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Summary: 

Adaptive behavior in complex environments critically relies on the ability to appropriately 

link specific choices or actions to their outcomes. However, the neural mechanisms that support 

the ability to credit only those past choices believed to have caused the observed outcomes remain 

unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging 

(fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of 

such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and 

hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices 

that are separated from outcomes by a long delay, even when this delayed transition is punctuated 

by interim decisions. Further, we show when interim decisions must be made, learning is 

additionally supported by lateral frontopolar cortex (FPl). Our results indicate that FPl holds 

previous causal choices in a "pending" state until a relevant outcome is observed, and the fidelity 

of these representations predicts the fidelity of subsequent causal choice representations in lOFC 

and HC during credit assignment. Together, these results highlight the importance of the timely 

reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when 

delays and choices intervene, a critical component of real-world learning and decision making.  

Introduction: 

Humans and animals have a remarkable ability to navigate complex environments and infer 

the likely state of the world from observed phenomena. Such adaptive behavior requires the ability 

to learn about causal relationships between one’s choices and subsequent outcomes. A key 

challenge for learning systems in the brain arises when a task involves temporal delays between 

choices and their outcomes. Cooking is one such task in which many decisions may be made about 

how to adjust the flavor profile of a dish, but the resultant outcomes of these choices typically will 

not be evaluated until sitting down to eat. Moreover, cooking often requires juggling multiple sub-

tasks simultaneously, meaning that interim decisions need to be performed in between adding an 

ingredient and observing its effect on the dish’s flavor. In such cases, discerning the causal 

relationship between a particular choice and possible outcomes is nontrivial. While this ability to 

link choices and outcomes is critical to success in real-world tasks, little is known about how these 

links are forged at the neural level.  

A large body of pioneering work focusing on the role of the lateral orbitofrontal cortex 

(lOFC) has highlighted the importance of this region in contingent learning (Gardner & 

Schoenbaum, 2021; Murray & Rudebeck, 2018; Rushworth et al., 2011). Recent studies in 

multiple species have emphasized a special role for lOFC in leveraging task knowledge for credit 

assignment, linking specific reinforcement outcomes to specific past choices (Boorman et al., 

2013; Jocham et al., 2016; Lamba et al., 2023; Stalnaker et al., 2015; Sutton & Barto, 2014; Walton 

et al., 2010). In one key study, lesions to the macaque lOFC, impaired the ability of animals to use 

a model of the task structure in order to track the contingency between specific choices and 
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outcomes they caused, with credit erroneously spreading to non-causal choices (Walton et al., 

2010). These results suggest that lOFC is required for using a model of the task structure to form, 

or update, an association between specific choices and outcomes. Such findings were subsequently 

replicated and extended in both rats and humans (Costa et al., 2023; Noonan et al., 2017). Other 

studies in humans have shown that outcome-related blood oxygen-level-dependent (BOLD) 

activity in lOFC is specific to contingent, but not non-contingent, reward observations (Jocham et 

al., 2016), and the magnitude of activity reflects the degree to which credit for an outcome is 

assigned (Boorman et al., 2013, 2016). Collectively, these findings suggest that computations 

within the lOFC are critical to credit assignment; however, little is known about the mechanisms 

by which the lOFC supports assigning credit for outcomes to specific causes.  

One possible mechanism by which the brain assigns credit when reinforcement is delayed 

is by reinstating a representation of the causal choice at the time of feedback. In principle, this 

could enable the choice representation to be associated with the online encoding of the outcome, 

potentially via changes in synaptic plasticity between co-active neuronal ensembles. Such coding 

of past choices specifically at the time of feedback has been identified in macaque lOFC neuronal 

ensembles, albeit in the absence of any task requirement for contingent learning (Tsujimoto et al., 

2009). Likewise, altered dopaminergic prediction error responses in lOFC-lesioned rats were 

elegantly accounted for by a computational model that incorporates a loss of internal 

representations of an outcome-linked choice, leading to misattributing value across states 

(Takahashi et al., 2011). Information about previous choices is also found in regions to which the 

lOFC shares reciprocal connectivity, particularly the hippocampus (HC) (Barbas & Blatt, 1995; 

Wikenheiser & Schoenbaum, 2016). A largely separate literature focusing on HC has shown 

reinstatement of neural activity patterns previously elicited by a stimulus both at the time of choice 

and reward in sensory pre-conditioning paradigms (Barron et al., 2020; Kurth-Nelson et al., 2015; 

Wimmer & Shohamy, 2012), and likewise during associative inference and integration (Koster et 

al., 2018; Park et al., 2020; Zeithamova et al., 2012). Such hippocampal reinstatement of stimulus 

identity representations might be expected to support lOFC coding of relevant past choices for 

credit assignment, particularly following lengthier delays (Foerde & Shohamy, 2011; Shohamy et 

al., 2009; Wang et al., 2020).  

In complex tasks where subsequent decisions intervene on the transitions between choices 

and resultant outcomes, the neural regions supporting credit assignment may extend to encompass 

regions that also support maintaining information about causal choices pending their resultant 

outcome. This would allow learning systems to precisely assign credit to causal choices by 

bridging over interim decisions that may otherwise be inappropriately linked to the observed 

outcome. A key region for maintaining such “pending” information is the lateral frontal pole (FPl), 

which has been implicated in maintaining information about prospective actions or cognitive 

processes that must be delayed and performed in the future (Burgess et al., 2007, 2011, 2022). 

Other research has shown that FPl activity reflects the reliability of pending alternative task sets 

(Donoso et al., 2014; Koechlin et al., 2003; Koechlin & Hyafil, 2007), and that it tracks evidence 

favoring adapting behavior to specific counterfactual alternatives, and directed exploratory 
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choices, in the future (Badre et al., 2012; Boorman et al., 2009, 2011; Zajkowski et al., 2017). On 

this basis, we hypothesized that the FPl would play a critical role in maintaining information about 

previous choices that will be needed for future credit assignment during interim decisions.  

In the current study, we test these hypotheses using a learning task in which participants 

must track contingencies between specific choices and outcomes under conditions where choice-

outcome transitions are direct following a delay, or indirect and involve an intervening decision. 

We show that in both conditions, the lOFC and HC reinstate representations of causal choices at 

the time of feedback. In the indirect condition, this information is critically dependent on 

representations of the causal choice maintained in a “pending state” in FPl, which predict 

subsequent reinstatement in lOFC and HC. Finally, we show that lOFC and HC code task-

independent stimulus identity representations during feedback, suggesting a link between coding 

of a state’s identity and precise credit assignment.  

Results 

 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.06.606895doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.06.606895


 

Figure 1 A) Two abstract shapes were probabilistically related to each of two outcome identities 

by independent transition probabilities p1 and p2. B) Schematic of the direct transition condition. 

Participants chose one of the two shapes on each trial based on two pieces of information: their 

estimates of the probability that each would lead to either outcome identity (gift cards) and the 

randomly generated number of points they could potentially win if that outcome was obtained. 

