
density of virtual neighbors. e. Average nearest neighbor distance of agents swimming in a low density
group before (light blue) and after (dark blue) exposure to a high density of virtual neighbors, and with
(right) or without (left) pre-exposure to 0 neighbors. Dark red circles and error bars represent mean±
SEM of the real fish data from similar experiments. f. Density maps depicting the 2d positions of
nearest neighbors with respect to a focal simulated agent situated at the center of the map pointing
north. Maps are calculated for agents swimming in low (top row) and high (bottom row) agent densities
that were either exposed to the opposite neighbor density in the past (right column) or to a similar
density (left column). Arrows point to areas of marked differences in density maps due to past
experience. In panels (b-e) dots represent simulated fish, error bars are mean SEM and N=24±
simulation repetitions.

Movies:

Movie 1: Free swimming behavior of larvae at low and high densities. Groups of 5 and 20
larvae, age 7 dpf, swimming together in a group. Colors represent individual fish; the movie is
shown at x4 real speed.

Movie 2: Individual larva swimming at low and high densities of virtual neighbors. A
single larval zebrafish, age 7 dpf, swimming in low (4 virtual neighbors) and high (19 virtual
neighbors) densities. The movie is shown at x2 real speed.

Movie 3: Individual larva responding to different motion statistics of virtual neighbors.
Examples of individual larval zebrafish, age 7 dpf, responding to high densities (19 virtual
neighbors) of: (1) stationary neighbors, (2) neighbors moving on concentric circles around the
larva (translational motion only), and (3) stationary neighbors with sizes growing and shrinking
(looming motion only). The movie is shown at x2 real speed.

Movie 4: Individual larva responding to different motion statistics of a single virtual
neighbor. Examples of individual larval zebrafish, age 7 dpf, responding to single dot mimicking
a neighboring fish that: (1) moves radially around the fish at a constant distance (moving), (2)
moves radially around the fish at decreasing distances (moving closer), and (3) moves radially
around the fish at a constant distance and increases in size (moving and growing). The movie is
shown at x2 real speed.
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Methods:

Fish husbandry
All larvae used in the experiments were obtained by crossing adult AB zebrafish. Larvae were
raised in low densities of approximately 40–50 fish in large petri dishes (D = 12 cm). Dishes
were filled with filtered fish facility water and were kept at 28°C, on a 14–10h light dark cycle.
From age 5 dpf, fish were fed paramecia once a day. All experiments followed institutional
IACUC protocols as determined by the Harvard University Faculty of Arts and Sciences standing
committee on the use of animals in research and teaching.

Group swimming experiments with density switches
At age 7dpf, fish were transferred from their holding dishes to round custom-designed
experimental arenas (d = 6.5cm, depth 1cm), filled with filtered fish facility water up to a height
of ~0.8 cm (12). Briefly, these plastic experimental arenas had a flat bottom and curved walls
(half a sphere of radius 0.5 cm) and were sandblasted to prevent reflections and allow for
stimulus projection directly on the arena’s surface (see (12) for full details). Every experimental
arena was filmed using an overhead camera (Grasshopper3-NIR, FLIR System, Zoom 7000,
18–108 mm lens, Navitar) and a long pass filter (R72, Hoya). Arenas were lit from below using 4
infrared LED panels (940 nm panels, Cop Security) and from above by indirect light coming
from 4 32W fluorescent lights. All recording procedures and subsequent fish tracking were
performed as described in (12).
Fish were pre-acclimated in either low density (5 fish) or high density (20 fish) for 4 hrs prior to
behavioral imaging. After the pre-acclimation period, fish were imaged for 20 minutes to obtain a
baseline measure of their behavior. We then combined 5 fish groups into 20 fish groups or
separated 20 fish groups into 5 fish groups. Fish were then imaged again for 20 minutes to
measure how pre-exposure to one density affects behavior in the current density. Groups were
eliminated from subsequent analysis in the case that one or more of the fish were immobile for
more than 50% of the experiment. All and all 7.2% and 9.3% of groups of 5 and 20 fish were
eliminated from the analysis due to immobility of the fish. Choosing a more stringent, or a less
stringent criteria for elimination did not change the qualitative nature of the results.

