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Abstract 

Pediatric brain cancer is the leading cause of disease-related mortality in children, and 

many aggressive tumors still lack effective treatment strategies. Despite extensive studies 

characterizing these tumor genomes, alternative transcriptional splicing patterns remain 

underexplored. Here, we systematically characterized aberrant alternative splicing across 

pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most 

heterogeneous. Through integration with UniProt Knowledgebase annotations, we identified 

12,145 splice events in 5,424 genes, leading to functional changes in protein activation, folding, 

and localization. We discovered that the master splicing factor and cell-cycle modulator, CDC-

like kinase 1 (CLK1), is aberrantly spliced in HGGs to include exon 4, resulting in a gain of two 

phosphorylation sites and subsequent activation of CLK1.  Inhibition of CLK1 with Cirtuvivint in 

the pediatric HGG KNS-42 cell line significantly decreased both cell viability and proliferation in 

a dose-dependent manner. Morpholino-mediated depletion of CLK1 exon 4 splicing reduced 

RNA expression, protein abundance, and cell viability. Notably, KNS-42 cells treated with the 

CLK1 exon 4 morpholino demonstrated differential expression impacting 78 genes and 

differential splicing with loss or gain of a functional site in 193 genes annotated as oncogene or 

tumor suppressor genes (TSGs). These genes were enriched for cancer-associated pathways, 

with 15 identified as significant gene dependencies in pediatric HGGs. Our findings highlight a 

dependency of pediatric HGGs on CLK1 and its roles contributing to tumor splicing 

heterogeneity through transcriptional dysregulation of splicing factors and transcriptional 

modulation of oncogenes. Overall, aberrant splicing in HGGs and other pediatric brain tumors 

represents a potentially targetable oncogenic pathway contributing to tumor growth and 

maintenance.  

Introduction 
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Pediatric brain cancer is the number one cause of disease-related death in children1. 

Furthermore, pediatric high-grade gliomas (HGGs) are largely resistant to chemotherapy and  

are often surgically unresectable, making them exceptionally challenging2. Despite decades of 

clinical trials in pediatrics, patients with certain tumor types such as diffuse intrinsic pontine 

glioma (DIPG) or diffuse midline glioma (DMG) will succumb to their disease, with a median 

overall survival of 9.73 months in patients undergoing surgical biopsy3. Even with optimal 

multimodal therapy, median overall survival for non-DMG patients with a HGG is 14-20 months4.   

Within the last decade, surgical biopsies and post-mortem tissue collection has enabled 

genomic profiling and somatic characterization of pediatric HGGs. While somatic drivers such 

as mutations, fusions, and copy number amplifications and/or deletions have been well-

characterized, the splicing landscape of pediatric HGGs remains underexplored. Two reports 

have shown rare, but mutually exclusive, alterations in spliceosome-related factors such as 

SF3B1 and SF3B2 in pediatric HGGs. These alterations dysregulated additional cellular 

processes involved in maintenance of DNA replication, genome integrity, or transcriptional 

fidelity5,6. More recently, Siddaway, et. al. describe alternative aberrant splicing as a novel 

mechanism of oncogenic pathway activation in pediatric HGGs. In this study, cancer drivers, 

including members of the RAS/MAPK pathway, were differentially spliced leading to the 

activation of the RAS/MAPK pathway and worse glioblastoma patient survival7. Alternative 

splicing plays critical roles in numerous fundamental biological processes, for example, 

increasing proteomic diversity, stabilizing or destabilizing mRNA transcripts, lowering protein 

steady-state levels, and influencing critical protein functionality such as enzymatic activity, 

protein folding, and localization8,9. Splicing plays a vital role in generating tissue-specific 

transcriptomes. The mammalian brain expresses the most complex and conserved alternative 

splicing programs in relation to other tissues and their disruption can result in a variety of 

neurological diseases and disorders10,11. The splicing process is regulated by a balance of 

multiple trans-acting RNA-binding proteins (RBP), such as the Serine-rich Splicing Factors 
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(SRSFs), that bind to splicing regulatory elements across preliminary mRNA transcripts. 

Disturbing that balance can be detrimental to cellular functionality, and has been associated 

with oncogenic transformation12,13.  

Here, we perform a large-scale analysis of genome-wide splicing across pediatric CNS 

tumors and show widespread dysregulation of pre-mRNA alternative splicing across pediatric 

CNS tumors. Our findings reveal that alternative splicing can result in the removal or addition of 

known functional sites predicted to have significant downstream effects on various cellular 

functions potentially leading to cell viability and cell-cycle dysregulation. We identify and 

experimentally characterize CLK1 as a candidate oncogenic dependency in pediatric HGGs and 

propose that targeting of aberrant splicing and/or its resulting downstream proteins may offer 

additional therapeutic avenues for precision cancer therapy. 

 

Results 

Pediatric brain tumors display heterogeneous global patterns of aberrant splicing 

We utilized replicate Multivariate Analysis of Transcript splicing (rMATs)14,15 to quantify 

transcriptome-wide alternative splicing events across primary pediatric brain tumors (N = 1,434) 

from the Open Pediatric Cancer (OpenPedCan) project16. These broad tumor types shown in 

Figure 1A  include Atypical Teratoid Rhabdoid Tumor (ATRT, N = 56), choroid plexus tumor 

(CPT, N = 32), craniopharyngioma (CPG, N = 51), diffuse intrinsic pontine glioma or diffuse 

midline glioma (DIPG or DMG, N = 131), ependymoma (N = 110), germ cell tumor (N = 16), low-

grade glioma (LGG, N = 337), medulloblastoma (MB, N = 200), meningioma (N = 29), 

mesenchymal tumor (N = 27), mixed neuronal-glial tumor (GNT, N = 112), neurofibroma 

plexiform (N = 12), non-neoplastic tumor (N = 45), other CNS embryonic tumor (N = 16), other 

high-grade glioma (other HGG, N = 212), schwannoma (N = 21), and other rare brain tumors (N 

= 27). Associated demographic and clinical data for each patient and tumor in this study are 

available in Table S1. We examined four types of splicing events (single exon: SE, alternative 5’ 
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splice site: A5SS, alternative 3’ splice site: A3SS, and retained intron: RI) and observed that SE 

splicing is overwhelmingly the most frequently observed (Figure 1B) for both increased 

inclusion and skipping events, consistent with a previous report in pediatric HGGs7. Importantly, 

we did not observe an effect of RNA library on percent spliced in (PSI) predictions and found 

that the sample aliquots sequenced with a poly-A or stranded library had strong positive 

correlations for genome-wide PSI values (Pearson’s R = 0.98, p-value < 2.2e-16, Figure S1A-

B). 

Due to the diverse biological drivers of these CNS cancers and their molecular subtypes, 

we hypothesized that we might observe histology- or subtype-specific splicing patterns. Indeed, 

our assessment of recurrent exon skipping (ES) or exon inclusion (EI) events (N ≥ 2) revealed 

histology-specific splicing events in some tumor types, shared events across some histologies, 

as well as lack of recurrent events in other histologies when focusing on the top 40 sets that can 

comprise one histology or multiple histologies (Fig 1C, Figure S1B). Within these histologies, 

we found that MB, LGG, and HGG tumors exhibited the highest number of recurrent, unique  

skipping events (MB = 2,644, LGG = 1,860, other HGG = 1,610, DMG = 687) and inclusion 

events (MB = 1,235, LGG = 814, other HGG = 677). To ensure this observation was not skewed 

by the number of patient tumors per histology grouping, we normalized these events by the 

number of patients. We observed that MB and HGG tumors had the highest total number of 

unique, recurrent single exon events per patient (Fig 1D). We plotted the top 40 sets with a 

complete list of unique events per histology reported in Table S2A-B. Taken together, these 

findings suggest that there are both tumor type-specific and shared splicing patterns in pediatric 

brain tumors. 