The color of each number indicated the identity of the outcome on which that number of points 

could be won. In the example, green indicates the number of points for the Starbucks gift card, 

while pink indicates the number of points for iTunes. Next, participants observed the outcome of 

their choice (the gift card and amount) after a delay. C) Schematic of the indirect transition 

condition. Same as (B) except that after participants made their choice they transitioned into 

another independent decision. After this second decision was made, participants observed the 

outcome of their first decision. D) Results of logistic regression analysis predicting the current 

choice based on previously observed choice-outcome relationships. Each cell represents the 

combination of a previously observed choice with an observed outcome. The color of each cell 

shows the value of beta estimates for each combination of previous choice and observed 

outcome, averaged across participants. Positive values indicate that the choice-outcome pair 

predicted choosing the same shape again when that shape previously led to the currently desired 

outcome. E) Theoretical decomposition of the matrix in (D) into groups of cells which reflect 

“appropriate credit assignment” given the task structure (orange) and “credit spreading” (pink). F) 

Mean (SEM) of beta coefficients for specific choice-outcome combinations averaged across the 

groupings of cells shown in E for each condition. 

Learning task with direct and indirect choice-outcome transitions 

Participants completed a learning task in which they chose between two abstract shapes to 

obtain one of two distinct outcomes (gift cards to locally available stores rated to be approximately 

equally desirable). Each shape had a certain probability of leading to one gift card and the inverse 

probability of leading to the other. These probabilities drifted over time but could be tracked based 

on the recent choice-outcome observations made in each trial (see Fig. S1 for probability 

trajectories and Bayesian model fitting). Participants were informed of how many points each gift 

card would yield on each trial by colored numbers on the top of the screen, and that these points 

changed randomly from one trial to the next (Fig. 1A). They were further told that at the end of 

the experiment one trial would be selected at random to count “for real”. That is, they would 

receive the gift card obtained on that trial with a value proportional to the number of points won. 

Thus, participants were incentivized to maximize their potential winnings on every trial by 

accurately tracking the probability that each shape would lead to each outcome, but not the history 

of reward amounts. 

The task had two conditions which proceeded in a blocked fashion. In the “direct 

transition” condition, participants saw the outcome of a choice after a delay period (Fig. 1B). In 

the “indirect transition” condition, participants did not see the outcome of their choice until after 

another choice had been made, requiring them to delay assigning credit to the initial choice until 

the appropriate outcome was observed (Fig. 1C). Finally, at the beginning of each block 
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participants passively viewed each of the two abstract shapes and two outcome stimuli in a random 

order, without making decisions or observing outcomes. This “template” block allowed us to 

measure neural responses to stimuli independently of the learning task.   

Predicting current choice based on previous choice-outcome relationships 

To test whether participants were using the structure of each condition to appropriately 

assign credit to causal choices, we performed a multiple logistic regression analysis testing the 

influence of previous choice-outcome combinations on the current choice. For each participant, 

independently in each condition, we constructed a GLM that predicted the current choice as a 

function of nine different combinations of previous choices and outcomes (Eq.1). For example, 

the first regressor predicted the current choice based on the previous choice and the previous 

outcome (trial t-1). These values were coded as 1 if the past choice led to the currently desired 

outcome, assumed to be the outcome with the largest monetary point value on the current trial, and 

-1 if it did not (results were virtually identical if we used the participant-specific indifference point 

() to define the desired outcome instead (see Eq. 9)). The second regressor predicted the current 

choice based on the previous choice (t-1) and the outcome received two trials in the past (t-2), and 

so on for all nine combinations of previous choices and outcomes covering the previous three 

trials.  

In the direct transition condition, we observed significant positive effects along the 

diagonal of the matrix (𝑐ℎ𝑜𝑖𝑐𝑒𝑡−1 ∗  𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡−1 : ꞵ = 6.09,  t(19) = 4.81, p < 0.001; 𝑐ℎ𝑜𝑖𝑐𝑒𝑡−2 ∗

 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡−2: ꞵ = 8.78,  t(19) = 5.41, p < 0.001; 𝑐ℎ𝑜𝑖𝑐𝑒𝑡−3 ∗  𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡−3, ꞵ = 6.76,  t(19) = 4.16, 

p <0.001; Fig. 1D), indicating that participants assigned credit for each outcome to the choice 

made in same trial. In the indirect transition condition, current choices were significantly predicted 

by the most recently observed outcomes combined with choices made in the trial previous to those 

outcomes (𝑐ℎ𝑜𝑖𝑐𝑒𝑡−2 ∗  𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡−1: ꞵ = 4.20, t(19) = 2.92, p <0.01; 𝑐ℎ𝑜𝑖𝑐𝑒𝑡−3 ∗  𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡−2: 

ꞵ = 5.07, t(19) = 4.75, p <0.001). Furthermore, the mean of the ꞵ-values which reflect appropriate 

credit assignment in each condition were significantly higher than the mean ꞵ-values which 

represented credit spreading (direct transition condition: t(19) = 5.39, p < 0.001, indirect transition 

condition: t(19) = 4.34, p<0.001; Fig. 1E and F). Follow-up analysis showed that participants’ 

choices in each trial integrated expectations about the probability of receiving a particular outcome 

and its magnitude and did not rely on estimates of a cached option value (Fig. S1). These results 

show that participants used the appropriate task-structure when assigning credit for observed 

outcomes in each condition. 

Next, we compared the relative precision of credit assignment between our behavioral 

conditions, where we predicted credit assignment would be less precise in the indirect transition 

condition compared to direct transition condition, owing to additional task complexity. We found 

that ꞵ-values representing appropriate credit assignment in the direct transition condition were 

higher than those in the indirect transition condition (t(19) = 1.81, p <0.05). However, ꞵ-values in 

cells that represent credit spreading in the direct transition condition were not significantly lower 

than those in the indirect transition condition (t(19) = 1.11, p=.14). These results indicate that credit 
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assignment was less precise in the indirect transition condition compared to the direct transition 

condition, despite each being appropriate for the respective task structure overall.  

Causal choice codes are reinstated in lOFC and HC when viewing the outcome of choices 

 For the direct feedback condition, our main hypothesis was that lOFC codes for the specific 

causal choice when participants view the outcome of their choice. We also reasoned that, due to 

the delay between choice and feedback, this lOFC choice code would be supported by choice 

reinstatement in the interconnected HC (Barbas & Blatt, 1995; Wimmer & Shohamy, 2012).  We 

tested this hypothesis by training a linear support vector machine (SVM) to distinguish BOLD 

activity patterns at the time of feedback based on the previously chosen shape, cross-validated 

across scanning runs (see Methods for details on decoding procedure). We used a searchlight 

analysis within a priori defined ROIs for lOFC and HC to estimate decoding accuracy for each 

voxel within the ROI (Kriegeskorte et al, 2008).    

We found evidence for choice decoding in the predicted network of regions. Specifically, 

we found significant and marginally significant decoding of the causal choice in left ([x,y,z] = [-

26, 42, -8], t(19) = 4.22, pTFCE <0.05 ROI-corrected using threshold-free cluster enhancement 

(TFCE) correction (Smith & Nichols, 2009)) and right ([x,y,z] = [24, 46, -8], t(19) = 3.45, pTFCE 

= 0.081 ROI-corrected]) lOFC, respectively (Fig. 2A). A similar pattern was also apparent in the 

HC, where right HC showed significant decoding ([x,y,z] = [36, -20, -16], t(19) = 4.02, pTFCE 

<0.05 ROI-corrected]), while left HC showed a marginal effect ([x,y,z] = [-22, -10, -24], t(19) = 

2.86, pTFCE = 0.080 ROI-corrected]). Together, these results show that the lOFC and HC 

represent the causal choice at the time when credit is assigned in the direct condition of our task.  

