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Abstract 
 

Copy-number variable (CNV) genes are important in evolution and disease, yet 
sequence variation in CNV genes is a blindspot for large-scale studies. We present a 
method, ctyper, that leverages pangenomes to produce copy-number maps with allele-
specific sequences containing locally phased variants of CNV genes from NGS reads. 
We extensively characterized accuracy and efficiency on a database of 3,351 CNV genes 
including HLA, SMN, and CYP2D6 as well as 212 non-CNV medically-relevant 
challenging genes. The genotypes capture 96.5% of underlying variants in new genomes, 
requiring 0.9 seconds per gene. Expression analysis of ctyper genotypes explains more 
variance than known eQTL variants. Comparing allele-specific expression quantified 
divergent expression on 7.94% of paralogs and tissue-specific biases on 4.7% of 
paralogs. We found reduced expression of SMN-1 converted from SMN-2, which 
potentially affects diagnosis of spinal muscular atrophy, and increased expression of a 
duplicative translocation of AMY2B. Overall, ctyper enables biobank-scale genotyping of 
CNV and challenging genes. 
 
Introduction 
 
Human genomes are characterized by frequent duplications and deletions, leading to 
copy number variation (CNV). Up to 10% of protein-coding genes are known to be copy-
number variable, showing distinct distributions across human populations1,2 and 
association with traits such as body mass index3 and disease including cancer4, 
cardiovascular diseases5, and neurodevelopmental disorders6,7. While CNVs are 
infrequent genome-wide, regions of long, low-copy repeats called segmental duplications 
(SDs) are enriched in genes and are catalysts for frequent CNVs8,9. This leads to diverse 
gene families such as TBC1D3, NPIP, and NBPF10,11. The mechanisms contributing to 
CNVs, along with the elevated mutations in SDs12, result in variation not only in aggregate 
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copy number (aggreCN) but also elevated sequence variation among the copies12–14. This 
variation can influence phenotypes and disease susceptibility15–17, including hypertension 
and type 2 diabetes18. Many CNV genes in SDs are found to be human specific, quickly 
evolving, and highly associated with brain function19–21. 
 
There is scarce information about variation in non-reference gene duplicates, particularly 
in studies using short-read next-generation sequencing (NGS) data. Existing CNV calling 
tools detect excess coverage rather than sequence variants22. Furthermore, NGS 
alignment to a reference genome contains ambiguity and bias23. Advances in single-
molecule sequencing enabled assembly of pangenomes from diverse populations with 
sequence-resolved CNVs24–26. Although reference bias may be reduced using graph 
pangenomes27, the variants distinguishing paralogs may be obscured during graph 
construction28. Furthermore, as pangenomes grow, diversity among populations, frequent 
gene conversion, and genome rearrangements present an even greater challenge12. 
  
Here, we developed an approach to genotype sequence-resolved copy-number variation, 
providing copy-number maps with locally-phased variation for each copy. Our method, 
ctyper, uses alignment-free genotyping to call copy-number and allele-specific variants 
from NGS data leveraging a database of gene sequences derived from pangenome 
assemblies. This overcomes reference alignment bias and uncovers variation missed 
from single reference analysis and limitation of NGS alignments in repetitive regions. The 
efficiency of ctyper enables scaling of this analysis to biobank data. 
 
 
Results 
 
Pangenome annotation and representation of pangenome-alleles 
We focused on genes previously annotated as CNV24,26 among 230 assemblies from the 
HPRC, HGSVC, and CPC, two telomere-to-telomere assemblies29,30, GRCh38 and 
CHM1331 (Fig. 1a). To construct databases used for querying genotypes, we annotated 
sequences with which CNV genes share homology across all assemblies, and extracted 
those sequences into pangenome alleles (PAs): genic segments containing locally 
phased variants, similar to an HLA allele32  (Fig. 1b). Homologous PAs were further 
organized into gene-groups. The counts of low copy k-mers (k=31) found exclusively in a 
gene-group are used to represent each PA and are combined by each gene-group into a 
matrix that is later used for genotyping. Each row of the matrix corresponds to a single 
PA, and columns contain the counts of each k-mer (Methods) (Fig. 1b). To genotype an 
NGS sample, ctyper first counts all k-mers from each gene-group in the sample. It then 
identifies a combination of PAs as well as their copy number that is most similar to k-mers 
counts of the sample. This is achieved by projecting the NGS k-mer counts into the vector-
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space of the gene-group, and using phylogenetic rounding to determine an integer copy-
number (Methods, Figs. 1c-e). As an example, the gene-group for SMN (the gene 
associates with spinal muscular atrophy) contains 178 PAs including copies of SMN1 and 
SMN2 as well as paralogs that have undergone gene conversion33 including genes found 
on the SMN2 locus containing the SMN1 phe-280, the SNP responsible for dysfunctional 
exon 7 splicing of SMN234 (Fig. 1f). 
 
Overall, 3,351 CNV genes (Supplementary Table 1) were classified into PAs that either 
contained the entire gene with flanking cis-elements, or were broken into smaller units 
not likely to be interrupted by recombination for larger genes (Methods). In total, 
1,408,209 PAs were defined and organized into 3,307 gene-groups (Figs. 2b-c). The 
average PA length was 33 ±29 kb, and included full genes (69%), processed 
pseudogenes (20%), intronic duplications (5%), and decoys (7%) .  
 
We annotated the proximity of CNVs with respect to corresponding reference genes 
(Methods). Overall, 164,237 PAs are distal duplications (>20kb from source gene) in 
6,389 loci, and 6,673 PAs that contain proximal duplications (<20k from source gene), 
including 1,646 PAs that have runway duplications (at least three proximal duplications) 
on 36 genes35, for example the HPR locus (Supplementary Figure 1). We identified 
10,792 PAs with diverged paralogs (<80% k-mer similarity with reference locus) from 333 
gene-groups. For example, some amylase PAs contain paralogs of both AMY1 and 
AMY2B, so are classified distinctly (Fig. 2a). The PAs were defined as reference-
orthologs or paralogs by reference alignment. Orthologs were subdivided into reference-
allele and alternative-allele by variation, and paralogs into duplicated or diverged alleles 
based on their similarity to reference genes (Methods).   
 
To reduce genotype dimensionality for population analysis, highly similar PAs were 
merged into 89,236 allele-types (Methods). Allele-types have a median of 4 members but 
are skewed to large clusters: 50% PAs are in allele-types with at least 73 members 
(Supplementary Figure 2). The average pairwise k-mer similarity is 94.4% within each 
allele-type, compared to 78.0% within each gene-group, noting one base change adds 
up to k different k-mers. Between two phylogenetically neighboring allele-types having at 
least three members each, the between-type variance is 6.03✕ greater than the within-
type variance, showing strong stratification.  
 
The genotype of a gene-group is a vector of PA-specific copy numbers (paCNVs).  We 
compared the paCNVs to other representations of CNVs with lower resolution of variants: 
copy-numbers of reference genes1,35, single unique nucleotide k-mers1,35,36 (SUNKs), and 
large haplotype sequences13,37–39.  First, we characterized the information gained by 
representing a genome as paCNVs compared to copy-numbers of reference alleles. For 
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each PA, we used the nearest neighbor in our pangenome database as a proxy for the 
optimal genotyping results of samples containing that PA, and its closest GRCH38 genes 
for comparison of single-reference based CNV. The nearest neighbor demonstrated an 
average 94.7% reduction in differences compared to GRCh38 matches; 57.3% had 
identical nearest neighbors showing common paCNVs alleles.  
 