We further investigated single exon-associated events and devised a metric called the 

splicing burden index (SBI) to compute the proportion of differential alternative splicing (AS) 

events in each sample compared to all other tumor samples (Figure 1E, see Methods). This 

metric allows for transcriptome-wide assessment of differential AS within a tumor sample. The 
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median SBI across this cohort was 0.029 (or 2.9%). LGG tumors had the lowest median SBI 

(0.0150, 1.5%), while germ cell tumors had the highest (0.0802, 8.02%). Tumors with a low 

splicing burden variance (< 1st quantile variance across all tumors, or 0.0015561) include other 

tumors, other CNS embryonal tumors, meningiomas, choroid plexus tumors and schwannomas, 

while more heterogeneous tumors (splicing burden variance > 0.0022047) include DIPG or 

DMG, MB, mesenchymal tumors, neurofibroma plexiform, and germ cell tumors. We performed 

a similar analysis on the other splicing cases (A5SS, A3SS, and RI) and observed that LGGs 

and schwannomas continued to exhibit the lowest median SBI across splice types, while other 

tumors and germ cell tumors (GCTs) maintained the highest median SBI. However, the ordering 

of tumors shifted in some instances, suggesting that certain types of splice events may be more 

prevalent in some histologies compared to others. For example, DIPG or DMG tumors changed 

from having a low median SBI for SE events to a higher median SBI for other event types, 

suggesting an increased splicing burden for RI, A5SS, and A3SS splicing changes (Figures 

S1D-F). We next assessed the proportion of low and high SBI tumors in the cohort by histology. 

The majority (> 70%, N = 156/213) of LGGs consisted of tumors with low SBI, while the majority 

of germ cell tumors (N = 11/12) had a high SBI (Figure 1F). Moreover, greater than 25% of 

tumors within the following histologies had a high SBI: other HGG, MB, ATRT, CPG, other 

tumors, non-neoplastic tumors, GCT, mesenchymal tumors, and neurofibroma plexiform while 

greater than 25% of tumors within the following histologies had a low SBI: LGG, GNT, DIPG or 

DMG, and CPG. These results further highlight the heterogeneous splicing landscape across 

pediatric CNS tumors.  

We next hypothesized that tumors with a low tumor mutation burden (TMB) might have a 

higher splicing burden index as an alternate mechanism driving tumorigenesis.  Interestingly, we 

did not find an overall correlative relationship between TMB and SBI when analyzing the full 

CNS tumor cohort together (all tumors: Pearson’s R = 0.037, p-value = 0.19 and with hyper-

mutant tumors removed: R = 0.018, p-value = 0.53, Figure S1G-H), but when assessing the 
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relationship by histology (Figure S1I), we found significant negative correlations between TMB 

and SBI in LGG (Pearson’s R = -0.15, p-value = 0.0059), DIPG or DMG (Pearson’s R = -0.24, 

p-value = 0.025), and Schwannomas (Pearson’s R = -0.77, p-value = 0.00018). As an alternate 

approach, we asked whether TMB was different between tumors with high and low SBI within 

histologies (Figure 1F). We found a significant inverse relationship between SBI and TMB in 

only CPTs, LGGs, GNTs, and schwannomas (Wilcoxon p-value < 0.05), indicating that aberrant 

splicing may serve as an alternative reservoir for uncovering oncogenic mechanisms in 

mutationally silent tumors. 

 

Splicing drives novel biological clusters and splicing burden differentiates key splicing 

factors in pediatric high-grade gliomas 

To determine whether CNS tumors share transcriptional splicing biology, we performed 

consensus clustering of PSI values across all primary CNS tumors using the Partition Around 

Medoids algorithm with Canberra distance metric, which revealed 12 clusters spanning 

histologies (Figure 2A). A full list of parameters and statistics are detailed in Table S2C. 

Clusters 1 and 12 were predominantly composed of MB (Figure 2B) with both containing all 

four MB subtypes: SHH, WNT, Group 3, and Group 4 (Figure S2C), suggesting unique splice-

driven biological underpinnings even within molecularly-defined  subtypes. Although Cluster 11 

was dominated by EPNs (Figure 2B), it comprised all EPN molecular subtypes (Figure S2C). 

While Cluster 4 contained the majority of LGGs in the cohort, LGGs spanned nine of 12 clusters 

(Figure S2C) and clusters were not subtype-specific. Notably, HGGs, including DIPG or DMG, 

exhibited the highest degree of splicing heterogeneity, spanning across all 12 clusters (Figure 

2B and S2C). Taken together, the transcriptional mechanisms underlying these clusters’ 

formation are not solely driven by molecular subtype. A full list of samples with associated 

cluster membership information is outlined in Table S2D.  We further assessed cluster 

membership of tumors with high or low SBI and found that tumors with high SBI were present in 
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ten clusters, while the low SBI tumors grouped almost entirely with Cluster 4, followed by 

Clusters 3, 5, and 11 (Figure 2C). We aimed to understand the biology driving cluster formation 

and used gene set variation analysis (GSVA) to identify enriched cancer-associated signaling 

pathways represented by splice events in each of the 12 clusters. Figure 2D displays the top 

pathways differentially-regulated between pairs of clusters (Bonferroni-adjusted p-value < 0.05). 

Strikingly, the spliceosome pathway was significantly up- or down-regulated in all cluster groups 

when performing pairwise comparisons to all other groups (Bonferroni-adjusted p-value < 1.28e-

46 - 1.01e-4). Further, we show a significant positive correlation (Figure 2E, Pearson’s R = 0.55, 

p-value < 2.2e-16) between GSVA spliceosome pathway scores and SBI, both validating the 

use of the SBI metric to measure splicing activity and suggesting that splicing factors 

themselves are mis-spliced, likely contributing to the transcriptome-wide differential splicing we 

are observing within pediatric brain tumors. Other pathways that were enriched for certain 

clusters included DNA repair, mitotic spindle, and KRAS signaling. For example, Cluster 1 was 

dominated by MB subtype Group 4 (Figure S2C), which also showed significant dysregulation 

in the KRAS signaling pathway, corroborating early characterization of these tumor types17. 

These results reveal that although we observe transcriptome-wide splicing variation in all 

tumors, distinct pathways and genes are targeted in each cluster. Taken together, we show that 

each cluster may have unique transcriptional underpinnings influencing distinct pathways which 

may, in turn, contribute to tumorigenesis.  

Given their cluster and SBI heterogeneity and high number of unique, recurrent splice 

events, we narrowed our focus to all pediatric HGGs. Since we sought to understand the 

mechanisms underlying the widespread and pervasive splicing, we first assessed somatic 

alterations in splicing factor-encoding genes or splicing regulators in our cohort. Interestingly, a 

recent splicing study found that 34% of pediatric HGGs had a somatic alteration, mutation 

and/or CNV, in a gene in the HUGO spliceosome complex7. Since few of these genes overlap 

with the splicing factors and their canonical regulators assessed in our study, we combined our 
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gene lists and investigated somatic alterations in these genes. We removed hypermutant 

tumors (≥ 10 Mut/Mb), filtered for putative deleterious mutations (defined by SIFT and/or 

PolyPhen), and found that 128 HGG tumors from 195 patients (65%) harbored at least one 

somatic SNVs/InDel, fusion, or CNV in a gene in the spliceosome complex or that regulates 

alternative splicing (Table S3A, Supplemental Figure S2D). However, the mutation 

frequencies in each gene only ranged from 1-8%, and there was no significant enrichment in 

any gene based on SBI status. It has been previously shown that in the absence of splicing 

factor gene mutations, RNA expression changes in these genes can cause downstream splicing 

changes to promote tumor formation 18–20. Thus, we performed differential gene expression (DE) 

analysis between high vs low SBI HGGs for known splicing factors and related genes21 (Figure 

2F) and found 44.3% (N = 77/174) to be significantly differentially expressed (adjusted p-value < 

0.05 and  log2-fold change > |2|, Table S2). Specifically, 57% (16/28) genes encoding the 

serine/arginine-rich splicing factor (SRSF) and heterogeneous nuclear ribonucleoproteins 

(hnRNP) families of trans-acting splicing factors known to directly influence exon-associated 

splicing were significantly DE between high vs low SBI HGGs. (Figure 2G). Since changes in 

gene expression may not necessarily result in corresponding changes at the protein level, this 

finding prompted us to investigate proteomic alterations in these splicing factors. We integrated 

gene expression and proteogenomic (N = 188) data from pediatric brain tumors obtained from 

the Clinical Proteomic Tumor Analysis Consortium (CPTAC)22. We observed that mRNA and 

protein expression for these splicing factors are tightly correlated across pediatric CNS tumors 

(Figure 2H), supporting previous reports that differential mRNAs are better correlates to protein 

levels23. As such, mRNA levels of these splicing factor genes can be used as surrogate 

measurements for protein abundance and function. 