Figure 2) Left side shows the analysis scheme for decoding representations of the causal 

choice at feedback in the direct transition condition. An SVM decoder was used to differentiate 

trials at the time of the outcome (purple) based on the causal choice selected during the “choice 

period” (cyan). The right side shows axial and coronal slices through a t-statistic map showing 

significant decoding in OFC and HC during feedback. For illustration, all maps are displayed at 
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threshold of t(19) = 2.54, p<0.01 uncorrected. All effects survive small volume correction in a 

priori defined anatomical ROIs. 

Pending item representations in FPl during indirect transitions predict credit assignment in lOFC  

 The indirect transition condition allowed us to test whether similar reinstatement 

mechanisms, as described above, support credit assignment when choice-outcome transitions are 

punctuated by interim decisions. We anticipated that the structure of the indirect transition 

condition would render credit assignment more difficult compared to the direct transition 

condition; a prediction borne out by our behavioral analysis of learning (Fig. 1F). Repeating the 

causal choice decoding analysis on this condition did not reveal a significant effect in any a priori 

defined ROI (all pTFCE >0.05 ROI corrected), nor did we find significant decoding elsewhere in 

the brain (all pTFCE >0.05 whole brain corrected). However, a key attribute of this condition is 

that causal choices must be held in a pending state during interim choices until a prospective 

outcome is observed. Thus, we reasoned that the fidelity of credit assignment at the time of 

feedback would be intimately related to the fidelity with which representations were maintained 

during the interim decision.  

Following previous work suggesting that prospective representations of to-be-completed 

tasks are supported by FPl (Burgess et al., 2011; Koechlin & Hyafil, 2007), we predicted that FPl 

would hold causal choices in a “pending state” when credit assignment needs to be deferred until 

the resulting outcome is observed. To test this hypothesis, we used a linear SVM to classify neural 

activity at the time of feedback based on the immediately preceding choice. Note that in this 

condition the immediately preceding choice is not cause of the currently observed outcome, but is 

the cause of the outcome for which credit will be assigned in the next trial. We call this the 

“pending causal choice”. Our analysis revealed a cluster of voxels specifically within the predicted 

right FPl ([x,y,z] = [28, 54, 8], t(19) = 3.74, pTFCE <0.05 ROI-corrected; left hemisphere all 

pTFCE > 0.1), consistent with right FPl coding for the pending causal choice at feedback time, 

precisely when the outcome of the prior choice causal choice needed to be evaluated.  

To test whether pending choice information held in FPl was directly related to the causal 

choice information coded during subsequent credit assignment we used an “information 

connectivity” (IC) analysis, which seeks to identify how information is shared between brain 

regions (Coutanche & Thompson-Schill, 2013). Specifically, we tested the correlation between the 

fidelity of the previous choice representation when in a pending state, and the same causal choice 

representation during subsequent credit assignment. We began using a SVM to classify 

representations of the causal choice during the interim feedback period in voxels in the FPl that 

were shown to code this information in our previous analysis (thresholded at t(19) = 2.54, p<.01). 

Note that this relatively liberal threshold simply allows for the inclusion of more voxels for a 

statistically independent test in a left-out set of trials, thereby obviating selection bias. In a left-out 

set of trials, we calculated the distances between the estimated hyperplane and trial-level voxel 

activation patterns, and then signed these distances such that positive distances reflected “correct” 

classifications and negative distances reflected “incorrect” classifications. Next, we applied the 
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same method to quantify and sign the distances when decoding the same causal choices at the time 

of credit assignment – that is, when viewing the relevant outcome in the next trial. Finally, we 

correlated the decoding distances of causal choices in a pending state in FPl with decoding 

distances of these choices during credit assignment in our lOFC and HC ROIs. This allowed us to 

assess whether the fidelity of pending causal choices representations in FPl predicts the fidelity of 

representations during credit assignment in the lOFC and HC. 

 

 

Figure 3 A) Left side shows the analysis scheme for decoding information about the causal choice 

in “pending state” (pink) in the indirect transition condition. We decoded information about the 

previous choice during the feedback period, during which the causal stimulus should be “pending” 

credit assignment in the next trial. The image on the right shows a coronal slice through a t-

statistic map, showing significant decoding in FPl. B) The analysis scheme for the information 

connectivity analysis which uses the trial-by-trial fidelity of causal choice representations in the 

“pending state” (pink) to predict the fidelity of these same choices when the outcome is observed 

(purple). The right side shows axial and coronal slices of a t-statistic map showing effects in lOFC 

and HC. All maps are displayed using the same conventions as Fig. 2 and all effects survive small 

volume correction in a priori defined anatomical ROIs. 
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 This analysis revealed strong IC between representations in FPl at feedback on trial t and 

the representations in lOFC and HC during feedback on trial t+1. Specifically, we found 

significant correlations in decoding distance between FPl and bilateral lOFC ([x,y,z] = [-32,24, -

22], t(19) = 3.81, [x,y,z] = [20, 38, -14], t(19) = 3.87, pTFCE <0.05 ROI corrected]) and bilateral 

HC ([x,y,z] = [-28, -10, -24], t(19) = 3.41, [x,y,z] = [22, -10, -24], t(19) = 4.21, pTFCE <0.05 ROI 

corrected]), Fig. 2C). Subsequent analyses confirmed that this effect was due to these regions 

showing a significant increase in decoding accuracy when FPl correctly codes the pending causal 

choice, and not simply lOFC or HC decoding becoming “less incorrect” (see Fig. S7). This finding 

is consistent with the coding of the causal choice during feedback in lOFC and HC being dependent 

on that causal choice being faithfully maintained in a pending state in the FPl.  

HC represents task-independent stimulus identity at feedback 

Next, we tested whether the content of past choice coding at feedback includes a stimulus identity 

code that is reinstated during credit assignment. To test for task-independent representations of the 

causal stimuli, we trained a linear SVM to distinguish neural patterns evoked when participants 

passively viewed each shape in “template trials” (see Methods). Importantly, these were presented 

outside the context of the learning task and were not connected to a specific action or outcome. 

We then tested the classifier on neural patterns evoked at the time of feedback during the learning 

task. This revealed significant decoding of the causal stimulus identity at the time of feedback 

when averaged across direct and indirect conditions, in the left HC (Fig. 4A; [x,y,z] = [-26, -16, -

16], t(19) = 5.20, pTFCE < 0.001 ROI-corrected; right hemisphere all pTFCE>.1). Follow-up 

analyses showed a marginally significant effect in the direct transition condition alone ([x,y,z] = 

[-24, -16, -14], t(19) = 3.41, pTFCE = .08 ROI-corrected), and a significant effect in the indirect 

transition condition alone ([x,y,z] = [-28, -16, -18], t(19) = 3.65 pTFCE < 0.05). These results 

show that when observing an outcome, the HC reinstates task-independent representations of 

causal stimuli, suggesting a role for the HC in retrieving the causal stimulus identity during credit 

assignment. 