We then assessed the proportion of allele-types identifiable by k-mers uniquely shared 
by all their members, analogous to SUNKs. Only 38.8% allele-types (with at least three 
members) contain such k-mers (Fig. 2e). For example, no SUNKs are found between 
SMN1, SMN2 and SMN-converted due to gene conversion (Fig. 1f), however there are 
unique combinations of k-mers used by ctyper genotyping. 
 
We investigated the extent to which diversity is represented by large haplotypes 
structures by determining how allelic variation and recombination creates unique 
combinations of amylase genes that cannot be represented during leave-one-out 
analysis. There were 40% (90/226) of haplotypes that could not be represented, 
particularly those with greater copies than GRCh38 (45/67). When all PAs devoid of SV 
were combined into a single large allele-type, 20% (46/226) of haplotypes remained 
singleton, especially those with additional copies (26/67). Furthermore, many allele-types, 
such as the novel PAs containing both AMY1 and AMY2B in proximity, are found within 
different structural haplotypes (Fig. 2a). While such issues may be mitigated by a larger 
pangenome, genotyping at the level of PA increases the ability to identify the genetic 
composition of an NGS sample at highly variable multicopy gene loci. 
 
Finally, we performed saturation analysis using a recapture model40,41 to estimate the 
extent to which the current cohort represents all possible allele-types among worldwide 
populations. This estimates the average number of novel allele-types within each new 
genome at increasing cohort sizes. Among the current cohort, each new African genome 
has 221 of 4363 (5.1%) novel allele-types, and non-Africans have 56 of 4358 (1.3%).  
 
 
Genotyping Pangenome-alleles among NGS samples and benchmarking results 
We applied ctyper to genotype NGS samples within the 1000 Genomes Project (1kgp) 
including 2,504 unrelated individuals and 641 offspring. Accuracy was measured using 
Hardy-Weinberg Equilibrium (HWE), trio concordance (Supplementary Table 2), and 
comparisons to reference assemblies, excluding intronic/decoy PAs (Methods). There are 
significant HWE violations (p < 0.05) for 0.75% (1896/252,817) of allele-types after 
excluding sex-chromosomes and setting the maximum copy-number to two (Fig. 3a). 
There are 27 gene-groups having >15% allele-types with significant disequilibrium, which 
are mostly small genes (median = 4,564 bp) with few unique k-mers (Supplementary 
Table 3). The average F-1 score for trio concordance is 97.58% (Fig. 3b), while 18 gene-
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groups have high discordance (>15%), primarily for subtelomeric genes or on sex 
chromosomes (Supplementary Table 4).  
 
The paCNVs had an overall high agreement with assembly annotations (𝝆=1.060) (Fig. 
3c), where the discrepancy between genotyping and assembly annotation are largely due 
to low-quality or truncated genes excluded from our database; high-quality gene-groups 
without filtered sequences are more correlated (𝝆=0.996).  
 
We then assessed how well the genotyped alleles reflect the sample assembly using 39 
HPRC samples having both NGS and assemblies. Each sample was genotyped with the 
full database (full-set) or the database excluding its corresponding PAs (leave-one-out). 
We used a matching script to assign the genotyped PAs to the corresponding assembly 
(Methods), excluding intron/decoys and sequences with <1kb unmasked bases, and 
measured the similarity between the genotyped allele and assigned query using global 
alignment42,43. We performed a similar analysis treating the closest neighbor from the 
database to each assembly PA as the correct genotyped locus. Across samples, 2.9% of 
PAs from the leave-one-out assembly and 1.0% PAs from full-set could not be paired, 
which is primarily due to miss-typing, assembly-error or copy number error. Using the full-
set, paired PAs have 0.36 mismatches per 10kb with 93.0% having no mismatches on 
less repetitive regions. The leave-one-out have 2.7 mismatches per 10kb on less 
repetitive regions, which has 1.2 additional mismatches per 10kb from the optimal 
solutions (closest neighbors), and 57.3% alleles had no mismatches, and 77.0% were 
mapped to the optimal solution (Fig. 3d). The leave-one-out results were 96.5% closer to 
the original PAs compared to the closest GRCh38 gene at 79.3 mismatches per 10kb. 
 
To isolate sources of errors in cases of misassembled duplications, we directly compared 
leave-one-out genotyping results to a telomere-to-telomere phased assembly, filtering out 
intronic/decoy sequences. The sample genotypes had 11,627 correctly matched allele-
types, 599 (4.8%) mistyped to other allele-types, 131 out-of-reference (1.1%), 127 false-
positive (0.5% F-1), 93 false-negative (0.4% F-1) for a total F-1 error of 6.7% (Methods) 
(Fig. 3e), showing most errors are not copy number errors with a 3% increase in mistyped 
on this genome compared to trio discordance. 
 
The average runtime for genotyping at 30x coverage was 80.2 minutes (1.0 

min/1✕coverage for sample preprocessing, and 0.9 s/gene for genotyping) on a single 
core (Fig. 3f), indicating that ctyper is suitable for biobank analysis.  
 
We compared benchmarking results on HLA, KIR, and CYP2D6 to the locus-specific 
methods T1K44 and Aldy45. For 31 HLA genes, ctyper reached 97.7% accuracy of 
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predicting all four fields of HLA nomenclature32,46 against the full-set and 86.0% among 
the leave-one-out, while T1K had 46.5%. Regarding protein-coding products, ctyper 
reached 99.8% accuracy against the full-set and 96.3% among the leave-one-out, while 
T1K had 84.7% (Fig. 3g). For 14 KIRs, ctyper reached 98.8% accuracy of predicting full 
three fields against the full-set and 68.0% among leave-one-out. Regarding protein-
coding products, ctyper reached 99.5% against the full-set and 86.1% among leave-one-
out (Supplementary Figure 4). Benchmarking CYP2D6 star annotation based on 
assemblies47, ctyper reached 100.0% against the full-set and 83.2% among leave-one-
out, compared to 80.0% accuracy using Aldy (Fig. 3h). The SNP variants inferred by 
ctyper genotypes had a 100.0% F1-score against the full-set and 95.7% among leave-
one-out, compared to 85.2% using Aldy. 
 
Finally, we used ctyper to genotype 273 challenging medically relevant genes48, 62 of 
which show CNV. Unrepetitive (unmasked) regions had 0.29 mismatches per 10kb 
against the full-set, 99.7% closer to the reference genome, and 4.9 mismatches per 10kb 
against leave-one-out, 94.8% closer to the reference genome (Supplementary Figures 5-
7). Including masked regions, there were 10.5 mismatches per 10kb against the full-set, 
and 74.7 mismatches per 10kb among leave-one-out (Supplementary Figures 8-10).  
 