  

Recurrent splicing aberrations alter known proteomic functional sites, including the gain 

of phosphorylation binding sites in splicing regulator CLK1 
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In order to further elucidate the aberrant splicing landscape of pediatric HGGs (N = 343), 

we developed a robust and adaptable workflow to prioritize recurrent single exon events with 

predicted functional impact (Figure 3A). We first applied a threshold of ≥ 10 junction read 

counts to identify expressed splice events. Next, we prioritized histology-specific recurrent (N ≥ 

2) events that were differentially spliced (ΔPSI z-score > |2|) in a sample compared to the whole 

cohort. We identified a total of 56,550 recurrent differential splicing events in HGGs. 

Subsequently, we annotated these events for overlap with known Uniprot functional sites and 

prioritized those leading to gain or loss of a functional site affecting disulfide bonding, 

localization signaling, amino acid modifications, or others. The Uniprot annotated “other” 

category is user-defined, but includes sites for ion-binding, calcium binding, PDZ-binding-motif 

and more24. This reduced the number of prioritized splice events to 12,145 events in 5,424 

genes with a putative functional effect. Among these predicted functional spliced sites illustrated 

in Figure 3B, the majority favored increased exon inclusion (N = 12,337), with smaller subsets 

favoring increased exon skipping (N = 2,380) or displaying a mixed pattern (N = 662). Shown in 

Figure 3C, these functional sites included changes to disulfide bonding (NEI = 95, NES = 915), 

localization signaling (NEI = 93, NES = 426), amino acid modification (NEI = 489, NES = 4,093), 

and other functional sites (NEI = 1,909, NES = 8,015). Each event is listed in Table S4. The 

remaining splicing events were associated with un-annotated sites, untranslated, and/or non-

coding regions. To identify potentially targetable events, we selected functional splice events in 

kinases and performed over-representation pathway analysis which revealed MAPK, ERBB, 

and PI3K-AKT MTOR as the top cancer-related pathways significantly over-represented 

(Bonferroni-adjusted p-value < 0.05, Figure S3B-C).  

Strikingly, the gene encoding protein kinase CDC Like Kinase 1 (CLK1), an oncogenic 

factor and known master modulator of alternative splicing12, was amongst this subset of 

differentially spliced kinase genes in HGGs (Figure 3D). The majority of tumors showed very 

high levels of CLK1 exon 4 inclusion (Figure 3E) with mean PSI of 0.7657 (or 76.57%) and thus 
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the inclusion event was not differential in most HGGs. In contrast, 12 tumors demonstrated 

significant skipping (decreased inclusion) of exon 4 (ΔPSI <= -2 z-scores of mean PSI), thus 

driving the differential splicing observed for CLK1 exon 4 (Figure 3D). Additionally, we observed 

CLK1 exon 4 associated transcript expression heterogeneity across non-tumor brain controls 

from the Genotype Tissue Expression Project (Figure S3C). CLK1 regulates the SR (Serine 

aRginine) family of splicing factor proteins through hyper-phosphorylation of the SR-rich peptide 

regions of SR proteins to induce cooperative RNA binding and increased activity25–27. Moreover, 

the differential splicing of CLK1 resulted in differences of exon usage across HGGs (Figure 3E-

F). CLK1 exon 4 contains two catalytic sites, Thr138 and Ser140 (Figure 3G), and these have 

been described previously to be associated with increased protein abundance26. CLK1 exon 4 

inclusion was significantly positively correlated with expression of total CLK1 mRNA (Pearson’s 

R = 0.29, p-value = 4.1e-5, Figure 3H), supporting the hypothesis that inclusion of these 

phosphorylation sites in exon 4 increases canonical CLK1 expression. Further, CLK1 

expression is significantly positively correlated with expression of Serine/Arginine-rich protein-

specific kinase 1 (SRPK1), a kinase that cooperates with SR-bound CLK1 to facilitate SR 

phosphorylation, U1 exchange of CLK1, and subsequent splicing28 (Figure 3I, Pearson’s R = 

0.69, p-value < 2.2e-16). High CLK1 exon 4 inclusion was not unique to HGGs though they 

were the most heterogeneous. Indeed, we observed widespread high median CLK1 exon 4 

inclusion levels across pediatric brain tumors, suggesting these tumors contain active CLK1 

(Figure 3J). 

 

CLK1 is an oncogenic dependency in pediatric HGGs 

We sought to further examine the role of CLK1 as a potential oncogene in HGGs. We 

investigated the cancer Dependency Map (DepMap) portal and database and found that CNS 

and brain tumor cell lines with high expression of the exon 4 included transcript of CLK1 (≥ third 

quantile mRNA expression of ENST00000321356) have significantly higher CRISPR 
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dependency (lower scores) compared to CLK1 low expressing cell lines (≤ first quantile) 

(Wilcoxon p = 0.034, Figure 4A). This observation was significant and unique only to cell lines 

derived from CNS tumor and myeloid malignancies (Figure S4A), suggesting tissue- and tumor-

specific regulation of CLK1. Across all DepMap profiled cell lines, we found that the pediatric 

brain tumor cell line KNS-42 had a strong dependency on CLK1 (low CRISPR dependency 

score) (Figure 4B) and chose it for further in vitro testing. We next tested the impact of CLK1 

inhibition in KNS-42 cells using the pan-Dyrk/Clk inhibitor Cirtuvivint (SM08502)29. Using the 

IncuCyte to monitor real-time proliferation, we observed a significant reduction in cell growth at 

multiple concentrations over a 6-day period (Figure 4C). Additionally, we observed a dose-

dependent decrease in cell viability using CellTiter-Glo at three days (Figure 4D) and six days 

(Figure S4B) post-treatment of 0.5, 1, 5, and 10 μM Cirtuvivint. 

Based on these findings and to rule out off-target effects of the pan-inhibitor, we selected 

KNS-42 along with two additional cell lines from our pediatric brain tumor cohort with high CLK1 

exon 4 PSI (7316-1763 and 7316-1769) to experimentally validate the exon 4 splice event 

identified from short-read RNA-Seq. We performed long-read RNA-seq using Oxford Nanopore 

Technologies (ONT) and validated the presence of two major full-length CLK1 mRNA isoforms 

that either included or skipped exon 4 across these three patient-derived cell lines (Figure 4E).  