We reasoned further that if the HC supports credit assignment by evoking task-independent 

identity representations, then the extent to which this information is coded in the HC should be 

intimately tied to behavioral estimates of credit assignment precision. Alternatively, identity 

representations in the HC might support credit assignment processes in lOFC, such that the extent 

to which this information is represented in lOFC is predictive of precise credit assignment. To test 

these predictions, we estimated each participant’s overall credit assignment precision by 

correlating their pattern of ꞵ-values from the logistic regression models predicting choice with 

those of an “ideal learner” (Fig. 4B). The pattern for an ideal learner was taken to be 1 for any 

choice-outcome combination that reflected the true task structure, and 0 everywhere else. Higher 

correlations between these patterns meant that participants appropriately assigned credit to causal 

choices without attribution spreading to non-causal choices. We then correlated each participant’s 

estimated credit assignment precision with the average decoding accuracy in HC and lOFC. We 

found that there was a significant correlation between credit assignment precision and decoding 
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accuracy of the causal stimulus identity reinstatement in lOFC ([x,y,z] = [-24, 34, -16], t(19) = 

3.24, pTFCE <0.05 ROI-corrected), but not HC (all pTFCE >0.09 ROI-corrected) (Fig. 4C). These 

results suggest that the extent to which identity information is reinstated in lOFC is directly related 

to the precision with which participants link appropriate choices and outcomes together.   

 

 

Figure 4 A) Schematic of the decoding procedure. In task-independent “template trials”, 

participants passively viewed images corresponding to the two choice stimuli and two outcome 

stimuli in the main task. We used these trials to train a SVM to differentiate stimuli outside the 
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task context and then tested for representations of the causal choice stimulus at the time of 

feedback during the learning task. B) A coronal slice through a t-statistic map showing regions of 

the HC with significantly above chance decoding for the causal choice stimulus identity at the time 

of feedback, across conditions. In this figure, “CA” refers to “credit-assignment”. C) Analysis 

scheme for generating each participant’s overall credit assignment precision. ꞵ-values for each 

participant were taken from the behavioral model predicting current choices given all 

combinations of the previous three choices and outcomes (Eq.1). Each participant’s pattern of ꞵ-

values (left side matrices) were correlated with a matrix representing an optimal pattern of 

regression betas given the task structure (right side matrices). The optimal matrix was a binary 

matrix with ones where credit should be assigned for a given outcomes and zeros everywhere 

else. D) Axial slice through a t-statistic map showing regions where decoding of the stimulus 

identity was significantly correlated with estimates of credit assignment precision. All maps are 

displayed using the same conventions as Fig. 2 and all effects survive small volume correction in 

a priori defined anatomical ROIs.  

Discussion 

 Flexible decision making in dynamic environments requires an ability to learn choice-

outcome relationships across prolonged delays, which may often be punctuated by interim 

decisions. Understanding how the brain assigns credit for specific outcomes, and forges 

connections with their causal choices, is essential for models of learning and decision-making that 

seek to explain how organisms implement such goal-directed behaviors. The current study reveals 

critical roles of the lOFC and HC in such credit assignment by showing that these regions 

specifically represent the causal choice at the time the outcome is observed. Importantly, we show 

that when credit assignment must be delayed due to an intervening choice, representations of the 

causal stimulus are maintained in a “pending state” in FPl. The fidelity of these representations 

determines the strength of causal choice representations in lOFC and HC when the outcome is 

subsequently observed. Finally, we show that the content of representations in HC includes the 

task-independent stimulus identities of the causal choice at the time of feedback, and the extent to 

which these are also represented in lOFC predicts precise credit assignment. Together, these results 

show that lOFC and HC adaptively use the task structure to associate identity-specific 

representations of causal choices to their resultant outcomes during learning and provide novel 

evidence for interactions between learning systems and FPl in elaborated task structures which 

emulate real-world complexity.  

 Our finding that the lOFC instantiates a representation of the causal stimulus at the time of 

feedback contributes to a broader literature concerning the role of the lOFC in credit assignment. 

Previous research has shown that monkeys with lOFC lesions exhibit deficits in appropriately 

assigning credit to causal choices (Walton et al., 2010). Similarly, activity in human lOFC has 

been consistently associated with learning about contingencies between choices and rewards 

(Boorman et al., 2016; Jocham et al., 2016; Lamba et al., 2023; Noonan et al., 2017; Witkowski et 

al., 2022). We add to this literature by showing that the lOFC and HC contain specific multivariate 

patterns for inferred causal choices when an outcome is observed, suggesting that these regions 
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are involved in updating links between choices and outcomes. Our results from the “indirect 

transition” condition show that these patterns are not merely representations of the most recent 

choice but are representations of the causal choice given the current task structure. These findings 

highlight a key role for the lOFC and HC in creating links between causal states and goal-states 

(Boorman et al., 2021; Gardner & Schoenbaum, 2021; Howard & Kahnt, 2021; Wang & Kahnt, 

2021), and suggest these regions use the specific task structure to construct causal associations 

between states.  

Importantly, we present novel evidence that representations of “pending” causal choices 

are stored online in the FPl and predict the strength of causal choice representations at the time of 

the outcome. Our results fit precisely with theoretical proposals of FPl functions, which propose 

that this region is involved in “prospective memory” and tracking alternative behaviors or task sets 

during ongoing behaviors which may be returned to in the future (Boorman et al., 2009; Burgess 

et al., 2011; Koechlin & Hyafil, 2007; Tsujimoto et al., 2011). In the “indirect transition” condition, 

participants needed to delay assigning credit when the first outcome was presented but return to 

this process when a prospective outcome was observed in the future. We show that when 

participants viewed outcomes for an unrelated choice, the FPl held the content of the pending 

causal choice. These “pending” representations predicted the strength of subsequent causal choice 

representations in lOFC and HC during the next feedback period, replicating the same network we 

observed in the “direct transition” condition. The results extend prior work by showing that FPl 

activity not only reflects statistics related to the evidence favoring pending options (Badre et al., 

2009; Boorman et al., 2009, 2011; Donoso et al., 2014), but the content of information held in a 

pending state. Furthermore, the findings provide new evidence for the involvement of the FPl in 

learning within complex task structures where the transitions between choices and outcomes are 

indirect - structures which abound in the real world. This highlights the critical nature of 

interactions between cognitive subsystems that make different contributions to the learning process 

in these complex tasks.  