 
Sequence level diversity of CNVs in global populations 
We used principal component analysis (PCA) to examine the population structure of PA 
genotypes on 2,504 unrelated 1kgp samples, 879 Genotype-Tissue Expression (GETx) 
samples, and 114 diploid assemblies (Figs. 4a,b) after filtering low frequency (<0.05) 
allele-types and limiting copy numbers to 10. The 1kgp, GETx and genome assemblies 
were clustered by population as opposed to data source, suggesting little bias between 
genotyping and assembly, or across cohorts. The HGSVC assemblies are outliers on 
PC1, possibly due to assembly quality. 
 
The top 0.1% highest weighted allele-types on PC1 have an average aggregate copy 
number (aggreCN) variance of 26.33, compared to an overall of 4.00 (p-value=1.11e-16, 
F-test). Similarly, PC2 and PC3 have mean aggreCN variance of 19.73 and 7.20, 
suggesting CNVs are weakly associated with sequence variants. Furthermore, PC1 is the 
only PC that clustered all samples into the same sign with a geographic center away from 
0, suggesting it corresponds to modulus variance (hence aggreCN) if treating samples as 
vectors of paCNVs. Meanwhile, PC2 and PC3 are similar to the PCA plots based on SNP 
data on global samples49, suggesting they are associated with the sequence diversity on 
CNV genes. The total number of duplications are elevated in African populations (Fig. 
4c), reflected in the order of PC1 (Fig 4a). 
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We next used the F-statistic that is similar to the Fst but accommodates more than two 
genotypes (Methods) to test the differences in distributions across five continental 
populations (Fig. 4d). In total, 4.4% (223/5,065) of duplicated allele-types showed 
population specificity (F-statistic > 0.2, Supplementary Table 5). The allele-type with the 
highest F-statistic (0.48) contains duplications of the HERC2P9 gene that is known to 
have population differentiation9,50. Another example is a converted copy of SMN2 
annotated as a duplication of SMN1 that is enriched in African populations (F-
statistic=0.43). 
 
We then measured whether duplicated genes were similar or diverged from reference 
copies, indicating recent or ancient duplications, and providing a measure on reference 
bias from missing paralogs. We constructed multiple sequence alignments (Methods) for 
each gene group, and measured the pairwise differences at non-repetitive sequences. 
We determined the average paralog divergence relative to ortholog divergence 
(Methods), which we refer to as relative paralog divergence (RPD). We also measured 
diversity by the mean absolute error (MAE) of the gene copy number in the populations 
(Fig. 4e). Based on RPD, using Density-Based Spatial Clustering of Applications with 
Noise51, we identified two peaks at 0.71 and 3.2, with MAE centers at 0.18 and 0.93. The 
first peak indicates genes with rare and recent CNVs, while the second peak indicates 
more divergent and common CNVs, often CNVs that may be inherited as different 
structural haplotypes. For example, AMY1A has a high RPD at 3.10 because of the 
truncated duplications of AMY1A (blue gene annotations in Fig. 2a). These results are 
consistent with ancient bursts of duplications in humans and primate ancestors52. 
 
We next studied haplotype linkage of PAs to investigate the levels of recombination at 
different loci. We determined multi-allelic linkage disequilibrium (mLDs) between PAs 
using the 1kg genotypes53 (Methods) for 989 allele-types that were adjacent and less than 
100kb apart on GRCh38 (Fig. 4f), and found the average within each gene-group. Among 
all mLDs, there was a strong negative rank correlation between MAEs of the copy number 
and mLD (𝝆=-0.24, p-value=3.4e-15, Spearman's rank), which is stronger than the rank 
correlation between MAEs of gene copy number and total locus length (𝝆=-0.21, p-value 
= 1.5e-11), suggesting a reduced haplotype linkage on genes with frequent CNVs. The 
lowest mLD=0.013 found on FAM90, a gene with frequent duplications and 
rearrangements54. Not surprisingly, the 29 highest loci (mLDs > 0.7) are enriched in the 
sex chromosomes (N=19). Furthermore, HLA-B and HLA-DRB, had mLD >0.7 and only 
copy-number variation by deletion. The HLA-DRB deletions were only apparent after 
correcting HLA-specific coverage bias (Supplementary Methods). The amylase locus has 
a value of 0.293 due to recombination (Fig. 1a).  
 
Expression quantitative trait locus (eQTLs) on pangenome alleles 
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To investigate the expression impact of paCNVs, we performed eQTL analysis in the  
Geuvadis55 and the GTEx56 cohorts. There were 4,512 genes that could be uniquely 
mapped in RNA-seq alignments, and 44 without unique sequences such as SMN1/2 and 
AMY1A/1B/1C (Methods, Supplementary Table 6), for which expression was pooled 
among indistinguishable copies for eQTL analysis. Genes after pooling together each of 
those with unique regions are called gene-units.  
 
We corrected expression bias using PEER57 with the first three PCs from reported 
genotypes58, and performed association analyses with paCNVs. After merging paCNs to 
aggreCNs, 5.5% (178/3,224) of gene-units showed significance (corrected-p = 1.6e-0.5, 
Pearson-correlation) as previously observed35. We then tested whether using paCNVs 
would provide a stronger fit by updating the aggreCNs with individual paCNVs and 
performing multivariable linear regression on expression (Methods). There were 
significant improvements in fitting for 890 gene-units (27.6%) (corrected p=1.6e-05, one-
tailed F-test) (Fig. 5a). 
  
The improved fit could be explained by non-uniform effects on expression of alleles in the 
same gene-unit. To test this, we used a linear mixed model (LMM, Methods)59,60 to 
regress total expression to individual allele-types and estimate allele-specific expression, 
then compared these values to peers (Supplementary Table 7). For allele-types within 
solvable matrices with >10 samples, we found that 7.94% (150/1,890) paralogs and 
3.28% of (546/16,628) orthologs had significantly different expression levels (corrected 
with sample size = number of paralogs + orthologs, corrected-p = 2.7e-06, Chi-squared 
test, Fig. 5b). Overall, paralogs are found to have reduced expression (Fig. 5c), consistent 
with previous findings on duplicated genes61. 
  
We compared across 57 tissues in the GTEx samples to see if allele-types had different 
most-expressed tissues than their peers using LMMs to estimate the expression levels 
on each tissue (Methods, Supplementary Table 8). There was alternative tissue specificity 
for 132 of 2,820 paralogs (4.7%) and 225 of 19,197 orthologs (1.2%) (corrected-p = 6.4e-
08, union of two Chi-squared tests, Methods, Fig. 5d).   
  
Additionally, we used analysis of variance (ANOVA) to estimate the proportion of 
expression variance explained by paCNVs using Geuvadis, and compared it to a model 
based on known SNPs, indel, and SV eQTL variants62 (Methods). As expected, the highly 
granular paCNVs explain the most variance: on average, 10.3% (14.3% including 
baseline). In contrast, 58.0% of gene-units are eGenes with known eQTL variants that 
explained valid variance by 2.14% (1.60% considering experimental noise, in agreement 
with a previous estimate of 1.97%63). On average, 1.98% of the variance was explained 
by aggreCNs, and 8.58% by allele-type information. When combining both paCNVs and 
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known eQTL sites, 10.4% (19.0% including baseline) of the valid variance was explained 
(Fig. 5e). 
 