We therefore postulated that the gain of CLK1 phosphorylation sites on exon 4 increases 

mRNA and subsequent protein production in HGGs. To directly test this hypothesis, we 

modulated CLK1 exon 4 splicing using targeted morpholino oligomers (see Methods), in which 

we forced exon 4 skipping in the KNS-42 cell line. We performed qRT-PCR and observed a 

near total loss of the CLK1 exon 4 inclusion transcript at both 5 and 10 μM of exon 4 targeted 

morpholino, evidenced by reduced expression of the exon 3-4 junction. Likewise, at these same 

concentrations, we observed increased CLK1 exon 4 skipping using primers targeting the exon 

3-5 junction (Figure 4F). Importantly, forced CLK1 exon 4 skipping resulted in ablation of CLK1  

protein at 5 and 10 μM (Figure 4G), corroborating previous work that CLK1 exon 4 is required 
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for full-length and catalytically active CLK130–32. Next, we assessed the functional impact of 

CLK1 exon 4 splicing using CellTiter-Glo and confirmed that cells with high CLK1 exon 4 

skipping (CLK1 exon 4 targeting morpholino) exhibited significantly decreased viability 

compared to those with CLK1 exon 4 inclusion (non-targeting morpholino) at 24, 72, and 96 

hours (p ≤ 0.01, within-time Student’s t-test, Figure 4H). Taken together, we demonstrate that 

CLK1 is a dependency in pediatric HGGs required for cellular growth and viability and CLK1 

mRNA and protein is maintained through increased exon 4 inclusion. 

To identify bona-fide CLK1 targets mediated by exon 4 splicing, we performed RNA-seq 

from KNS-42 cells treated with morpholino oligomers (N = 3 controls, N = 3 targeted to skip 

exon 4). We performed differential gene expression (DE) analysis and identified 296 genes with 

differential expression (193 upregulated, 103 downregulated) between the treated and untreated 

populations (Figure 4I, Table S5A). Next, we quantified differential alternative splicing 

(Methods, Table S5B) and applied the same downstream computational workflow from Figure 

S3A to prioritize splice events affecting functional sites. We identified a total of 2,006 unique 

differential splicing (DS) events within 1,467 genes predicted to alter functional sites (SE = 

1,905, A5SS = 196, A3SS = 272, and RI = 388, Figure 4J and Table S5C-F). These 

dysregulated genes included TSGs and oncogenes involved in RNA-binding, epigenetics, 

transcription factors, and kinases (Figures 4K-L and Table S5G). These genes were over-

represented in G2M checkpoint, mitotic spindle, and nucleotide excision repair pathways 

(Figure 4M). To further investigate the impact on DNA repair and other pathways, we performed 

gene-set enrichment analyses of DNA repair and cancer signaling pathways on these DS 

oncogenes and TSGs and found that depletion of CLK1 leads to upregulation of TNFA, 

PI3K/AKT/MTOR, IL6/JAK/STAT3, and apoptosis pathway expression and downregulation of 

multiple DNA repair pathways (Figure S4C-F). Moreover, of the cancer genes with putative 

functional consequences driven by CLK1 splicing, we discovered that 2.3% (N = 6) had 

dysregulation at the level of both splicing and expression (Figure 4N), indicating these may 
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impact the tumor’s proteome. The DE genes were significantly over-represented (Bonferroni-

adjusted p-value <0.05) for KRAS upregulation and drug metabolism pathways (Figure S5A) 

while DE genes were significantly over-represented (Figure S5B) in G2M checkpoint, mitotic 

spindle, and nucleotide excision repair pathways, suggesting a potential for these events to 

impact cellular functions, contribute to the cancer disease state, and/or play a role in regulatory 

mechanisms of gene expression. 

 Finally, we asked whether CLK1 splicing affects any of the essential oncogenes defined 

by the pediatric gene dependency maps of the Childhood Cancer Model Atlas33.  We observed 

15 of these genes also exhibit significant gene dependencies (GD) in established pediatric HGG 

cell lines (Figure 4O-P, Table S5B), including CDK4, FGFR1, FGFR2, EZH2, RAF1, and SRC. 

For instance, the expression levels of mRNAs encoding proto-oncogene SRC34,35 are higher in 

cells with high CLK1 exon 4 (non-targeting morpholino), indicating that CLK1 may enhance or 

promote SRC expression. The differential splicing cases are more complex as they affect 

multiple transcripts, but taken together, these data suggest that transcript-level changes 

mediated through CLK1 could be contributing to some of these dependencies, particularly given 

the association of aberrant splicing with cancer progression36–38. 

 

Discussion 

Pediatric brain cancer remains the leading cause of disease-related mortality in children, 

and HGGs present formidable challenges due to their resistance to chemotherapy and surgical 

limitations. In this study, we conducted a large-scale analysis of aberrant alternative splicing 

across pediatric CNS tumors, revealing widespread dysregulation of pre-mRNA alternative 

splicing. We developed an analytical framework to prioritize and predict the consequences of 

splicing events. Our study demarcates intricate splicing patterns across various tumor types and 

introduces the splicing burden index (SBI) as a novel metric to quantify differential splicing 

events at the sample level without requiring a normal control. We discovered significant 
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negative correlations between tumor mutation burden (TMB) and SBI in CPT, LGG, GNT, and 

schwannoma, suggesting that aberrant splicing may serve as a compensatory mechanism for 

tumorigenesis in these mutationally silent tumors. Further analysis of skipped exon events 

unveiled novel biological clusters driven by splicing variations across histologies and molecular 

subtypes, highlighting extensive splicing heterogeneity in pediatric HGGs. Of note, molecular 

subtypes were not cluster-specific and specifically for MB, this differs from a previous report 

which showed that subgroups WNT, SHH, Group 3, and Group 4 can be clustered using 

splicing information39. This is due to fundamental differences in clustering procedure and study 

goals. We performed unsupervised clustering to identify novel groupings, whereas Dubuc and 

Morrissy, et. al performed supervised clustering following identification of differentially 

expressed splice events among the four subgroups in order to classify groups using splice 

events39. Utilizing the UniProt Knowledgebase, we identified splice variants in HGGs that alter 

functional sites, potentially impacting protein functions such as activation, folding, and 

localization.  

A key finding was differential splicing of CDC-like kinase 1 (CLK1), a critical splicing 

factor and cell-cycle modulator in pediatric HGGs. This splicing event led to the inclusion of 

phosphorylation sites in exon 4, promoting increased protein abundance. Experimental 

modulation of CLK1, either through inhibition or morpholino-directed exon 4 depletion in the 

KNS-42 cell line, resulted in significantly reduced cell proliferation and/or viability. Splicing 

modulation to deplete exon 4 ablated CLK1 RNA and protein levels, altogether supporting CLK1 

as a gene dependency in pediatric HGGs. Additionally, we identified transcriptional 

dysregulation of essential cancer genes mediated by aberrant CLK1 splicing. CLK1 is currently 

being targeted therapeutically with the Pan-Clk/Dyrk Inhibitor Cirtuvivint (SM08502) in heme 

malignancies29 and non-CNS solid tumors such as castrate-resistant prostate cancer, colorectal 

cancer, and non-small cell lung cancer40–42. Here, our study suggests that CLK1 may also 

represent a therapeutic vulnerability in CNS malignancies including pediatric HGGs.  
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This investigation enhances our understanding of the splicing landscape in pediatric 

brain tumors and proposes that aberrant splicing may be a viable target for therapeutic 

intervention. Further, we openly share the splicing data for all pediatric CNS tumors and believe 

this can be a valuable resource for the oncology community. Our approach to characterizing 

splicing aberrations and their functional consequences paves the way for future research into 

mRNA splicing-based mechanisms of tumorigenesis, the identification and development of 

therapies targeting aberrant splice events, and may even guide splicing-based diagnostics, all of 

which have the potential to improve the therapeutic landscape for pediatric brain cancers.  