A revealing aspect of our study was the inclusion of “template” trials, which allowed us to 

measure task-independent neural responses to the stimuli used during the learning task. By training 

a classifier to decode stimulus representation during passive viewing, we were able to test which 

regions of the brain coded the specific stimulus identity of the causal choices during credit 

assignment. Consistent with previous accounts of hippocampal involvement in associative 

learning and inference (Barron et al., 2020; Kurth-Nelson et al., 2015; Luettgau et al., 2020; Mack 

& Preston, 2016; Ranganath & Ritchey, 2012; Schuck & Niv, 2019; Wimmer & Shohamy, 2012), 

we found significant decoding of task-independent choice identities in HC across participants in 

both direct and indirect conditions. This suggests that the HC retrieves a representation of the 

stimulus identity to bind together outcomes with causal choice information at the time of credit 

assignment, supporting the idea that the HC is involved in linking together previous experiences 

of sensory information (McClelland et al., 1995). Interestingly, recent work has shown the HC 

neuronal ensembles code a veridical representation of stimulus identities and predicted outcomes, 

which are critical to inference-guided choices (Barron et al., 2020). Together, these findings imply 
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that a state’s identity relationships constructed during credit assignment in the HC may be critical 

for future simulation of state-to-state transitions during outcome-guided inferences.    

 Interestingly, we found that the strength with which a stimulus identity can be decoded in 

the lOFC was correlated with behavioral measures of credit assignment, but not in HC. Recent 

work has shown that synchronized theta oscillations in macaques support information transfer 

from HC to the lOFC during value learning (Knudsen & Wallis, 2020). Disrupting these signals 

leads to learning deficits, suggesting that these regions work in concert to support value learning 

based on a relational cognitive map of the task. This synchrony between regions also finds support 

in human work showing strong functional connectivity and shared information between the 

anterior medial temporal cortex and OFC (Barnett et al., 2021; Mızrak et al., 2021; Ranganath & 

Ritchey, 2012). In our task, it is possible that while the HC coded task-independent identities of 

causal stimuli, the extent to which this information was transferred to, and represented, in the lOFC 

determined the efficacy of credit assignment. Future studies using methods with higher temporal 

resolution can elaborate on this idea by testing whether the HC and lOFC also share coherent 

stimulus identity information that is likewise channeled via theta phase coupling at the time of 

outcome, and how this information influences the credit assignment process. 

In conclusion, we find that the lOFC and HC are critical to using model-based knowledge 

for efficiently forging links between outcomes and causal choices. Further, we show that in 

complex tasks where choice-outcome transitions may be interrupted, this credit assignment 

network relies on interactions with the FPl, which maintains “pending” representations of causal 

stimuli during the interim decision. Collectively, these findings make a novel contribution to our 

understanding of credit assignment in the brain by illuminating the neural mechanisms which 

underlie linking causal choices to outcomes in complex, real-world tasks. 
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Methods 

Participants 

Twenty participants (11 females; 9 males; mean age = 23.5) were recruited from the general 

population around University College London to participate in the study. This sample size was 

commensurate with previous studies similar in design (Boorman et al., 2016; Howard et al., 2015; 

Jocham et al., 2016). Participants were paid £10 and obtained a gift card of various amounts 

depending on their performance in the task. None of the participants reported a history of 
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neurological or psychiatric disorder. All participants spoke fluent English and had normal or 

corrected-to-normal vision. The study was approved by the UCL Research Ethics Committee 

(Project ID Number: 3450/002), and all participants gave written informed consent. 

Task Design 

Learning task 

Participants completed a learning task in which they tracked associations between abstract 

shapes and specific reward identities (gift cards to two different stores), which were rated for 

approximately equal desirability. In each trial, participants selected one of two abstract shapes, 

which were randomly presented on either the left or right side of the screen. Decisions were based 

on two pieces of information: (1) inferred estimates of the probability that a particular shape would 

lead to each gift card based on the history of previous trials, and (2) the point value of each gift 

card on the current trial (Fig. 1A-C). Participants were informed prior to starting the task that one 

of the trials would be chosen at random to count “for real” at the end of the experiment. For this 

trial, they would receive money on the awarded gift card that was commensurate with the number 

of associated points (number of points divided by four). Point values for each outcome were 

presented as two numbers at the top of the screen, with the color of each number indicating the 

associated gift card identity. Their position relative to each other (top or bottom) was determined 

randomly on each trial.  

Each shape had a specific probability of leading to each outcome and an inverse probability 

of leading to the other outcome. For example, shape 1 (S1) might lead to a Starbucks gift card with 

probability p1 and to an iTunes gift card with probability 1-p1. Shape 2 (S2) would lead to the same 

outcomes but with independent probabilities p2 and 1-p2, respectively. These true probabilities 

would drift independently over the course of the experiment, meaning that information about 

outcome probabilities could not be shared across shapes. On any given trial, the number of points 

that could be won for each gift card ranged from 20 to 100, with a minimum difference of at least 

15 points. Although these magnitudes were predetermined, participants were told they were 

randomly generated at the beginning of each trial and that it was not useful to track them (Pearson 

correlation between magnitudes in trial n and n+1 was less than .2). Instead, to maximize rewards, 

participants had to track the probability that a shape led to each outcome and combine this with 

the reward magnitudes associated with each outcome on the current trial. 

Each trial began with viewing the two possible choices for 0.5s, during which selection 

was not possible. They then had 3.5s to make their selection between the two options. The selected 

shape was highlighted for 0.5s, before proceeding to the interstimulus interval (ISI), which lasted 

for a randomly selected duration between 4s and 8s. The outcome was then presented for 2000ms 

before a jittered inter-trial-interval (ITI) of 4s to 8s. 

Participants did not have any prior knowledge about choice-outcome associations or how 

quickly these associations might change, but they knew that they could change throughout the task. 
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Therefore, participants needed to infer both the current associative contingency for each shape and 

when these contingencies changed from their history of choices and observed outcomes.  

Template task 

Each run of the scanning session began with a “template task”. In this task, participants 

passively viewed a sequence of all four stimuli (two shapes and two gift cards), individually 

presented in random order. To ensure that participants were paying attention during passive 

viewing, they were presented with 4 “catch trials” which occurred at random between images. In 

catch trials, all four stimuli were presented simultaneously, and participants were asked to indicate 

which stimulus had just been presented (Fig. S6). Participants were told they could earn an 

additional £10 on the selected gift card if they responded correctly. However, they would be 

deducted £1 for each incorrect response or for not making responses in time (max response time = 

3s). Average accuracy for these catch trials was generally high (mean = .75, std=.15). Participants 

viewed each item for 1s followed by a 2.5s ISI. 

Stimuli 

Two visually distinct abstract shapes were used as choice objects. These shapes were 

randomly assigned to serve as S1 or S2 for each participant. The two gift cards were chosen to 

serve as reward identities during the experiment from 6 different possible gift cards (iTunes, 

Argos, Blackwells, Marks & Spencers, Boots, and Starbucks). Each participant rated the 6 gift 

cards on a scale from 0 (not preferable) to 100 (extremely preferable). The two gift cards were 

selected to have the minimal difference in ratings among the highest rated gift cards. This was 

done to prevent a strong preference for one outcome over the other. All stimuli were presented on 

a computer running Presentation® software (Version 18.1, www.neurobs.com). 

Task-schedule and procedure 

We generated a reward schedule that predetermined the outcome obtained for each choice 

on each trial, but this schedule was unknown to the participants. We optimized the schedule such 

that an ideal Bayesian learner (see Bayesian Computational model) would choose each shape and 

receive each outcome approximately an equal number of times (percent of overall trials where S1 

was chosen was between 42% and 57%). This was done to reduce the potential for sampling bias 

in planned multivariate analyses. The schedule of outcomes for each shape was generated with 

independently drifting probabilities so participants could not learn anything about one shape from 

observing the outcome of the other shape (see Fig. S1).  