We examined SMN and AMY2B genes as case studies due to their importance in disease 
and evolution34,64. The SMN genes were classified into three categories: SMN1, SMN2, 
and SMN-converted. We estimated the total expressions of all transcripts and the 
expressions of only isoforms with valid exon 7 splicing junctions. For total expression, no 
significant difference was found between SMN1 and SMN2 (0.281 ± 0.008 vs 0.309 ± 
0.009, p=0.078, Chi-squared test). However, significant differences were found between 
SMN-converted and SMN1/2 (0.226 ± 0.012 vs 0.294 ± 0.002, p=1.75e-07, Chi-squared 
test), with a 23.0% reduction in expression of SMN-converted. In contrast, despite with 
lower overall expression, SMN-converted had 5.93✕ the expression of SMN2 (p=2.2e-
16, Chi-square test) regarding valid exon 7 splicing, indicating while SMN-converted has 
full functional splicing65, its overall expression level is lower (Fig. 5f).  
 
For AMY2B, we studied the expressions of duplications when they are translocated to 
proximal to other AMY genes, such as the PAs containing AMY1 and AMY2B at figure 
2a. Using GTEx pancreas data, we estimated their expressions as well as other 
duplications. We found that these translocated AMY2B genes had significantly higher 
expression than other duplications (1.384 ± 0.233 vs -0.275 ± 0.183, p=7.87e-09, Chi-
squared test) (Fig. 5g). 
 
 
Discussion 
 
New pangenomes present both opportunities and challenges for the study of complex 
genetic variation: while they reveal the landscape of complex variation, it is challenging 
to use these sequences to analyze biobank (NGS) cohorts. To enable this, we developed 
an approach to divide assemblies into pangenome-alleles: sequences that are copy 
number variable and inherited with low disequilibrium in gene families, and to genotype 
their copy number in NGS samples.  
 
The use of ctyper genotypes increases the scope of studies on CNVs to include sequence 
variation between copies. For example, our finding that CNVs reflect two modes of 
variation: high-identity (and likely recent), and low-identity (ancient and polymorphic) 
duplications, is based on large cohort ctyper genotypes rather than assembly annotations. 
As another example, the ctyper genotypes yield tissue-specific expression of paralogs as 
well as relative contributions to expression of different forms of duplications such as SMN. 
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We investigated the significant improvement of the ANOVA on PAs, whose genotypes 
reflect underlying sequences with multiple linked variants from known eQTL variants that 
are bi-allelic single variants. In contrast to PAs, there were either very few or very many 
eQTLs variants per gene, indicating LD (Supplementary Figure 3) as addressed by fine-
mapping66, and increasing multiple testing burden67. Additionally, there was a greater 
proportion of variance explained among genes with more CNVs by eQTL variants, 
possibly explained by indirect association by LD (for example the HPR genes, 
Supplementary Figure 1). Furthermore, as the frequency of CNVs increase, the explained 
variance by eQTL variants increases (t= 3.80, p-value = 1.6e-04), while the number of 
eQTL variants decreases (t = -4.79, p-value = 2.1e-06), suggesting that larger effects like 
CNVs might overshadow the discovery of other variants not in LD. Furthermore, gene 
expression might not be a linear additive effect of all variants68. For example, although 
SMN-converted contains variants that are either from SMN1 or SMN2, its overall 
expression is lower than both. In this manner, the concept of PAs may have a wider 
potential for future genome-wide association analysis (including non-CNV genes).  
 
Due to limited sample size, our associations are based on allele-types rather than 
individual PAs. Different cohort sizes may require different levels of granularity when 
defining allele-types. For example, the three subtypes of SMN-converted showed little 
difference in expression. Our current classification on allele-types was designed for 
biobank cohorts, so smaller cohorts may need to test on allele-types that aggregate more 
PAs. The granularity of genotyping is additionally defined by the length of PA sequences; 
genotypes using shorter PAs will more accurately reflect NGS samples, while longer 
sequences can preserve larger phasing and may be preferable in regions with low 
recombination such as HLA-DRB. 
 
Ctyper also has limitations. First, while it is possible to detect CNVs smaller than PA units 
using ctyper (Supplementary Methods), full support requires additional benchmarking 
data. Second, ctyper currently does not provide confidence values for genotypes. Finally, 
although the visualization tool we provide might help in, the high-dimensionality PAs does 
increase the complexity of interpretation and association analysis.  
 
As new high-quality references become available, we anticipate ctyper to be a useful 
method for interpreting the association between sequence-resolved CNV and traits at 
scale. 
 
 
Data availability 
Software: https://github.com/ChaissonLab/Ctyper. 
Allele database and annotations: https://doi.org/10.5281/zenodo.13381931.  
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Benchmarking and analysis code: https://github.com/Walfred-MA/CNVAnalyze. 
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Figure 1. a, Demography of the reference pangenome assemblies, HPRC (46 diploid), 
CPC (57 diploid), HGSVC (9 diploid), T2T-YAO (1 diploid), and CN1(1 diploid), as well 
as GRCh38 and CHM13. b, Construction of pangenome k-mer matrices for CNV genes. 
Each individual gene is represented as a vector of counts of k-mers exclusively found 
within the gene-group. All copies of genes including paralogs and orthologs are included 
and integrated as a k-mer matrix. c, Construction of phylogenetic trees based on k-mer 
matrices. d, Schematic of approach to estimate genotypes of alleles using NGS data. 
The k-mers from each matrix are counted in NGS data and normalized by sequencing 
depth. The normalized k-mer counts are projected to all pangenome genes. e, 
Reprojection to an integer solution based on the phylogenetic tree. f, An illustrative 
annotation and genotyping results on SMN1/2 genes using HPRC samples. All SMN 
genes are categorized into 5 major allele-types and 17 sub allele-types. SMN1/SMN2 
correspond to the major allele-types of each paralog; SMN1-2, a copy of SMN1 partially 
converted to SMN2; SMN-conv: additional converted SMN genes, mostly mapped to the 
SMN2 locus, and is found to be enriched in African populations. The GRCh38 assembly 
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includes SMN1-2 and SMN2; SMN2-2: a rare outgroup of SMN2. On the right-side of 
the classification, the phylogenetic tree and heatmap of pairwise similarities are shown 
along with a mutant plot based on multiple sequence alignment highlighting point 
differences to SMN1 in CHM13. Phe-280, the variant found to disrupt splicing of SMN2 
transcripts is highlighted. The genotyping results in 1KG continental populations is 
shown on the right. 
 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.08.11.607269doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.607269
http://creativecommons.org/licenses/by/4.0/