 

Limitations of the study 

In this study, splicing quantifications were primarily performed using short-read RNA-Seq 

technology, which limits the interpretation of the full spectrum of splicing variation, particularly 

larger multi-exon transcripts or with genes that contain a high number of transcripts. While there 

are proteomics data for over 200 matched pediatric brain tumors publicly available, we were 

limited in sample size for DIPG or DMG and other HGGs, so it will be important to validate our 

findings in larger datasets as they become available. Additionally, the lack of pediatric normal 

tissue RNA-Seq necessitated use of non-tumor controls restricted to adult samples from GTEx, 

and may not necessarily represent the splicing landscape of pediatric tissues. Further, GTEx 

does not contain tissue of origin for all pediatric brain tumors (eg: pons for DIPG or brainstem 

for DMG), further limiting the comparison. Additionally, within histologies (eg: LGG), the primary 

site of the tumor can vary widely depending on diagnosis and it would be ideal to match each 

tumor to a normal one by one. Although this is not yet possible with the normal RNA-Seq 

available, the creation of the upcoming developmental GTEx will be critical in the future. We 

mitigated these normal tissue limitations through the use of the SBI metric, in which we 

compared each tumor to every other tumor in the cohort. Finally, this RNA-Seq cohort contained 

samples with many different library preparation strategies (poly-A, stranded, exome capture, 
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stranded poly-A), which ultimately leads to batch effects in certain expression analyses. Using 

two samples sequenced by different library preparation strategies, we demonstrated that SBI 

was largely unaffected by library type (Figure S1A-B). Therefore, to mitigate batch effects with 

gene expression measurements, we used the entire pooled cohort for splicing analyses (PSI, 

SBI) but used only stranded samples in other analyses involving gene expression values such 

as correlations, differential expression, and/or over-representation analyses. Overall, we 

employed robust statistical techniques, cross-validated our findings with external datasets, and 

utilized orthogonal approaches and experimental methods where possible. 
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Materials and Methods 

Data and code availability 

All pediatric brain tumor raw data are available upon request from the database of 

Genotypes and Phenotypes (dbGAP), accession number phs002517.v2.p2, and/or from the 

Children’s Brain Tumor Network (https://cbtn.org) and the Pacific Pediatric Neuro-Oncology 

Consortium (pnoc.us) for data not immediately available in dbGaP. All processed data used in 

this study were derived from the OpenPedCan project16 v13 data release at 

https://github.com/d3b-center/OpenPedCan-analysis. All code for the manuscript analyses and 

figures are openly available at https://github.com/d3b-center/pbta-splicing.   
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Primary data analyses 

Somatic primary workflows were implemented by the Kids First Data Resource Center 

as described in the Open Pediatric Brain Tumor Atlas (OpenPBTA)43 and OpenPedCan16  

projects. The code for these workflows, including RNA-seq quantification, fusion identification, 

RNA splicing, and SNV, INDEL, CNV, SV calling, can be found at https://github.com/d3b-

center/OpenPedCan-workflows. Sample-level data can be found through the Kids First Portal at 

https://kidsfirstdrc.org/.  

 

Splicing identification and quantification 

To detect alternative splicing, we ran rMATS turbo (v. 4.1.0)14 with GENCODE v39 GFF 

annotations, as described by the Kids First RNA-Seq workflow (https://github.com/d3b-

center/OpenPedCan-workflows). We filtered for alternative splicing events with ≥ 10 junction 

read counts. These results were then used for all downstream processing throughout the 

manuscript. 

 

GTEX non-tumor tissue control RNA-Seq 

We utilized OpenPedCan16 release v13 processed RNA-Seq data from the Genotype 

Tissue Expression (GTEx) project which had harmonized gene symbols to GENCODE v39 

using the custom script at: https://github.com/d3b-center/D3b-DGD-

Collaboration/blob/main/scripts/update_gene_symbols.py.   

 

Merged primary and summary data 

Merged primary matrices and summary files utilized in this manuscript were derived from 

are openly accessible via the download script in the https://github.com/d3b-center/pbta-splicing 

repository. To compare RNA-Seq from CLK1 exon 4 morpholino-treated cells vs control 
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morpholino-treated cells, we ran rMATs with three biological replicates for each condition `--b1 –

b2`. This paired mode analysis calculated ΔPSI, p-values, and FDR statistics for each splice

event.  

 

Splicing burden index (SBI) calculation 

 The following describes the SBI calculation used in the manuscript. 

Let X be the list of all samples, where X�� represents the j-th item in the i-th sample. 

Let n be the number of items in each sample. 

Let SE be the splice event of interest. 

Let SE� be the number of splice events in the i-th sample. 

Let meanSE be the mean of the splice event across all samples. 

Let σSE be the standard deviation of the splice event across all samples. 

Let SBI be the proportion of splice events that have z-scores > |2| out of the total number of

splice events in a particular sample. 

Then the equation for SBI is: 

  

  where i = 1 to len(X) and j = 1 to n 

 

We compared PSI values of each primary tumor against all other tumors in the cohort.

We first computed mean and standard deviation metrics for each alternative splicing event

observed in at least one sample. Then for each sample in each group or histology, we identified

the proportion of genes that underwent aberrant splicing as defined by a z-score > |2| across the

entire transcriptome that undergoes alternative splicing.  

 

Consensus clustering 
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We first preprocessed the splicing PSI matrix, restricting it to one splice event per gene 

by choosing the splice event with the maximum PSI value in a given gene. To reduce the 

dimensionality of the input matrix, we applied a feature selection using Hartigans' dip test44. This 

test identifies dips in the distribution of input features and selects features that have a bi- or 

multi-modal distribution across the input samples. These “dips” in the distribution may 

correspond to differences within underlying clinical variables of interest. A total of 6999 features 

passed the test for multi-modality (p-value < 0.05) and were used for downstream clustering. 

Next, we applied all combinations of the following clustering algorithms (PAM, K-means, and 

Hierarchical) and distance methods (Pearson, Spearman, Euclidean, Manhattan, Binary, 

Maximum, Canberra, and Minkowski) available in the R package ConsensusClusterPlus45. For 

each combination, we evaluated a minimum k value of 2 and a maximum k value of 17. This 

resulted in a total of 272 clustering solutions corresponding to the different input combinations.  

To identify the optimal clustering solution, we first evaluated the cluster performance 

using the R package fpc46. Using a given input data matrix and clustering solution, the function 

`fpc::clusterstats` computes the metrics silhouette width, entropy, purity, and Dunn index that 

represent separation between different clusters and closeness of data points within a cluster. 

The silhouette score defines the compactness of individual clusters (intra-cluster distance) and 

separation amongst clusters (inter-cluster distance) to measure an overall representative score. 

The entropy and purity evaluate the stability of the cluster. The higher the purity, the more stable 

the cluster is and the smaller the entropy, the better the clustering performance. The Dunn index 

is the ratio of the smallest inter-cluster distance and the largest intra-cluster distance. A higher 

Dunn Index will indicate compact, well-separated clusters, while a lower index will indicate less 

compact or less well-separated clusters. We used the R package COINr to assign weights to 

each metric and compute a composite score representing the overall “cluster quality”. The 

composite score was calculated by assigning a directional and weighted scoring mechanism. 

Ranks were assigned to each evaluated combination, with the highest composite score or 
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cluster quality being assigned a rank of 1, 2, etc. For our dataset, the highest cluster quality, i.e. 

top ranking method, was the combination of PAM clustering algorithm with Canberra distance 

measure and a value of 12. 

 

Clustering-based differential expression or pathway enrichment 

We identified differentially expressed genes per cluster of interest and conducted pre-

ranked pathway enrichment using limma47, fgsea48, and GSVA49 on those genes. We 

interrogated KEGG spliceosome and HALLMARK cancer pathways. We visualized these 

clusters using the R package pheatmap50 labeling rows with histology and calculated cluster 

information. 

 

Differential expression and visualization  

Differential expression was performed based on a model using the negative binomial 

distribution, a method employed by the R package DeSeq251. Those differential genes that had 

a p-value < 0.05 were deemed as significantly up or down-regulated. Volcano plots were 

generated by the EnhancedVolcano R package. Bar plots were generated using the R package 

ggplot252. Note: differential expression analyses were limited to stranded-only RNA-seq 

samples in order to limit batch effects. 