Participants completed three scanning runs in one session. The first two runs began with 

the template task, which was followed by the learning task (37 trials of the direct transition 

condition, then 37 trials of the indirect transition condition). The third run consisted of only the 

template task. The learning task began with instructions stating, “Your latest choice”, indicating 

that participants were in the direct transition condition. After 37 trials, a second instruction screen 
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showed “Your previous choice” indicating that participants were about the start indirect transition 

condition. Participants knew that in the indirect transition condition, the first outcome observed 

was not linked to any choice. 

In each run, we included three “bonus trials” (two in the direct transition condition and one 

in the indirect transition condition), distributed throughout choice trials, which occurred between 

a choice and the outcome. Participants were shown the two gift cards on either side of a question 

mark and were given the chance to predict which outcome they would receive in the upcoming 

feedback period. For each correct gift card prediction, they received an additional £3 on the gift 

card they would receive at the end.  

Behavioral Training 

Prior to each scanning session, participants completed a shortened (76 trials) behavioral 

training session. In the training session, participants completed a practice version of the choice 

task, which had a unique reward schedule. Prior to the practice trials, participants were verbally 

given a “comprehension quiz” to verify they understood key elements of the task, such as the 

difference between choice-outcome transitions in each condition. Finally, the distribution of ISI 

and ITI durations for this session was constrained to 2s to 4s.   

MRI data acquisition and preprocessing 

The brain images were acquired using a 32-channel head coil from a 3 Tesla Siemens Trio 

scanner. We used a T2*-weighted echo-planar imaging (EPI) sequence to collect 43 2mm slices 

in ascending order, with 1 mm gaps. The in-plane resolution was of 3 x 3 mm, with a repetition 

time (TR) of 3.01s and echo-time (TE) of 70ms. We set the slice angle to a 30-degree tilt relative 

to the rostro-caudal axis to minimize signal loss from the lOFC (Weiskopf et al., 2006) and applied 

a local z-shim with a moment of -0.4 mT/m to the OFC. The first five volumes of each block were 

discarded to allow for T1 equilibration effects. For accurate registration of the EPI to a standard 

space, we acquired a T1-weighted anatomical scan with a magnetization-prepared rapid gradient 

echo sequence (MPRAGE) with a 1 × 1 × 1 mm resolution. Finally, to measure and correct for 

geometric distortions due to susceptibility-induced field inhomogeneities, a whole-brain field map 

with dual echo-time images (TE1 = 10 ms, TE2 = 14.76 ms, resolution 3 × 3 × 3 mm) was also 

acquired.  

We performed slice time correction, corrected for signal bias, and realigned functional 

scans to the first volume in the sequence using a six-parameter rigid body transformation to correct 

for motion. Images were then spatially normalized by warping participant-specific images to the 

reference brain in the MNI (Montreal Neurological Institute) reference brain and smoothed using 

an 8-mm full-width at half maximum Gaussian kernel. Pre-processing was done in SPM12 

(Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm) using Matlab 2018a. 
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Quantification and Statistical Analyses 

Regression Analysis 

To test whether participants showed a behavioral effect of learning on choice, we fit logistic 

regression models estimating the influence of past choice-outcome observations on choices in the 

current trial t. The regression model included the effect of the past three choices (Ct-n) in 

combination with the past three observed outcomes (Ot-n). For example, Ct-1Ot-1 represents the 

influence of the most recent choice and the most recent outcome on the current choice. The model 

estimates the probability of making choice C on trial t given all 9 combinations of previous choices 

and outcomes: 

 

𝑝(choice = 𝐶)𝑡 = 𝛽0 + 𝛽1𝐶𝑡−1𝑂𝑡−1 + 𝛽2𝐶𝑡−2𝑂𝑡−1 + 𝛽3𝐶𝑡−3𝑂𝑡−1 + 𝛽4𝐶𝑡−1𝑂𝑡−2 + 𝛽5𝐶𝑡−2𝑂𝑡−2

+ 𝛽6𝐶𝑡−3𝑂𝑡−2 + 𝛽7𝐶𝑡−1𝑂𝑡−3 + 𝛽8𝐶𝑡−2𝑂𝑡−3 + 𝛽9𝐶𝑡−3𝑂𝑡−3 + 𝜖 

Eq.1 

 

The value of Ct-n was taken to be 1 if they chose shape S1 on trial t-n and -1 if they chose S2. The 

value of Ot-n was taken to be 1 if the outcome on trial t-n matched the currently desired outcome, 

on trial t, and -1 if it did not. The currently desired outcome was assumed to be the outcome with 

the largest point value in each trial. Thus, the value of Ct-nOt-n for each trial was 1 if choice C led 

to the currently desired outcome n-trials back and -1 if it did not: 

 

𝐶𝑡−𝑛𝑂𝑡−𝑛 = {
1 𝑖𝑓 𝐶𝑡−𝑛 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

−1 𝑖𝑓 𝐶𝑡−𝑛 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒
 

Eq.2 

 

We fit separate regression models for each condition in each run for every participant. We 

then averaged the resulting regression coefficients (𝛽) across runs, resulting the participant specific 

influence of previous decisions on the current choice.   

Bayesian Computational model 

We used a Bayesian computational model to predict choices in each trial t based on each 

participant’s previously observed shape-outcome relationships (i.e., the estimated associative 

probability), and reward magnitudes in the current trial. We briefly describe the model here, but a 

full description can be found in (Behrens et al., 2007; see also Arulampalam et al., 2002 for a 

related model). 

Since the true probability of the associative contingencies cannot be observed, the model 

estimated, in a Markovian fashion, the subjective belief that making a given shape (𝑆) would lead 

to outcome 1 (O1), and to outcome 2 (O2) with the inverse probability:  

  

𝑝(𝑆 → 𝑂1)  = 𝑝𝑆 
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𝑝(𝑆 → 𝑂2)  = 1 − 𝑝𝑆   EQ.3 
 

where 𝑝𝑠 denotes the associative probability of a given shape 𝑆 leading to O1. On each trial (t) the 

model estimated the current value of 𝑝𝑠𝑡, based on the previous observations of outcomes 𝑦1:𝑡. We 

modeled beliefs about the likelihood of each contingency as a beta distribution over possible values 

of 𝑝𝑠𝑡: 

𝜷(𝑝𝑆𝑡 | 𝑉) EQ.4 
 

where 𝑝𝑠𝑡 is the mean of the beta distribution and 𝑉 = exp (𝑣) describes the variance. A large 

value of 𝑣 means that the value of 𝑝𝑠𝑡 is likely to change in the next trial whereas low values of 𝑣 

mean that it is unlikely to change. Here, 𝑣 is referred to as the “volatility” because it controls the 

learning rate for shape-outcome associations. The change in the estimated volatility from previous 

trial to the current trial is controlled by 𝑘. This describes the model's belief that some level of 

change in the volatility is going to occur in the next trial. Because there are no constraints on values 

for 𝑣𝑡, this distribution can be modeled as a Gaussian: 

 

𝑝(𝑣𝑡|𝑣𝑡−1, 𝐾)  = 𝑁(𝑣𝑡−1, 𝑘)   
 

EQ.5 
 

After observing each piece of evidence about the contingency between shape S and the outcome, 

the estimate of each parameter could then be updated following Bayes rule  

 

This gives us the 3-dimension joint probability of the parameters. On each trial, the learner only 

needs to know the estimated contingency between a shape and outcome which is performed first 

by marginalizing over 𝑣 and 𝑘: 

𝑝(𝑝𝑆𝑡)  = ∫ ∫ 𝑝(𝑝𝑆𝑡 , 𝑣𝑡 , 𝑘)𝑑𝑣𝑡𝑑𝑘   

 

EQ.7 
 

And then taking the mean of the resulting distribution.  