 
Figure 2. a, An overview of amylase 1 pangenome-alleles (PAs). (left) The 
corresponding order of all AMY1 PAs on assemblies, which are colored based on their 
major allele-types. (right) AMY1 genes are extracted as PAs as well as their flanking 
genes and sequences, including an AMY2B translocated proximal to AMY1, and two 
pseudogenes: AMYP1 and RP5-1108M17. All PAs are vertically ordered according to 
the phylogenetic tree and aligned via graphic multiple sequence alignments (gMSA, 
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Supplementary Methods). Homologous sequences are vertically aligned. Mutations are 
visualized as dots, and large gaps (deletions) are visualized as spaces. Seven major 
allele-types are categorized including five paralogs and two orthologs. There are no 
pseudogenes around AMY1C, while AMY1A has RP5-1108M17 nearby and AMY1B 
has AMYP1 nearby. There are alternative versions of AMY1B and AMY1C, with 
sequence substitutions. A new paralog called AMY1(Dup) found primarily on haplotypes 
with duplications, and has both pseudogenes nearby. The paralog of AMY1 found with 
translocated AMY2B is called AMY1+AMY2B. There are also two rare paralogs (blue 
and violet) and one singleton ortholog (steel-blue). b, The size distribution of PAs on a 
log-density. The minimum sizes of PAs is 15kb, though smaller alleles may be 
annotated on alternative haplotypes on GRCh38 and as partial loci when dividing large 
genes into alleles without recombination. c. CIRCOS plot of all PAs. (outer ring) The 
density of PAs in each megabase on GRCh38. (arcs) Interchromosomal PAs included in 
the same groups. d, Annotation of PAs according to orthology and variants with respect 
to GRCh38.  Duplicated paralogs are alleles with distal duplications and proximal 
duplications are included into Alternative alleles due to potential interaction with original 
genes. e, Identifiability of alle-types by unique k-mers. The total number of allele-types 
(blue), and the number of allele-types that may be identified by paralog-specific k-mers 
(red) are shown for each gene group with size at least three. f, The distribution of 
logistic pairwise distances of PAs depending on orthology and phylogenetic relationship. 
The values shown are average values from all gene-groups. Small neighbor distances 
are an indicator of strong representativeness of the current cohort. g, Saturation 
analysis for all allele-types using a recapture mode according to two sorted orders: 
African genomes considered first, and non-African genomes considered first.  
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Figure 3. a, Hardy-Weinberg equilibrium of genotyping results on 1kgp unrelated 
samples. b, Genotype concordance of genotyping results on 1kgp trios, ordered by F-1 
error. The gene groups with F-1 error more than 15% labeled by genomic location. c, 
Copy number comparison between assemblies and genotyping results on 1kgp 
unrelated samples. d, Sequence differences between genotyped and original alleles 
during leave-one-out test using on Stretcher pairwise alignment of non-repetitive 
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sequences. e, Detailed leave-one-out comparison in the diploid T2T genome CN1. The 
results are categorized regarding the number of paralogs in CHM13 to show 
performances on different levels of genome complexity and the main sources of errors. f 
Runtime of ctyper on CN00001 on all loci for varying coverage. g, Benchmarking of HLA 
genotyping using ctyper on full, and leave-one-out (LOO) databases, compared with 
T1K on 31 HLA genes. h, Benchmarking of CYP2D annotation on all CYP2D genes and 
CYP2D6 exclusively. 
 
 
 
 

 
Figure 4.a,b. PCA of allele-specific copy numbers on genotype results and assembly 
annotations. c, Distribution of total autosomal gene copy numbers among 2504 
unrelated 1kgp samples. d, Population differentiation measured by F-statistics of allele-
types among different continental populations. The genes with an allele-type with an F-
statistic more than 0.3 are labeled. e, Copy number and relative paralog divergence. 
Based on our genotyping results on 2504 unrelated 1kgp, for genes found to be CNV to 
the population median in more than 20 samples, we determined the average aggregate 
copy number difference (MAE) between individuals and estimated the average paralog 
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differences relative to orthologs difference. f, Multi-allelic linkage disequilibrium between 
pairs of CNV genes less than 100kb apart. The largest MAE value of each pair is used 
for the x-axis values. The total locus length denotes the length from the beginning of the 
first gene to the end of the last gene. 
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Figure 5. a. Q-Q plot of association of aggregate (blue) and allele-specific (red) copy 
numbers to gene expression in Geuvadis samples. b, Comparative gene expression of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.08.11.607269doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.607269
http://creativecommons.org/licenses/by/4.0/


orthologs (blue) and paralogs (red). c, Fold change effect size of all alternative 
expressions. For all allele-types found to be significant, the fold changes as well as p-
values were shown. d, Preferential tissue expression of orthologs and paralogs. e, (top), 
Model evaluation for PAs representing gene expression diversities. (bottom) 
Quantification of variance explained by different representations of genomic diversity: 
full paCNV genotypes, aggregate copy number, and known eQTLs variants. f, Case 
study on SMN genes showing decreased gene expression on converted SMN. The 
average corrected expression level in Geuvadis samples is shown under different copy 
numbers of SMN1, SMN2, and converted SMN. Transcript levels are the total coverage 
of all isoforms, and exon 7 splicing level is measured by counting isoforms with a valid 
exon 7 splicing junction. g, Case study on amylase genes showing increased gene 
expression on translocated AMY2B. 
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Online Methods

Constructing pangenome allele database
We initiated our study by identifying gene duplicates in pangenome assemblies. Our
pangenome cohort was composed of assemblies from the Human Pangenome
Reference Consortium (HPRC) (N=92, excluding HG02080 due abundant flagged
regions), the Chinese-Pangenome Consortium (CPC) (N=114), the Human Genome
Structural Variation Consortium (HGSVC) (N=18, only Pacbio HiFI assemblies were
used), two telomere to telomere diploid assemblies (N=4), and reference genomes
(GRCh38 including alternative loci and CHM13 T2Tv1). The gene database used for
annotation was GENCODE v39 based on the GRCh38 reference genome.

The initial application of this study was on 3,203 genes known to have copy number
variation detected by the HPRC and CPC studies.

We organized genes into gene 'query sets' where each query set encompassed genes
with functional or similar sequence including pseudogenes and genes with distant
homologies within the same gene family. The query sets were initially defined based on
genes with shared name prefixes, and were used to locate copies of duplicated genes
within the pangenome.

Direct sequence alignments might overlook sequences such as small pseudogenes and
diverged paralogs, potentially creating biases in our genotyping. To address this, we
developed a more sensitive alignment scheme to detect all copies of genes in the
pangenome. For each query set, we used low-copy k-mers (k = 31) that appeared fewer
than 255 times in the CHM13 genome, derived from all initial reference genes, to help
locate similar genes. We searched for these k-mers in each of the pangenome
assemblies and references. We then identified k-mer hotspots defined as maximal
intervals of mapped k-mers containing more than 200 k-mers within any 1,000-base
window within the interval. To aid in mapping small and fragmented pseudogenes, we
included an additional criterion to define hotspots: the presence of 50 exonic k-mers
within the same interval search.

Subsequently, we used BLASTn1 to refine the boundaries of each hotspot by aligning all
reference genes in this query set to each k-mer hotspot extended by 10kb flanking
sequences.

The k-mer defined hotspots include both individual loci mapped by multiple genes from
a query set as well as loci with tandemly duplicated genes multi-mapped by individual
genes in a query set. To account for this redundancy, we merged alignments that were
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less than 10,000 bases apart, causing tandemly duplicated genes to be merged into
single loci. To avoid genotyped loci that may be split by recombination, if an intron
exceeded 20,000 bases, we divided the locus at the midpoint of the introns. To ensure
the overall sequence size was comparable, flanking sequences both upstream and
downstream were adjusted to achieve a total length of 15,000 bases. These methods
aimed to standardize the size of each sequence to be roughly 30,000 bases,
approximating the size of linkage disequilibrium (LD) blocks. The collection of all
sequences mapped by a query set are referred to as initial gene-groups.