Fish kinematics and group level properties
Individual and group level properties were extracted following the procedures described in (12).
The position of each fish i at time t is defined as the center of mass of the fish extracted from

offline tracking and is denoted as . The velocity of each fish i is given by𝑥
→

𝑖
(𝑡)

, where dt is 1 frame or 0.033s. The speed of the fish is𝑣
→

(𝑡)
𝑖

= [𝑥
→

𝑖
(𝑡 + 𝑑𝑡) − 𝑥

→

𝑖
(𝑡 − 𝑑𝑡)]/2𝑑𝑡

then , and the direction of motion is . Distance between fish i and j𝑠
𝑖
(𝑡) = |𝑣

𝑖

→
(𝑡)| 𝑑

𝑖

→
(𝑡) = 𝑣

𝑖

→
/|𝑣

𝑖

→
(𝑡)|

is the euclidean distance . Chance levels for interindividual distances𝑑
𝑖𝑗

(𝑡) = |𝑥
→

𝑖
(𝑡) − 𝑥

→

𝑗
(𝑡)|

were calculated from randomized groups created by mixing fish from separately recorded
groups and randomly shuffling their time signatures. For 20 fish groups, we allocated fish from
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different groups to the extent possible by the number of tested groups, filling in with fish that did
swim together but randomly shuffling their time signatures.

Estimating retinal occupancy
We defined the effective retinal field of each eye as the visual angle extending from the fish’s
heading direction (0o) towards its tail ( 165o), assuming a 30o blind angle directly behind the±
fish. To estimate retinal occupancy, we used the physical length of a neighboring fish (a straight
line from snout to tail), the distance to the focal fish and the relative angle with respect to the
heading direction of the focal fish to calculate the specific angles out of the retinal field occupied
on each eye. When estimating total occupancy within each eye we corrected for instances of
neighboring fish occluding one another (Fig. 1e).

Turning in response to the difference in retinal occupancy between the eyes
To estimate turning direction (left vs. right) in response to difference in retinal occupancy
between the eyes P(turn right| retinal occupancy)(Fig. 1e) we measured the change in heading∆

angle around a detected bout event and used the visual occupancy∆𝑑
𝑖

→
(𝑡) = 𝑑

𝑖

→
(𝑡) − 𝑑

𝑖

→
(𝑡 − τ) 

measured at the beginning of that bout. Specifically, P(turn right| retinal occupancy) is the∆
fraction of right turns out of all left/right turns recorded for 5o (groups of 5 fish) or 10o (groups of
20 fish) bins of Δretinal occupancy. We discarded all turning events at distance < 1.25 body
length from the wall, as not to confound wall avoidance with neighbor responses.