 

𝑝𝑆�̂�  =  ∫ 𝑝𝑆𝑡𝑝(𝑝𝑆𝑡)𝑑𝑝𝑆𝑡   

 

EQ.8 
 

For each participant, we initialized the model with a uniform prior over the entire parameter 

space. All integral computations are performed using numerical grid integration. We then used the 

prior belief in the associative contingencies 𝑝𝑆�̂�   to compute the expected value of each shape on 

each trial according to the following formula: 

 

𝐸𝑣𝑆𝑡  =  [𝑝𝑆�̂�𝑚𝑂1𝑡𝛼]  + [[1 − 𝑝𝑆�̂�]𝑚𝑂2𝑡[1/𝛼]] 
 

EQ.9 
 

𝑝(𝑝𝑆𝑡, 𝑣𝑡, 𝑘)  = 𝑝(𝑦𝑡|𝑝𝑆𝑡) ∫ ∫[𝑝(𝑝𝑆𝑡−1 , 𝑣𝑡−1, 𝑘| 𝑦1:𝑡−1)𝑝(𝑣𝑡|𝑣𝑡−1, 𝑘)𝑑𝑣𝑡−1]𝑝(𝑝𝑆𝑡|𝑝𝑆𝑡−1, 𝑣𝑡)𝑑𝑝𝑆𝑡−1 

 

EQ.6 
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where 𝛼 was a free parameter and reflected a participant’s preference for O1 over O2 (0< 𝛼 <2), 

and 𝑚𝑂1𝑡 and 𝑚𝑂2𝑡 indicated the reward magnitudes of the outcome available in the current trial, 

t. We then measured the likelihood of each participants choice on each trial according to a SoftMax 

function: 

𝑝(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑆1)  = 𝑒𝑏𝐸𝑣𝑆1𝑡 (𝑒𝑏𝐸𝑣𝑆1𝑡 + 𝑒𝑏𝐸𝑣𝑆2𝑡)
−1

 

 

EQ.10 
 

where the free parameter 𝑏, captured the level of sensitivity of choices to expected values (inverse 

temperature; 0<𝑏<1). Free parameters were fitted using Markov Chain Monte Carlo (see below). 

 

Value Based RL- model 

This model estimated the value of each shape given the history of rewards received from 

choosing the shape. The value of each shape was initiated at 0, then updated using the following 

equation:  

 

    𝑉(𝑆𝑥𝑡) =  𝑉(𝑆𝑥𝑡−1) +  𝛿(𝛼𝑅𝑡 − 𝑉(𝑆𝑥𝑡−1))     EQ. 11 

 

where 𝑅𝑡 is the magnitude of the reward on trial t and 𝛼 is an individual difference term 

estimating a participant preference for one outcome over the other (0< 𝛼 <2). The learning rate 

(𝛿) was estimated for each participant to capture the magnitude of the update (0< 𝛿 <1). We 

entered these values into a SoftMax function to generate choice probabilities: 

 

𝑝(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑆1)  = 𝑒𝑏𝑉(𝑆1𝑡) (𝑒𝑏𝑉(𝑆1𝑡) + 𝑒𝑏𝑉(𝑆2𝑡))
−1

 

 

EQ.12 
 

  

where the free parameter 𝑏, captured the level of sensitivity of choices to expected values (inverse 

temperature; 0<𝑏<1). Free parameters were fitted using Markov Chain Monte Carlo (see below). 

Parameter estimates 

The Bayesian learning model has two free parameters, α and 𝑏. The value RL-model had 

an additional parameter 𝛿. We fit these parameters independently for each participant using custom 

Markov Chain Monte Carlo (MCMC) code in MATLAB R2018a. Model parameters were 

bounded by the following: [0<α<2], [0<𝑏<1], [0< 𝛿 <1] and were initialized at α=1 and 𝑏=.5, 𝛿=.5. 

Each model was fit to maximize the likelihood of a participant’s choices given model estimates of 

the expected value of each choice on each trial (Eq.10; Eq.12).  

Multivariate decoding of causal choice and pending causal choice representations 

Using multivariate pattern analysis (MVPA), we aimed to identify regions of the brain that 

coded knowledge of causal choices during the feedback period. To test this, we estimated the 
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BOLD activity patterns during the feedback phase for each trial using unsmoothed preprocessed 

images. The feedback periods were modeled as boxcars that had a constant duration lasting 

2000ms from the onset of the outcome presentation in each trial. The GLM also included regressors 

for the decision period (modeled as boxcars with a duration equal to RT) and template 

presentations (modeled as boxcars with a 1000ms duration). No parametric modulators were 

added. Each trial was labeled according to which shape was chosen during the choice period (either 

S1 or S2). For our analysis of “pending” representations in the indirect transition condition, we 

linked these labels to the immediately following, interim feedback phase - a time when participants 

should be delaying credit assignment in anticipation of assigning credit in the next trial.   

We used a searchlight procedure to identify regions of the brain that contained 

representations of the causal choice. Each searchlight consisted of a 5x5x5 voxel cube placed 

around a centroid voxel in the brain. Each centroid was required to have values in at least 10 of 

the surrounding voxels to be considered for further processing. The activity in each trial was 

standardized by z-scoring the ꞵ-values across voxels within each searchlight. The data were then 

split by blocks into training and test sets by run. We used LIBSVM (Chang & Lin, 2011) to fit 

linear classifiers with training data, which were subsequently used to classify data points from the 

test set. We iterated through this process for each of the two runs then computed the mean decoding 

accuracy (average proportion of correct classifications) across both classifiers. The mean decoding 

accuracy for each voxel was compared to a voxel-specific null distribution which was estimated 

by repeating this procedure while randomly assigning the labels for 100 permutations at each 

searchlight. The mean classification accuracy of this null distribution was subtracted off the 

classification accuracy of each searchlight to give us a measure of how reliably information about 

the causal choices could be decoded above chance. The resulting maps were then spatially 

smoothed using a Gaussian kernel with full width at half maximum of 8mm. 

Group-level analyses were performed using a one-sample t-test on accuracy maps across 

participants (see Group-level statistical inference). We corrected for multiple comparisons over a 

priori defined ROIs in lOFC, HPC, and FPl, and used functionally defined ROIs for lOFC in a 

data driven ROI analysis (see Fig. S3-5). We corrected for multiple comparisons using small 

volume correction TFCE. The threshold for significance remained the same in all analyses (pTFCE 

<.05). 