Definition of gene-groups and k-mer list
Because the initial gene-groups were defined from aligned query sets that potentially
arbitrarily grouped genes with unrelated sequences based on name, we used
subsequent steps of refinement to exclude unrelated sequences.

Initially, for each genome we extracted all k-mers exclusive to aligned locations of the
initial gene-groups (hence not found elsewhere in the genome). We also filtered out
repetitive k-mers with more than two-thirds of the 2-mers and 3-mers were redundant,
as these were mostly associated with highly repetitive DNA, such as Variable Number
Tandem Repeats (VNTRs), microsatellites, and transposable elements. Additionally, we
excluded k-mers demonstrating a high (>70%) or low (<30%) GC content bias2.

Subsequently, we filtered sequences predominantly composed of the k-mers removed
in the previous step. The remaining sequences were then categorized into subgroups
based on the number of shared k-mers. This classification was achieved using graph
partitioning. Each sequence was represented as a node, and edges were made
between node pairs sharing an excess of 500 unique k-mers, except for NBPF and
ANKRD genes, for which a higher threshold of 2,000 unique k-mers was set to further
reduce the sizes of partitions for computational efficiency in later analysis. Each partition
represents a singular gene-group, and the list of unique k-mers specific to each
gene-group was compiled and termed as 'k-mer list'.

As an additional filtration, we filtered out genes from the non-confident regions reported
by the HPRC, as well as truncated genes from small scaffolds. The genes included
needed to be at least 10,000 base pairs away from both ends of a scaffold, except for
sequences from genes taken from the reference genomes located at the telomeres.

k-mers based phylogenetic tree construction
We constructed phylogenetic trees for each gene group based on their k-mer
composition. Initially, for every gene group, we assembled a k-mer matrix, M, that
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encapsulates all sequences in the gene group. Within this matrix, individual rows
represent distinct gene sequences, while each column corresponds to a unique k-mer
from the k-mer list exclusive to the gene group. The matrix cell values are the counts of
each k-mer present in the respective gene sequence, which is mostly 0 or 1, but
occasionally more than 1 when there are low-copy repeated sequences in the gene, or
the row represents a tandemly duplicated locus.

The matrix M allows us to measure the concordance between any two sequences, Gi

and Gj, by calculating their inner product, denoted as <Gi * Gj> . Consequently, the norm
matrix, N = M * MT, reflects the k-mer concordances for all sequence pairs within the
gene group.

We constructed a similarity matrix, S, where Si,j is the cosine similarity of Gi and Gj

representing the sequences. The cosine similarity for any two sequences, Gi and Gj can
be obtained by normalizing the norm matrix N according to the squares of k-mer vectors
(approximately equal to sequence lengths) of the sequences in question.

Finally, we used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
algorithm on the similarity matrix S to generate the phylogenetic tree for each gene
group.

Clustering of pangenome alleles into alle-types
We used phylogenetic trees for the annotation and classification of closely related
groups of alleles, which we term 'pangenome allele-types'. The classification of
pangenome allele-types is guided by two primary criteria applied across all allele-types:

Homogeneity within allele-types: A allele-type must exhibit near-identical
characteristics amongst its members, which is quantified by ensuring the largest
k-mer distance between any two members does not exceed 155 k-mers, which is
roughly equivalent to the variation caused by 5 single nucleotide polymorphisms
or a structural variation of approximately 95bp, such that allele-types are capable
of representing most common variants in about 30kb range.

Distinctiveness of allele-types: Each allele-type must be distinct from its
neighboring allele-types. This is measured using a k-mer F-statistic score, which
must exceed 2 when compared with adjacent allele-types. In cases where
allele-types are composed of fewer than three members, the F-statistic may not
be reliable; hence, we default this score to 0 for such small allele-types, but
change the cutoff of the former criteria to 155 * 3 to detect singleton rare events.
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Employing a 'bottom-up' recursive approach starting from leaves, we applied these
criteria to all allele-types, aiming to identify and report the largest possible near-identical
allele-types. These are later used to identify equivalent loci after genotyping.

Pangenome allele annotation relative to the reference genome
We annotate CNVs events and duplicated alleles in the pangenome assemblies in
relative the GRCh38 genome. This requires us to find out the corresponding GRCh38
gene for each pangenome allele. However, this is a known challenging problem of
orthology assignment3.

First, PAs often align to multiple paralogs on GRCh38, and the gene overlap with their
liftover locations may not be the most similar reference gene due to gene conversion
and translocation (Figs. 1f and 2a). To address this problem, we designed a method to
match PAs to their closest GRCh38 genes based on k-mer similarity. For every
haplotype, we obtained all pairwise similarities between each of its PAs to each of
GRCh38 PAs. We matched PAs to their most similar GRCh38 PAs, starting from the
most similar pair, until all PAs were matched or failed to match (had no reference gene
with >90% similarity). Secondary redundant matches (match to reference genes that
had already been matched) were annotated as duplications (distal).

Second, the former failed to match PAs are likely alleles with large SVs, such as
insertion, deletion and local proximal duplications. We attempted to lift them back to
GRCh38 using their flanking sequences (100kb either side). Because it is challenging to
directly liftover genes in the regions with large segmental duplications, we designed this
liftover to be a two-stepped liftover. First, we lifted PAs to the region with the best local
alignment coverage, allowing SVs to break alignments into smaller units. Second, we
performed a global pairwise alignment between PAs and the lifted region to locate the
best aligned gene with the presence of local translocations and tandem duplications
(Supplementary Methods).

Third, to annotate the proximal duplications mentioned in the last step as well as to
annotate diverged paralogs that failed to match from both prior methods, we annotated
PAs regarding the gene transcripts. We aligned all exons from the same gene group to
PAs, and based on the exon orders and alignment scores, and determined the optimal
combinations of transcripts on each PA (Supplementary Methods). The PAs containing
no exons were annotated as introns and PAs containing only transcripts of other
non-interested genes were annotated as decoys. Introns and decoys were usually
filtered out from analysis and the rest PAs are considered as valid alleles, including
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pseudogenes that have no intact protein-coding transcripts and putative protein-coding
genes with intact protein-coding transcripts.

It is important to note that, because proximal duplication may be highly associated in
inheritance and potentially interference with each other functionally such as
co-expression (which found between HP vs HPR, Supplementary Figure 1), and exonic
expansion can be found in gene LPA and NBPF, we treated PAs with proximal
duplications as a new type of a single PA, instead of treating them as multiple
independent copies of singletons.