Virtual reality experiments
Every VR experimental arena was filmed using an overhead camera (Grasshopper3-NIR, FLIR
System, Di II VC, 18–200 mm lens, Tamron) and a long pass filter (IR720, Zuma). All
experimental arenas were lit from below using an infrared LED panel (850 nm panels, Univivi)
and from above by indirect light coming from 4 32W fluorescent lights. Stimuli were projected
from below, directly onto the sandblasted arenas using P7 mini LED projectors (AAXA) (Fig. 2a).
Every 8 experimental arenas were connected to a single computer controlling stimulus
projection, video recording and online behavioral tracking. Stimuli were updated at 60hz and
behavioral data was recorded at 90hz. All and all we used 24 experimental arenas allowing us
to test different experimental conditions on the same experimental day within the same clutch of
fish. All fish tracking and posture analysis were done using custom software written in Python
3.7 and OpenCV 4.1 as described in (12, 55). Briefly, movie images were background
subtracted online to obtain an image of the swimming fish, and body orientation was estimated
using second-order image moments. In all experiments, fish were first pre-acclimated in their
designated groups (5 or 20 real fish) for at least 4 hrs. Single fish were then transferred to
individual arenas and interacted with the projected virtual neighbors. Fish with bout rates <
0.25Hz were removed from the analysis, as 7dpf larvae are expected to bout at around 1Hz. All
and all less than 5% of the fish were discarded from our analysis. To filter out instances where
fish were temporarily immobile, we limit our data to instances when fish actively performed
bouts. While this filtering removes some noise in our data it does not change any of our findings.
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Trajectory replay stimuli
Virtual neighbors were presented as dark dots (d=1.5cm) on a light background. We used
example trajectories of 5 and 20 fish, randomly chosen from real groups recorded in the free
swimming experiments. In cases where stimuli presentation time in the experiments exceeded
the length of the recorded trajectories (20min), we restarted the stimulus causing a momentary
discontinuity in the presented stimuli. Similarly, when switching between low and high densities,
a momentary discontinuity exists in the dots’ trajectories. To confirm that our findings are not
unique to the specifically chosen stimuli sets, we created surrogate fish trajectories by randomly
sampling from the distribution of bout sizes, interbout intervals and turning angles of the
recorded fish. Experiments using these surrogate data sets, closely matched our findings using
the replayed trajectories. Below we describe the various stimuli sets we used in all VR
experiments:

● Increasing time of high density (Fig. 2e). We repeatedly presented a 5 min segment of the
20 min trajectories to better compare between shorter and longer exposures. For example,
fish that were exposed to 20 min of high density, were presented with the same 5 min stimuli
as fish that were exposed to 5 min of high density, but the stimuli looped 4 times for the 20
min condition.

● Stationary dots (Fig. 3a, Movie 3). We used a single, randomly chosen frame from the
recorded fish trajectories. Dots were stationary for the entire stimulus presentation time.

● Low density with increased speed (Fig. S3b). To speed up fish swimming by a factor of 2 or
4, we downsampled the recorded trajectories. This allowed fish to traverse the same
distance by either 1/2 or 1/4 of the time. We then looped the trajectories to compensate for
the shorter total presentation time.

● Rotational trajectories (Fig. 3a, Movie 3). To independently test the effects of rotational
energy we presented a high density of dots (19) moving on 1d rings centered around the
focal fish. Radial distances from the focal fish were chosen based on the most likely
distance to find the 1st, 2nd…19th nearest neighbor in the recorded trajectories. Angular
position with respect to the heading direction of the focal fish was changed in a bout-like
fashion, with clockwise/counter clockwise direction of motion chosen randomly for each
bout.

● Stationary Looming dots (Fig. 3a, Movie 3). To independently test the effects of looming
energy, we arranged 19 dots equally spaced from one another within a circle (forming an
hexagonal formation). Dot sizes increased and decreased with temporal dynamics taken
from the recorded changes in angular size experienced by a focal fish swimming with virtual
neighbors. Minimum and maximum dot radii were chosen at cm and𝑟

𝑚𝑖𝑛
= 0. 075

cm. 𝑟
𝑚𝑎𝑥

= 0. 9

● Trajectories of 40 agents (Fig. S3d). We combined the real recorded trajectories of two 20
fish groups to form a 40 agent group.
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Single dot stimulus
We used a similar protocol for single dot presentations as described in (12). Briefly, In each trial,
a single dot appeared at one side of the fish at a given radial distance and moved with fish-like
bouts tangentially around the fish from ±75o to ±30o for 5s, with 0o taken as the fish heading
direction. Presentation side was chosen at random and once a dot reached the end of its
trajectory a new dot immediately appeared (0s inter-stimulus interval) (Fig. 3b, Movie 4). We
manipulated the dot’s radial distance or the dot’s radius according to the following stimulus
conditions:

● ‘Moving’ dot stimulus. We set dot radius = 0.15cm and distance to dot center = 0.42cm.
Hence, dots had a constant angular size of ~40o throughout the trial.

● ‘Moving closer’ dot stimulus. Dots had a constant radius = 0.075cm, and the distance to the
dot center gradually decreased over the 5s presentation time from 0.92cm to 0.22cm, i.e.
angular size changed from ~9o to ~40o throughout the trial.