 

Identification of recurrent functional differential splicing variants in pediatric HGGs 

To identify differential or aberrant alternative splicing events, we assessed the percent 

spliced in (PSI) value of each splice event relative to the median PSI value of splice event 

across all samples. Splicing events with a ΔPSI exceeding |2| z-scores from the median PSI 

value were classified as differential or aberrant. For these events, we computed average ΔPSIs 

and generated bed files for each mis-spliced exon event. We then obtained bed files of known 

functional annotations as defined by Uniprot release 2024_0324 from UCSC Genome Browser 
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web server. We ran bedtools v2.3053 to find the overlap between mis-spliced exons and 

functional features using the command `bedtools intersect -wo -a`. We then plotted summary 

data by functional category (disulfide bonding sites, localization signals, amino acid 

modifications, and other).  

 

CLK1 exon 4 related visualizations and correlations 

To visualize the CLK1 exon 4 splice event, we utilized the R package ggsashimi54. We 

correlated CLK1 exon 4 PSI values with CLK1-201 or CLK1 TPM. We computed Pearson 

correlation coefficients and p-values of this plot using the R package ggpubr55. High CLK1 exon 

4 inclusion tumors were defined as those with PSI values above the 75th percentile, while low 

SBI samples were those with PSI values below the 25th percentile comparing across all 

samples.  

 

Protein visualizations 

Protein visualizations were obtained from the PhosphoSitePlus web portal56, 

emphasizing protein domains, residue numbers, and sites of phosphorylation binding. 

 

Upset R and Volcano plots 

To visualize the intersections of multiple sets, we employed the UpSetR57 plot in R.  The 

input data consisted of differential and recurrent splicing events, if it was > 2 z-scores from the 

meanPSI and 2% of the histology-specific cohort. Volcano plots were generated by the 

EnhancedVolcano R package. 

 

Splicing burden index and tumor mutation burden correlations 

We identified samples with available data for both SBI (RNA-Seq) and WGS or WXS 

tumor mutation burden (TMB) from OpenPedCan16. Using the R package ggscatter, we 
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performed a Pearson correlation analysis to examine the relationship between SBI and TMB. To 

ensure robustness, we repeated this analysis after excluding hyper-mutated samples (defined 

as those with TMB ≥ 10). Subsequently, we compared the distribution of TMB between high SBI 

and low SBI tumor samples using the Wilcoxon rank-sum test. High SBI samples were defined 

as those with SBI values above the 75th percentile, while low SBI samples were those with SBI 

values below the 25th percentile. The analyses were conducted across all samples and further 

stratified according to `plot_group`, as specified in the histologies clinical file. 

 

Pathway over-representation analysis (ORA) and gene set variation analysis (GSVA) 

We conducted over-representation analysis (ORA) using the R package clusterProfiler58 

and pathway data from the msigdbr package59, including “CP:KEGG", "CP:BIOCARTA", 

“CP:HALLMARK”, and “TFT:GTRD.” After inputting the genes of interest (eg. differentially 

spliced), we applied a p-value cutoff of 0.05 and used the Benjamini-Hochberg (BH) method for 

p-value adjustment. For visualization of the over-represented pathways, we employed the 

`enrichplot::dotplot()` function, displaying the gene ratio and the count of genes in each 

pathway. 

To perform Gene set variation analysis (GSVA) we utilized the R packages `GSVA` and 

`msidbr`. Expression data for our samples, sourced from OpenPedCan v1316, were used to 

compute gene-set enrichment scores. Genes with zero variance were excluded from the 

analysis. We then assessed enrichment in Hallmark, KEGG, and custom pathways from 

Knijnenburg et al60. Gaussian-distributed scores were calculated using gsvaParam function in R. 

The results were visualized using heatmaps of GSVA scores, generated with the R packages 

ComplexHeatmap and circlize.  

 

Oxford Nanopore Technologies (ONT) Targeted Long-Read RNA-Sequencing 
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We designed primers to bind to exons present in all isoforms of CLK1 to ensure full 

coverage of all alternative splicing events. 5 ng of cDNA were amplified with LongAmp Taq 2X 

Master Mix (M0287S, New England Biolabs) for 25 cycles. The resulting amplicons were 

subjected to amplicon-seq (SQKNBD112.24, ONT) library preparation, loaded into a Spot-ON 

flow cell R9 Version (FLO-MIN112, ONT), and sequenced in a MinION Mk1C device (ONT) until 

at least 1,000 reads per sample were obtained. Results were aligned using Minimap2 version 

2.24-r1122 and visualized in IGV version 2.12.3. 

 

DepMap and CRISPR dependency analyses 

Datasets comprising gene transcript expression, cell line information, and CRISPR 

dependency scores were downloaded from DepMap (version 24Q2). The expression of CLK1 

ENST00000321356 (exon 4 containing transcript) was categorized into high and low TPM 

expression, defined by values above the 75th quantile and below the 25th quantile, respectively. 

CRISPR dependency scores were plotted on the y-axis, and Wilcoxon tests were conducted to 

compare high versus low TPM expression groups. These were stratified for each cell line type.  

Additionally, CRISPR dependency scores for all CNS/brain cell lines were plotted, with KNS-42 

highlighted in red. For the Childhood Cancer Model Atlas CRISPR dependency analyses, we 

acquired data from the Childhood Cancer Model Atlas33. We plotted CRISPR dependency 

scores (z) on the y-axis for each gene in CBTN pediatric HGG cell lines, either as median 

scores or stratified by individual patients with genes of interest highlighted. 

 

Proteogenomic analysis 

Pediatric proteomics, phosphoproteomics, and RNA data were obtained from the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) via the ProTrack: Pediatric Brain Tumor open-

source web portal. Data and z-scores were computed using the methods described by Petralia 

et al.22. Correlation plots of mRNA expression and proteomics were generated using these 
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computed z-scores. Additional processed proteogenomic data utilized for correlation analyses 

were obtained from OpenPedCan v15 release16. 

 

Cell Culture 

The pediatric HGG cell line KNS-42 was cultured in DMEM-F12 (GIBCO, 11320033) 

supplemented with 10% FBS (GIBCO, 26140079), 2 mmol/L L-glutamine (GIBCO, 25030081), 

and 1X penicillin/streptomycin (GIBCO, 15140122) at 37°C and 5% CO2. The cell line was 

authenticated by Guardian Forensic Sciences (Abington, PA) using the GenePrint 24 (Promega, 

B1870) short tandem repeat kit. Cells tested negative for mycoplasma using the EZ-PCR 

Mycoplasma Detection Kit (Biological Industries, 20-700-20) and were used for a maximum of 

12 passages post thaw. 

Morpholino Treatments 

A Vivo-Morpholino ACTCTTCTGGAAACGTCAAGTGGGC (Gene Tools, LLC) targeting 

the intron 3-exon 4 splice junction was used to skip exon 4 in CLK1. Cells were treated with 1, 

5, and 10 μM concentrations of CLK1 morpholino and 10 μM of Control morpholino. 48 hours 

post-treatment, cells were harvested for PCR and immunoblots.  

 

RNA Extraction and Quantitative Real-time PCR (qRT-PCR) 

Total RNA was isolated and treated with DNAse using the Maxwell RSC simplyRNA 

Cells kit (Promega, AS1390) with the Maxwell RSC48 Instrument (Promega) per the 

manufacturer’s instructions. Next, 2 μg of RNA were reverse-transcribed using SuperScript IV 

(Invitrogen, 18090010). Primers used for CLK1 mRNA transcript quantification are listed in 

TableS5H. qRT-PCR was performed using PowerSYBR Green PCR Master Mix (Invitrogen, 

4367659) on an Applied Biosystems Viia7 machine. The amplification was performed using the 

following settings: denaturation at 95°C for 10 min, followed by 40 cycles of denaturation at 
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95°C for 15 s and annealing at 60°C for 1 min. The comparative cycle threshold (CT) method 

was applied to quantify the expression levels of CLK1. The fold change of gene expression was 

calculated by the equation 2ΔΔCT, with HPRT (Thermo Fisher, 4453320, assay ID: 

Hs02800695_m1) used as the housekeeping gene. 