Definition of orthologs and paralogs in the pangenome
Based on annotation results, to illustrate the relation of PAs to their corresponding
reference genes regarding orthology and sequence similarities, we classified PAs into
four categories, including two types of orthologs and two types of paralogs:

1. Reference alleles are alleles in the same allele-type with GRCh38 alleles,
representing the alleles almost identical to the reference sequences.
2. Alternative alleles are orthologs located at the same genomic locus as the
reference gene but are distinctly in different allele-types from GRCh38 alleles, including
alleles that have a list of small variants in strong linkages or alleles that have large
structural variations, such as proximal gene/exon duplications or deletions, as observed
in genes like HPR, NBPF, and the CYP2D6 (star-alleles) gene.
3. Duplicated paralogs (alleles) consisting of paralogs that have been duplicated to
different loci from the reference alleles. Despite being translocated, they retain
similarities (>80% in k-mers) to the reference alleles. These alleles often reflect large,
recent segmental duplications in the genome, including similar paralogs, such as
AMY1A, AMY1B, and AMY1C, which are still often considered as the same gene
despite their distinct locations.
4. Diverged paralogs (alleles) not only differ in their translocation status but also
have sequences that are significantly divergent (<80% in k-mers) from reference alleles,
such that cannot be simply assigned to a single reference gene. These are typically
characterized by highly diverse non-reference paralogs, incomplete gene duplications,
and novel processed pseudogenes. An illustrative example of diverged paralogs is
found among amylase genes, which indicates a proximal translocation event between
AMY1 and AMY2B genes.

Genotyping NGS sample with ctyper
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The goal of ctyper is to select a list of pangenome alleles and determine their individual
copy numbers to represent the CNVs of unknown NGS samples. Instead of sequence
alignment, our genotyping is based on k-mer comparison, which is not only more
efficient but also not affected by misalignments that are frequent in the genomic regions
enriched in structural variation and repetitive elements. Another advantage is that there
is little bias in k-mers between high quality long-reads and NGS data4, so the k-mer data
based on assemblies can be applied to predicting NGS data.

The genotyping proceeds per-gene. Given an NGS sample and a k-mer matrix M
derived from pangenome allele annotation, we generate a vector V for an NGS dataset
that includes the counts of each k-mer found in the matrix for the NGS sample
normalized by the sequencing coverage. We seek to find a vector X of copy-number of
each pangenome allele that minimizes the squared distance to the k-mer counts we
observed in NGS data, e.g. argminx (ǁ MT * X - V ǁ). Compared with absolute distance,
squared distance is more suitable for the normal-like noise in NGS data5,6. Although it is
possible to directly obtain an integer solution using mixed-integer linear programing
(MILP), this is NP-hard7 and can only be used with very few variants/k-mers8,9. This
restricts the use of MILP on the pangenome. The relaxed non-integer solution has an
analytic solution which can be efficiently solved for. In essence, the computational
problem is akin to a multivariable linear regression. The non-negative least error (NNLS)
solution can be further obtained via Lawson-Hanson algorithm10.

To make the solution closer to the maximum likelihood estimation, during the
regression, we rescaled dimensions of k-mers to even their expected uncertainty.
Assuming the observation of k-mer copy number follows negative binomial distribution
with the dispersion small enough to be distinct from Poisson6, the expected variance is
roughly proportional to the square of observation, thus we weighted the k-mer to the
square of the reciprocal of their observed copy number. We also applied smaller
weights (adjust=0.05) on singleton k-mers (observed in only one PAs and not observed
in NGS as well) because they are more likely to be sequencing errors.

The last step is referred to as reversed phylogenetic regression. Our analysis
(Supplementary Methods) reveals two strong relationships between NNLS and the
integer solutions under a phylogenetic relationship. First, the coefficient on each known
allele is inversely proportional to its cosine vector distance to the unknown NGS allele.
Hence, in a pangenome with diverse representation, the coefficients of NNLS will be
mostly located on the genes that are very similar to the unknown gene. Second, when
the coefficients are located on genes that are very similar to the unknown gene, the sum
of total coefficients will be very close to the sum of its integer copy number.
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Based on the solution’s high “convergence” on the phylogenetic tree, we designed a
greedy algorithm to efficiently collect non-integer solutions and round it to integer
solutions. This algorithm is iterative, employing a bottom-up approach from leaves to
root. At each level of the hierarchy, we round the non-integer values to the integer
solution with the least overall residual, and propagate the remainder to the next
hierarchy. Because at each hierarchy, there are only two remainders from either branch
of the tree, this solution is highly efficient.

Trio analysis
Trio analysis is to determine if the genotype combinations of child-father-mother show
possible Mendelian violations. When the copy number of a child is 0, the parents need
to be 0 or 1; When the copy number of a child is 1, the parents can not both be 0 or
both be 2; When the copy number of a child is 2, the parents both need to be 1 or 2.
When the copy number of a child is more than 2, the parents need to have the sum to
be greater or equal to this number.

Leave-one-out comparison of genotyping results to pangenome assemblies
To find out the extent to which the genotyping results can represent the individual small
variants on each PA, we aligned PAs in the original assemblies to their corresponding
PAs in the genotyping results.

First, the original assembly PAs were one-to-one paired to genotyped PAs. This pairing
was finished by a greedy method. We obtained all pairwise similarities in k-mer between
each pair of the PAs across original assemblies and genotyping results. Starting from
the most similar pair, we paired those alleles without replacement and iterated this until
all original assemblies PAs are either paired or failed to be paired (has no genotyped
PAs with >90% similarity).

Second, the paired PAs were then aligned using global pairwise alignment tool
Stretcher11 for masked sequences and Locityper12 for unmasked sequences. From the
global alignments, we obtained the number of mismatched bases in the unmasked
region, where the low copy repeat k-mers are used in k-mer matrices.

Classification of errors
We classified four types of errors for our benchmarking:
1. False positive: the genotyping results have an additional copy;
2. False negative: the genotyping results have a missing copy;
3. Miss typing: assign a copy to incorrect type;
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4. Out of reference: the singleton type among the pangenome and lost reference during
leave-one-out.

Benchmarking HLA, KIR and CYP2D genes with public nomenclatures
We benchmarked the results on HLA and CYP2D genes from all 39 HPRC samples
with NGS data from both full-set and leave-one-out analysis. First, we labeled all
IPD-IMGT and CYP2D-star annotations of PAs. For HLA and KIR, we annotated using
Immuannot13, and for CYP2D6, we annotated using Pangu 14. Using those annotations,
we converted genotyped PAs sequences into public nomenclatures and compared
nomenclatures with the annotation results of the assemblies from the same samples.
The benchmarking results of HLA were compared with T1K with its default settings and
the benchmarking results of CYP2D6 were compared with Aldy with its default settings.

We also benchmarked SNP calling on CYP2D6, and compared with Aldy, with its
default settings. We took the phased results of Aldy and matched them to their
corresponding original PAs. In a range of about 6 kb, where the variants could be found
(first SNP reported at chr22:42126309, last SNP reported at chr22:42132374), Aldy
genotyped the variants with an F1 score of 85.2%, and ctyper genotyped the variants
with an F1 score of 95.7%.

Total number of duplication events from genotyping results
Based on ctyper’s genotyping results, we calculated the total number of duplication
events for each 1kgp sample, excluding 7 samples due to having extreme values
different from the population mean by more than five standard deviations. The total
number of each reference gene is measured in each genome and compared to
GRCh38 chromosomes excluding alternate haplotypes. Each duplication event is called
if the genome has more copy number than twice of GRCh38, excluding decoys/introns
and sex chromosome genes. The total number of duplication events is reported for each
genome. It is important to note that these duplications also included pseudogenes and
small exonic fragments besides known protein-coding genes.