● ‘Moving and growing’ dot stimulus. Dots were presented at a constant distance of 0.35 cm,
and dot radius was increased from 0.025cm to 0.13, i.e. angular size changed from ~9o to
~40o throughout the trial.

Estimating fish response to a single dot stimulus
To analyze fish responses to the single dot stimuli we calculated for each bout during stimulus
presentation the change in body orientation of the fish. We then calculated the overall probability
to turn left or right in a given trial. These probabilities were then averaged over blocks of trials
and over fish (Fig. 3b).

Estimating fish responses to global retinal occupancy based on monocular averaging
and binocular comparisons.
Previously, we showed that 7 dpf larvae turn away from the eye that experiences a higher retinal
occupancy (12). Responses to the global retinal occupancy of neighbors occupying the set of

visual angles (on the left and right eyes) follow the form:θ 𝑙𝑒𝑓𝑡, θ 𝑟𝑖𝑔ℎ𝑡

𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|θ 𝑙𝑒𝑓𝑡, θ 𝑟𝑖𝑔ℎ𝑡) = 0. 5 +
𝑖

θ𝑙𝑒𝑓𝑡

∑ 𝑤
𝑖
𝑙𝑒𝑓𝑡· 𝑏𝑖𝑎𝑠(𝑣

𝑖
𝑙𝑒𝑓𝑡 ) +

𝑖

θ𝑟𝑖𝑔ℎ𝑡

∑ 𝑤
𝑖
𝑟𝑖𝑔ℎ𝑡· 𝑏𝑖𝑎𝑠(𝑣

𝑖
𝑟𝑖𝑔ℎ𝑡) (2)

Where is the turning direction bias in response to vertical𝑏𝑖𝑎𝑠(𝑣
𝑖
) = 𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|𝑣

𝑖
) − 0. 5

retinal occupancy , is the relative weight assigned to each response bias and represents a𝑣
𝑖

𝑤
𝑖

weighted average of the turning biases for each eye. The intercept 0.5, centers the𝑤
𝑖

=  𝑣
𝑖
/Σ 𝑣

𝑖

summed responses around that value and is bounded between 0 and𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|θ 𝑙𝑒𝑓𝑡, θ 𝑟𝑖𝑔ℎ𝑡)
1. If we assume that and , i.e.𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|𝑣

𝑖
) = 𝑎𝑣

𝑖
+ 0. 5 𝑝(𝑡𝑢𝑟𝑛 𝑙𝑒𝑓𝑡|𝑣

𝑖
) =− 𝑎𝑣

𝑖
+ 0. 5

response can be approximated as a linear function of , we can rewrite the above equation as:𝑣
𝑖
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𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|θ 𝑙𝑒𝑓𝑡, θ 𝑟𝑖𝑔ℎ𝑡) = 0. 5 +
𝑖

θ𝑙𝑒𝑓𝑡

∑ 𝑤
𝑖
𝑙𝑒𝑓𝑡 · 𝑎𝑣

𝑖
𝑙𝑒𝑓𝑡 −

𝑖

θ𝑟𝑖𝑔ℎ𝑡

∑ 𝑤
𝑖
𝑟𝑖𝑔ℎ𝑡 · 𝑎𝑣

𝑖
𝑟𝑖𝑔ℎ𝑡 (3)

And since , we get:𝑤
𝑖

=  𝑣
𝑖
/Σ 𝑣

𝑖

𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|θ 𝑙𝑒𝑓𝑡, θ 𝑟𝑖𝑔ℎ𝑡) = 0. 5 + 𝑎[
𝑖

θ𝑙𝑒𝑓𝑡

∑ (𝑣
𝑖
𝑙𝑒𝑓𝑡)2/Σ 𝑣

𝑖
−

𝑖

θ𝑟𝑖𝑔ℎ𝑡

∑ (𝑣
𝑖
𝑟𝑖𝑔ℎ𝑡)2/Σ 𝑣

𝑖
] (4)

Hence, the turning direction of the fish is dependent linearly on the difference in the weighted
average of the squared vertical visual angles in each eye. We estimate this function from data in
Fig. 4b and use it in simulating fish responses to virtual neighbors (see below) (Fig. 5a-d).