 

Protein Extraction 

Cultured cells were washed once in chilled D-PBS (pH 7.4) and lysed in RIPA buffer 

containing 50 mM Tris�HCl, pH 7.4, NP�40 (1%), deoxycholate (0.25%), 150 mM NaCl, 1 mM 

EDTA pH 8.0, 1x protease and phosphatase inhibitor cocktail (Pierce Halt Inhibitor Cocktail, 

Thermo Fisher Scientific, 78446), and SDS (0.1%). Total protein in the lysate was estimated by 

the DC Protein assay (BioRad Laboratories, 5000111). 

 

Detection of Proteins Using Immunoblot Analysis 

70 μg of total protein were mixed with 5X SDS loading dye (Biorad, 161-0374) and 

resolved on 10% SDS�polyacrylamide gel. The protein was transferred onto a PVDF 

membrane (Immobilin-P, Millipore, IPVH00010) and probed with α-CLK1 mouse monoclonal 

primary antibody (Santa Cruz, sc-515897) and HRP�conjugated secondary antibody (Cell 

Signaling Technology, 7076S). Bands were detected using enhanced chemiluminescence 

(Millipore, WBKLS0500) and captured by a Chemiluminescence imager (GE Healthcare). β-

actin was used as the loading control and probed with α-β-actin rabbit monoclonal antibody 

(Cell Signaling Technology, 12262S). 

 

Cell Viability Assay 

Cell viability was measured using the CellTitre-Glo (CTG) luminescent cell viability assay 

(Promega, G7570). Cells were seeded in white 96-well flat-bottom plates at a density of 24,000 

cells per well and treated the following day with either 7.5 μM control or CLK1 exon 4 targeted 
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morpholino. Luminescence was measured using a Biotek Synergy 2 plate reader at 24, 48, 72, 

and 96 hours. 

 

pan-DYRK/CLK1 inhibitor Cirtuvivint (SM08502) experiments 

The KNS-42 cell line was cultured in DMEM-F12 (Gibco, 11330032) supplemented with 

10% FBS (Corning, MT3501CV, lot 003322001) and additional L-glutamine (Thermo Fisher, 

25030081) to a final concentration of 4.5 mM. Dissociation was performed with Trypsin-EDTA 

(0.05%, Thermo 25300054) and counted on a DeNovix Cell Drop cell counter.  

For growth kinetics, 10,000 (3 day assay) or 6,000 (6 day assay) cells were plated per 

well into a 96-well plate (Greiner Bio-One, 655098) in a 200 uL total volume per well. Plates 

were placed into an Incucyte SX5 device and scanned every 2 hours for several days to 

measure growth via a mask designed uniquely for this cell type. At the end point of the assay, 

cell viability was analyzed with CellTiter Glo 2.0 reagent (Promega, G9242) by replacing half the 

media with reagent and reading on a Promega GloMax device. 

Cirtuvivint (MedChem Express, HY-137435) was resuspended in 100% DMSO (Sigma, 

D2650-5X5ML) to 1 mM and stored in aliquots at -80 C. Dosing was optimized via serial dilution 

at a range of 20 uM to 0.02 uM against a vehicle control equivalent to the highest dosing of 

drug. Cells were plated and at 24 hours, 100 uL of media were removed from each well and 

replaced with drug media for a final dose range of 0.01, 0.05, 0.5, 0.1, 1, 5, and 10 uM. Cells 

were untouched for 3 days total while growth was monitored via Incucyte.  

 

Figure Legends 

Figure 1: Pediatric brain tumors display heterogeneous global patterns of aberrant 

splicing  

(A) Circos plot of CNS tumors used in this study, categorized by histology, tumor location, and 

reported gender. Non-neoplastic tumors consist of benign tumors and/or cysts. (B) Lollipop plot 
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illustrating the total number of splicing events across the cohort, classified by splicing type (SE: 

single exon, RI: retain intron, A3SS: alternative 3’ splice site, A5SS: alternative 5’ splice site). 

(C) UpsetR plot of recurrent differential splicing events that prefer exon skipping (N ≥ 2 of 

samples within a histology). (D) Barplots of the number of histology-specific recurrent events per 

patient. Histologies are reverse ordered by total number of unique events (skipping + inclusion). 

(E) Cumulative distribution plots of splicing burden index (SBI) by histology. (F)  Barplots 

displaying percent of tumors with high (≥ third quantile) and low (≤ first quantile) SBI in each 

histology. (G) Boxplots of tumor mutation burden (TMB, log10) stratified by high or low SBI by 

histology. Within-histology Wilcoxon p-values are shown. All boxplots represent the 25th and 

75th percentile and the bar represents the median. 

 

Figure 2: Splicing drives novel biological clusters and splicing burden differentiates key 

splicing factors in pediatric high-grade gliomas  

 

(A) Consensus clustering heatmap of PSI values for all expressed genes (junction read counts 

≥ 10) with a multi-modal distribution across tumors (see Methods). (B) Stacked barplot showing 

histology sample membership in each cluster. (C) Stacked barplot of the number of tumors with 

high or low SBI within each cluster. (D) Heatmap of top cancer-related enriched pathways by 

cluster (GSVA scores represented by blue/orange color). (E) Pearson’s correlation scatterplot of 

log2 SBI and KEGG Spliceosome GSVA score (R = 0.55, p-value < 2.2e-16). (F) Volcano plot 

illustrating the expression direction of splicing factor genes in HGGs with high SBI compared to 

those with low SBI (NS = not significant, FC = fold change, colored dots represent log2FC > |.5| 

and/or Benjamini and Hochberg adjusted p-value < 0.05). (G) Barplot presenting members of the 

hnRNP and SRSF families of primary splicing factors that are differentially expressed 

(Benjamini and Hochberg adjusted p-value < 0.05) with directionality (+ or -). (H) Heatmap 
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displaying these splicing factors and known regulators CLK1 and SRPK1 for all pediatric brain 

tumors with available RNA-seq and whole-cell proteomics data from the CPTAC portal. 

 

Figure 3: Recurrent splicing aberrations alter known proteomic functional sites in 

pediatric high-grade gliomas, including phosphorylation sites in splicing regulator 

protein kinase CLK1  

(A) Workflow to identify 12,145 differential exon-level splicing events that alter UniProt-defined 

functional sites in HGGs. (B)  Stacked bar plots showing the fraction of exon inclusion, skipping, 

or mixed splicing events categorized by predicted impact. (C) Boxplots of splice events resulting 

from gain or loss of functional sites categorized by UniProt annotation. Wilcoxon between-group 

p-values are shown. (D) Boxplots of predicted functional splice events affecting known kinases 

with CLK1 highlighted. (E) Stacked barplot of CLK1 exon 4 inclusion and skipping isoform 

fraction in HGGs. Dotted line represents the mean PSI of 0.7657. (F) Sashimi plot of two 

representative tumor samples with either high (BS_HRJ9145M) or low (BS_XM1AHBDJ) CLK1 

exon 4 inclusion. (G) PhosphositePlus56 CLK1 protein visual highlighting the two 

phosphorylation binding sites in exon 4. (H) Pearson’s correlation scatter plot of CLK1 exon 4 

PSI and RNA expression in HGG tumors (R = 0.29, p = 4.1e-5). (I) Pearson’s correlation scatter 

plot of CLK1 exon 4 PSI and SRPK1 RNA expression in HGG tumors (R = 0.69, p = 2.2e-16). (J)  

Boxplot of CLK1 Exon 4 PSI levels across all primary pediatric brain tumors. All boxplots 

represent the 25th and 75th percentile and the bar represents the median.  

 

Figure 4. CLK1 aberrant splicing contributes to oncogenesis in brain tumor cell lines.  