Measuring F-statistic values
Because allele-types may have copy numbers beyond of two and may not be applicable
to Fixation index (Fst), we instead used F-statistic value to measure the population
specificity of allele-types. The F-statistic value is based on the F-test, where we
obtained the variances of copy numbers within all continental populations (within-group
variance), and use it to divide the variances of copy numbers across different
populations (between-group variance).
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Relative paralog divergence
Relative paralog divergence (RPD) measures the mean divergences of the paralogs to
other alleles, in relative to the mean divergence between only orthologs. RPD was
determined for each reference gene and based on the graphic multiple sequence
alignments (gMSAs, Supplementary Methods) of PAs assigned to that reference gene
as well as ctyper’s genotyping results.

First, the divergence value was determined for each pair of PAs assigned to the same
reference gene. It was measured based on the alignment scores of unmasked bases
(misalignment and gap open = -4, and gap extend = 0, normalized by total alignment
length) from gMSAs.

Second, we obtained mean divergence of the orthologs by averaging divergence values
between the two PAs from samples with CN = 2.

Third, we then determined the population median copy numbers for each reference
gene, and divided samples into those with additional copy numbers (copy numbers
more than the median) and those with no additional copy numbers (copy numbers not
more than the median).

It is unreliable to directly distinguish the paralog from orthologs due to complex
rearrangements (e.g. Figure 2a). To overcome this limitation and only obtain the
divergence values from additional copies, we performed statistical estimations based on
large populations. We first estimated the mean divergence values from samples with no
additional copy numbers and used it as the unit baseline B. When the population
median CN = Y, because there are Y(Y-1)/2 pairs, then the total baseline is B * Y(Y-1)/2,
which will be subtracted from total divergence values of samples with duplications, and
Y(Y-1)/2 will be subtracted from the total number of pairs (the denominator) as well.

After subtracting the total baseline, the mean paralog divergence value of the additional
copies were determined for all samples with additional copy numbers. This mean
paralog divergence was then normalized by mean divergence of the orthologs obtained
in step two.

Multi-allelic linkage disequilibrium
Multi-allelic linkage disequilibrium (mLDs) is an analytic continuation of SNP-based
bi-allelic linkage disequilibrium to allow computing linkages between multiple genotypes
on neighboring loci. When there are only two genotypes on both loci, mLDs equals LD
value. When there are more than two genotypes, mLDs measures LDs between each
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pair of genotypes across different loci, and takes the weighted average of all pairs. This
weight is the product of both allele frequencies of the pair.

Defining gene-units
We represented each gene by the major transcripts from the MANE (Matched
Annotation from NCBI and EMBL-EBI15) project. Second, individual exons were aligned.
Transcripts were recursively clustered together if they overlapped with previously
clustered transcripts with more than 98% overall similarity taking the average similarity
of all aligned exons from the transcripts. We call these clusters as gene-units. Third, for
each gene-unit, we identified all its exons and looked for unique exons that did not
overlap with exons from other gene-units. Fourth, we used these unique exons to
represent each gene-unit and filtered out gene-units that have no unique exons (2079
out of 2579 filtered genes were known pseudogenes). Lastly, we assigned PAs to each
gene-unit if they contain any of the corresponding unique exons with at least 98%
similarity.

Expression correction
For individual tissue analysis, similar to the prior study16, we logistically corrected the
raw TPMs using tool PEER together with the first three principal components obtained
from reported genotypes in chr117. For cross-tissue analysis we corrected raw TPMs
using DESeq218.

Association between CNVs to gene expression
We first associated gene aggregate copy number to expression levels using Pearson
correlation (linear-fitting). The p-values and residuals of this fit were recorded. To test if
including allele-specific information would improve the correlation, we used the ctyper’s
pangnome allele-specific copy numbers to replace the aggregate copy numbers to
perform multi-variable linear regression using allele-specific copy numbers as
dependent variables and gene expression level as independent variables. We
compared the residuals of multi-variable linear regression with residuals from Pearson
correlation using F-test, and one-tailed p-values of the reduced residual was reported.
Both p-values were corrected by the number of gene-units tested (N=3,224).

Linear mixed model
We performed linear mixed modeling to measure the individual expression of each
allele-type. We used the total gene expression values as the vector of observed
dependent variables, different allele-types as the vector of independent fixed variables
and the copy numbers from ctyper genotyping results were used as their coefficient
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matrix. The effect sizes of fixed variables were then solved using ordinary least squares
(OLS) regression.

Alternative expression of allele-types
To determine whether an allele-type has an alternative expression level compared to
other allele-types of the same gene, we merged all other allele-types assigned to the
same reference gene into a single variable, separating from the allele-type currently
being tested. Additionally, we included other factors, such as paralogs that might also
influence total expression, as additional parameters to adjust for their potential
interference. For allele-types within solvable matrices with more than 10 non-zero
expressions, using a linear mixed model and the R lm function19, we regressed the
expression values to all variables to get their effect sizes. We then compared the
effect-size of currently tested allele-type and the effect-size of other allele-types of the
same gene using Chi-squared distribution with the linearHypothesis tool20. This p-value
was then corrected by the number of total allele-types tested (N=18,518).

Across tissue expression comparison
In order to determine if an allele-type has an alternative most expression tissue
compared to other allele-types of the same gene, we merged all other allele-types
assigned to the same reference gene into a single variable, separating from the
currently tested allele-type. Additionally, we included other factors, such as paralogs
that might also influence total expression, as additional parameters to adjust for their
potential interference. For allele-types within solvable matrices with more than 10
non-zero expressions, we performed linear mixed models to estimate the gene
expression level of each allele-type within each of the 57 tissues in GTEx V8. The tissue
with the highest expression level was recorded and compared to the tissue with the
second highest expression using the Chi-squared test. We then compared the results
between currently tested allele-type and all other allele-types of the same gene to see if
they had the different highest expressed tissue. When the highest expressed tissues
were different, we tested the p-value of either events happening by combining the
p-values from both side as p-combined = p1 + p2 - p1 * p2. This p-value was then
corrected by the number of allele-types tested on all 57 tissues (N=776,902).

ANOVA (Analysis Of Variance) test on gene expression
We first measured the total expression variance for each eQTL gene-unit, filtering out
units with per-sample variance less than 0.1 to exclude genes not sufficiently expressed
in the Geuvadis cohort. We estimated experimental noise by measuring expression
variance between different trials of the same individuals (mean = 10.5% of the total
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variance) and excluded gene-units with experimental noise exceeding 70% of the total
variance, resulting in 639 total gene-units on expression. We applied the one-in-ten rule
to restrict the number of variants tested to be not greater than 45 (10% of the
sample-size) to avoid over-fitting. We filtered out 18 units involving more than 45 PAs;
When there were more than 45 known eQTL variants, we used 45 variants with the
lowest p-values. The valid expression variance was obtained by subtracting
experimental noise from total expression variance. Using ANOVA, we estimated the
explained valid variance and adjusted the results by subtracting a baseline, defined as
the mean expression variance explained by permuting the orders of all samples
(estimated by the mean of 100 trials). If there are no reported eQTL variants, a value of
0 is used for known eQTL variants.

For paCNV, we further investigated the part of variance explained by gene aggreCNs,
applying ANOVA to a random matrix with aggreCN information, such that had randomly
assigned allele-types, but with the total copy number equal to the original matrix. We
subtracted the variance explained by this random matrix from the total explained
variance to obtain the variance explained by allele-type information.
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