Time varying models of fish social interactions
The basic individual agent swim properties, responses to arena walls and static inter-individual
interactions based on retinal occupancy used in the models here, were previously described in
(12). We briefly describe the details again here, and expand on the novel aspects of experience
dependent modulation of inter-individual interactions.

a. Basic swim properties. Each stationary fish, at every time step, probabilistically decides to
perform a bout according to the average bout rates of real fish. Similarly, bout duration and
distance traveled in a bout followed that of the average bouts of real fish (12).

b. Wall interactions. Similar to real fish, simulated agents’ first priority is to avoid crushing into
the walls. Therefore, agents ignore their neighbors when in close proximity to the arena
walls and turn away from the direction of the closest arena wall. In every bout, the probability
to respond to the walls and to turn in the opposite direction is drawn from the empirical wall
response functions observed in real fish (Fig. S1c). If the executed bout was expected to
end outside of the arena, it was truncated to ensure the fish stayed inside the simulated
arena.

c. Turning behavior in response to global retinal occupancy of neighbors. We used the
algorithms described in (12) and in Eq. 2 (see above) to simulate the response of agents to
the global retinal occupancy of their neighbors. When modeling agents responding to stimuli
from VR experiments (Fig. 5a-d), we used the estimated response to vertical retinal
occupancy extracted from VR experiments (Fig. 4a) and the linear approximation presented
in Eq. 4. In models simulating a group of interacting agents (Fig. 5e-f), we used the
estimated responses to vertical retinal occupancy described in (12). Vertical retinal
occupancy of neighbor i at visual sub-angle j (Vcji) was calculated using the simulated height
(Hj) and distance (dj) of neighbor j: . For simplicity, we did not𝑉𝑐

𝑗𝑖 
= 2 · 𝑎𝑟𝑐𝑡𝑎𝑛(𝐻

𝑗
/𝑑

𝑗
)

account for occlusions among neighbors in estimating retinal occupancy as initial
simulations showed that it did change our simulation results. In addition, we also assume
that the height of the fish along its body axis is constant, allowing us to treat the vertical
occupancy at all visual sub-angles occupied by neighbor j as a single value.
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d. Leaky Integrator module for temporal integration of neighbor-evoked looming events. The
experimental findings from VR experiments (Fig. 2e-g, Fig. 3a-c) indicate that agents slowly
integrate (and remember) neighbor-evoked looming events on their retina. This process
develops slowly, remains stable for many hours, and can be reverted back to baseline via
the removal of all retinal inputs (Fig. 2e-g). We therefore introduce a leaky integrator
module, that temporally updates an internal state variable according to the the input to𝑠(𝑡)
the integrator , which is the maximal increase in retinal occupancy of any neighbor𝐼𝑛𝑝𝑢𝑡(𝑡)
experienced at time (Eq. 1). In the absence of visual input (or with a weak input), the𝑡
internal state variable will exponentially decay back to a resting state value with a time𝑠

𝑟𝑒𝑠𝑡

constant τ.

e. Linking internal state to agents’ occupancy based turning behavior. We assume that𝑠(𝑡)
higher internal state values indicate weaker responses to retinal occupancy of𝑠(𝑡)
neighbors, as seen in behavioral experiments. Therefore we linked to the strength of𝑠(𝑡)
response to retinal occupancy . For simplicity, we assumes a𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|𝑣

𝑖
) = 𝑎𝑣

𝑖
+ 0. 5

linear relationship between and the slope of the response , and define it as𝑠(𝑡) 𝑎

, where is the starting value of the integrator, D is a scaling factor𝑎' = 𝑎(1 −
𝑠(𝑡)−𝑠

𝑠𝑡𝑎𝑟𝑡

𝐷 ) 𝑠
𝑠𝑡𝑎𝑟𝑡

and is the value estimated from groups of 5 fish that were not previously exposed toα
changes in social density (Fig. 4b)(12).