(A) Boxplot of DepMap dependency scores stratified by high or low CLK1 exon 4 containing 

transcript expression in brain tumor cell lines. Wilcoxon p-value shown.  (B) Ranked dotplot of 

DepMap dependency scores in brain tumor cell lines with pediatric line KNS-42 highlighted in 

red. (C) Proliferation of KNS-42 cells treated with increasing concentrations of pan-DYRK/CLK1 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.03.606419doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.03.606419
http://creativecommons.org/licenses/by/4.0/


 

 

inhibitor Cirtuvivint over six days. (D) Day 6 cell viability of KNS-42 cells treated with increasing 

concentrations of Cirtuvivint. Stars denote Bonferroni-adjusted p-values following pairwise 

Student’s t-tests. (E) Stacked bar plots of the percent inclusion and skipping of CLK1 exon 4 

transcripts in patient-derived cell lines (7316-1763 and 7316-1769 from the CBTN) and KNS-42 

(commercial) derived using either long (ONT) or short RNA-seq strategies. (F) Barplot showing 

the RNA expression fold-change in cells treated with control morpholino or morpholino targeting 

the CLK1 exon 3-4 junction or exon 3-5 junction (G) Western blot of CLK1 with increasing 

morpholino treatment of 1, 5, and 10 μM. (H) Cell viability of cells treated with CLK1 exon 4 

morpholino or non-targeting morpholino. Stars denote within-time paired Student’s t-tests.  (I) 

Volcano plot illustrating genes differentially-expressed in KNS-42 cells treated with CLK1 exon 4 

targeting morpholino compared to cells treated with non-targeting morpholino. (J) Boxplot of 

|ΔPSI| of significantly differential splicing events comparing KNS-42 cells treated with CLK1 

exon 4 targeting morpholino vs. non-targeting morpholino (ΔPSI ≥ |.10|, p-value < 0.05, FDR < 

0.05). Plot shows Uniprot-defined functional sites which are gained/lost categorized by splicing 

case (A3SS, A5SS, RI, and SE). (K) Barplots displaying number of differentially expressed (DE) 

genes or (L) differentially spliced (DS) genes affecting functional sites categorized by gene 

family. (M) Over-representation analysis using ClusterProfiler of DS cancer genes that result in 

gain/loss of functional sites. (N) Venn diagram depicting overlap of DS and DE genes from K 

and L (O) Venn diagram depicting overlap of DS and DE genes from K and L and significant 

(Wald FDR < 0.05, z-score < -1.5) essential genes identified in matched CBTN HGG cell lines 

through CRISPR dependency experiments from the Childhood Cancer Model Atlas (CCMA v3). 

(P) Ranked dotplot of significant CRISPR gene dependency mean z-scores for pediatric HGG 

cell lines with CLK1 expression and splicing-based target genes highlighted in red and blue 

respectively.  
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Supplemental Figure Legends 

Figure S1. Pearson correlation plots of genome-wide poly-A and stranded PSI values for SE 

events in PT_RYMG3M91 (A) and PT_W5GP3F6B (B) showing high concordance across RNA 

library types. (C) UpsetR plot showing recurrent differential splicing events (N ≥ 2) that prefer 

exon inclusion. Cumulative distribution plots of splicing burden index (SBI) by histology for RI 

(D), A5SS (E), and A3SS (F) events. Correlation plots for SBI vs TMB across the entire cohort 

including (G) and excluding (H) hypermutant and ultra-hyper mutant tumors, or within histology 

(I) excluding hypermutant and ultra-hypermutant tumors. Pearson’s R and p-values are shown. 

 

Figure S2. (A) Stacked barplot showing tumor histology membership in each cluster stratified 

by molecular subtype for EPN, HGG, LGG and MB histologies. (B) Oncoprint displaying 

mutation frequencies of splicing factors and spliceosome component genes in HGGs sorted by 

splicing burden index. Additional annotations include gender, molecular subtype, CNS region, 

and tumor mutation status.  

 

Figure S3. (A)  Over-representation analysis of mis-spliced kinase genes that result in gain/loss 

of functional sites stratified by (A) exon skipping and (B) exon skipping. (C) Boxplot of CLK1 

exon 4-containing transcript expression in HGGs compared to GTEx normal brain tissues. (D) 

Oncoprint displaying mutation frequencies of key brain cancer genes in HGGs with annotations 

for CLK1 exon 4 PSI, CLK1-201 expression, total NF1, NF1-215 PSI, NF1 pS864 and pS2796 

phosphoproteomic abundance, and total NF1 protein abundance z-scores. Additional 

annotations include gender, molecular subtype, CNS region, and tumor mutation status. All 

boxplots represent the 25th and 75th percentile and the bar represents the median. 

 

Figure S4. (A)  Boxplot of dependency scores stratified by high vs low CLK1 exon 4 containing 

transcript expression across all available DepMap brain tumor cell lines. Within histology 
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Wilcoxon p-values are shown. All boxplots represent the 25th and 75th percentile and the bar 

represents the median. (B) Cell viability assay after three days of treatment of KNS-42 cells with 

increasing concentrations of pan-DYRK/CLK1 inhibitor Cirtuvivint.  (C) Heatmap displaying 

single-sample HALLMARK GSVA scores for DS genes affecting functional sites in cells treated 

with CLK1 exon 4 morpholino or non-targeting morpholino. (D) Barplots illustrating the mean 

GSVA scores in panel D (n = 3 replicates per treatment). (E) Heatmap presenting single-sample 

DNA repair pathway GSVA scores for DS genes affecting functional sites in cells treated with 

CLK1 exon 4 morpholino or non-targeting morpholino. (F) Barplots displaying mean DNA repair 

pathway GSVA scores from panel E (n = 3 replicates per treatment). 

 

Figure S5. (A) Venn diagram showing the overlap of the total number of DS and DE genes.  (B) 

Over-representation analysis of DE genes or (C) DS cancer genes that result in gain/loss of 

functional sites. (D) Ranked dotplot of significant CCMA v3 CRISPR gene dependency z-scores 

in individual CBTN cell lines with CLK1 expression (red) and splicing-based (blue) target genes 

highlighted for HGG or (E) DMG patient-derived cell lines. 

 

Supplementary Table Legends 

Table S1: Sample metadata. (1) Readme and feature definitions. (2) Sample information with 

clinical metadata and demographics (3) CNS region definition from OpenPedCan16. 

 

Table S2: Histology-specific splicing events. (1) Exon inclusion related differential splicing 

events. (2) Exon skipping related differential splicing events. SpliceID includes gene name, mis-

spliced exon start and end coordinates, upstream and downstream exon start and end 

coordinates. (3) Optimal clustering metrics and scoring method information. (4) Cluster 

membership for each sample.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.03.606419doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.03.606419
http://creativecommons.org/licenses/by/4.0/


 

 

Table S3: (1) Splicing factor and spliceosome component gene list. (2) DeSeq 2 results 

comparing high vs low SBI HGG tumors for splicing factors. 

 

Table S4: Differential splicing events impacting functional sites in HGGs. (1) Exon skipping 

related differential splicing variants. (2) Exon inclusion related differential splicing variants. (3) 

Functional splice variants subsetted for known kinases.  

 

Table S5: CLK1 morpholino analyses. (1) Differential gene expression results from DeSeq2 and  

(2) rMATs results comparing treated with CLK1 exon 4 morpholino and non-targeting 

morpholino. (3) Differential splicing events associated with SE that correspond to known Uniprot 

functional sites. (4) Differential splicing events associated with A5SS that correspond to known 

Uniprot functional sites. (5) Differential splicing events associated with A3SS that correspond to 

known Uniprot functional sites. (6) Differential splicing events associated with RI that 

correspond to known Uniprot functional sites. (7) Differential splicing of known cancer genes 

that correspond to known Uniprot functional sites. (8) CLK1 exon 3-4, exon 3-5 and exon 3-5 

junction forward and reverse primer sets. (9) Differentially expressed or differentially spliced 

CLK1 target genes overlapping essential oncogenes defined by CCMA v3.  
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