f. Switching simulated agents between high and low density. When switching a group of
simulated agents between densities mid simulation (Fig. 5e-f), we either removed (high to
low) or increased the number of simulated agents. When removing agents, we simply chose

agents randomly, and eliminated them from the rest of the simulations. When𝑁
𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑒

adding agents, we assigned the agents starting positions and heading orientations at𝑁
𝑡𝑜 𝑎𝑑𝑑

random. The internal state values of the added agents, were chosen such that they𝑠(𝑡)
represent the distribution of values of internal states of the agents already swimming
together. Therefore, we randomly drawn for the newly added agents from a normal𝑠(𝑡)
distribution with mean and sd calculated from agents already swimming together.𝑁

g. Model parameters used in simulations

Parameter name Description Values (Single agent in VR/
Group of agents)

Arena diameter Similar to the arena sizes in
group swimming experiments

6.5 / 6.5

Time interval ( )∆𝑡 Time between simulated
steps

1/50 s/ 1/50 s

Simulation time Total simulated time per Matching real fish
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group experiments

Number of repetitions Random repetitions of a
given model - matching
experimental repetitions

24 per condition / 24 per
condition

Fish starting positions Random positions within
0.9*arena diameter

Fish length Estimated from fish 0.4cm/ 0.4cm

Fish height Estimated from fish 0.4 cm/ 0.2cm

Bout Rate Estimated from group
swimming experiments

1.64 Hz/1.64 Hz

Bout size Estimated from group
swimming experiments

0.1cm / 0.1cm

Bout duration Estimated from group
swimming experiments

320 ms/ 320ms

𝑎 Slope of response to retinal
occupancy
𝑝(𝑡𝑢𝑟𝑛 𝑟𝑖𝑔ℎ𝑡|𝑣

𝑖
) =  𝑎𝑣

𝑖
+ 0. 5

0.0104 / 0.00372
(Estimated from data /
estimated from data in (12))

𝑠
𝑟𝑒𝑠𝑡

Resting state potential of
leaky integrator

0 / 0

𝑠
𝑠𝑡𝑎𝑟𝑡

Starting value of integrator -
steady state value for 5 fish
groups.

0.6 / 0.6

τ Leak time constant.
Estimated from data (Fig.
3b,d)

6 hrs / 6 hrs

𝑟 Scale parameter for input.
Fitted to data.

13 /13

D Scale parameter for linearly
relating to . Fitted to𝑠(𝑡) 𝑎
data.

0.19 for all simulations. 0.1
for figure 5d. To account for
stronger response in this
experimental fish batch.

Sample sizes, and power estimation. Sample sizes for group swimming experiments were
chosen to allow accurate estimates of group level statistics (e.g. nearest neighbor distances)
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and inter-individual interaction functions according to previously reported data in larval zebrafish
(12, 41), and to allow at least 10 degrees of freedom when using non-parametric statistical
models to compare between experimental conditions. Due to the unique experimental structure
(where 5 fish groups are combined to 20 fish groups), there is considerably more data collected
for 5 fish groups than 20 fish groups. In virtual reality experiments, we used 16-24 fish per
experiment, in accordance with previously published data (12) and as our preliminary data
showed that these numbers are sufficient to estimate fish responses and the differences
between experimental conditions.

Statistical testing. We used non-parametric statistical modeling to compare between
experimental conditions and report exact p-values. We also report mean sem, and plot all±
individual data points. We report Cohen’s d as a measure of effect size when appropriate.
Before a statistical model was chosen we made sure model assumptions are fulfilled. All
reported p-values, when no a-priori hypothesis of the direction of the effect exists, are two-sided
p-values. Our treatment of statistical reporting followed the guidelines in (64).

Code and data availability.

All data are publicly available at: https://doi.org/10.7910/DVN/KWA7DK

All codes used for model simulations are publicly available at:
https://github.com/harpazone/Experience-dependent-modulation-of-collective-behavior
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