Multivariate analyses of information connectivity between regions 

To test whether decoding of the causal choice at feedback in the indirect transition 

condition depended on the strength of “pending” representations held during the interim trial, we 

tested whether the fidelity of representations of the pending causal choice in FPl was associated 

with the fidelity of those same choices at the time of credit assignment (i.e., in the feedback phase 

of the next trial). We used the same decoding procedure mentioned above to classify voxel patterns 

at feedback in each trial, but additionally calculated the distance of each pattern from the 

hyperplane that divides categories. Distances were obtained using the equation specified on the 

LIBSVM webpage (https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html). Patterns that are more 
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distant from the hyperplane can be thought of as having higher fidelity, and those that are closer 

to the hyperplane as having less (Schuck & Niv, 2019). We then signed the distance of each point 

according to whether the predicted category label was correct (+ for correct, – for incorrect).  

First, we calculated trial-by-trial distance from the hyperplane when causal choice 

information was believed to be held in a “pending” state, focusing on FPl as our “seed-region”. 

For this, we calculated the average distances for voxels within the FPl that showed significant 

decoding of the pending choice during the interim feedback period (t(19)=2.54, p<.01 

uncorrected). This gave us a measure of the information about the pending item on each trial. We 

calculated the decoding strength of these same choices when the true outcome was shown, as a 

measure of the information about the causal choice during credit assignment. Here, we calculated 

distances for every 5x5x5 voxel cube using the same searchlight procedure we described above. 

Note that the decoding fidelity metric at each time point represents the decodability of the same 

choice at different phases of the task. We then correlated the decoding distance for representations 

in FPl during “pending” state and the decoding distance of those same choices at credit assignment. 

Thus, the correlation value between them gives us a measure of whether strong representations of 

pending causal choices in FPl predict stronger representations at credit assignment.  

To confirm that this correlation did not simply arise because the classifier in each region is 

“less wrong” when the decoder in FPl makes correct classifications (i.e., all classifications were 

wrong, but the test region was less wrong), we performed two control analyses. First, we calculated 

the frequency of correct classifications for the subset of trials in which FPl also showed correct 

classifications. We then compared the frequency of correct classifications to a permuted baseline 

frequency by randomizing trial distances in the searchlight then recomputed the frequency of 

correct classifications. We subtracted the mean of the randomized baseline from the true frequency 

of correct classifications. This gave us a measure of decoding accuracy in each searchlight when 

FPl showed correct decoding accuracy. Our second control analysis involved rerunning the 

classification procedure (see Multivariate analyses of credit-assignment and pending 

representations), but only for trials in which the FPl had already shown correct decoding of the 

causal choice in a pending state. Again, we compared the accuracy of the classifier in each 

searchlight to a randomized baseline frequency by randomizing trial labels and recomputing the 

accuracy of the classifier. The mean of the randomized distribution was then subtracted from the 

classification accuracy using the true labels.  

Group-level analyses were performed by Fisher-z transforming the correlation values then 

using a one-sample t-test on each voxel. We corrected for multiple comparisons using TFCE 

correction on the resulting volumes within a priori defined ROIs. The same thresholds were 

applied for group level statistical correction (pTFCE <.05). 

Multivariate analyses of identity codes during credit assignment 

To test whether the task-independent identity of the causal choice was reinstated during 

feedback, we trained a linear support vector machine (SVM) to decode representations of causal 

choice stimuli but trained the classifier during periods when participants passively viewed the 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 8, 2024. ; https://doi.org/10.1101/2024.08.06.606895doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.06.606895


stimuli outside of the task context (see “Template trials”). In each condition the SVM was trained 

on all the trials of the three template runs and tested during the feedback period of the learning 

task. For each participant and in each trial, we estimated the BOLD activity patterns using the 

same GLM as described above (see “Multivariate decoding of causal choice and pending causal 

choice representations”). Further, we used the same procedure in which we randomly permuted 

the training labels 100 times to create a null distribution of decoding accuracy. We then averaged 

decoding accuracy over runs and subtracted the mean of the null distribution from the true 

decoding accuracy of the classifier.  

To test for associations between credit assignment precision and causal choice identity 

decoding accuracy, we first generated estimates of credit assignment precision based on each 

participant’s behavior during the task. For each participant we created a behavioral matrix, which 

included ꞵ-values from nine combinations of possible choice-outcome relationships used to assign 

credit when an outcome is observed (see “Regression model”). For the direct transition condition, 

values along the diagonal of this matrix represent appropriate credit assignment given the task 

structure and should have high positive values if the participant is assigning credit precisely. All 

other values should be near 0. A similar matrix can be generated for the indirect transition 

condition, but appropriate for the causal structure of this condition (see Fig. 1E). Next, we created 

a comparison matrix based on an idealized learner, with values of 1 in each cell that represented 

appropriate credit assignment for the condition, and values of 0 for non-causal relationships. We 

then correlated each participant specific behavioral matrix with the comparison matrix. High 

correlation values represent more precise credit assignment, and the average across conditions was 

taken to be a measure of the overall credit precision in the learning task. We then regressed each 

participant’s overall credit precision estimate against voxel-level decoding accuracy across 

participants. We corrected for multiple comparisons using TFCE correction to volumes within pre-

defined ROIs. The same thresholds were applied for group-level statistical correction (pTFCE 

<.05). 

Group-level statistical inference 

Group-level testing was done using a one-sample t-test (df=19) on the cumulative 

functional maps generated by the first-level analysis. All first-level maps were smoothed prior to 

being combined and tested at the group level. To correct for multiple comparisons, we first 

extracted voxels from each ROI in each participant’s first-level activation map, then applied 

Threshold-Free Cluster Enhancement (TFCE) which uses permutation testing and accounts for 

both the height and extent of the cluster (Smith & Nichols, 2009). All parameters were set to 

default parameters (H=2, E=0.5) and used 5000 permutations for the analysis. We report effects 

that surpassed a pTFCE< .05 threshold in each ROI. 

Region of interest selection 

Regions of interest in the prefrontal cortex were generated from anatomically defined 

regions with unique functional connectivity fingerprints (Neubert et al., 2015). The lOFC ROIs 
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corresponded to bilateral area BA11 (indexes 9 and 30). We included these regions because they 

have been previously implicated in credit assignment for causal choices, particularly in similar 

contingency learning tasks (Boorman et al., 2016; Jocham et al., 2016). For the lateral frontal pole, 

we used indexes 14 and 35. All of these ROIs were threshold at 60% inclusion criteria, although 

our results did not qualitatively change at different thresholds. Finally, we used a priori 

anatomically defined bilateral HC ROIs to test for effects in hippocampus (Yushkevich et al., 

2015). These ROIs are illustrated in Fig. S6.  
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Supplemental Figures 

 

 

 

 

 

 

 

 

 

Figure S1. 

Follow up behavioral analyses  

A. Example trajectory across the experiment of the belief estimates generated from the Bayesian learner. 

Top is the trajectory of S1, and the bottom is the trajectory of S2. While lines represent the true 

probability trajectory is shown in white and the estimated belief is shown in pink. Color heatmap shows 

the probability mass for each possible belief in Sx ->O1. B. Comparison of model fits between our 

Bayesian model and a value-based RL model (vRL) which used an interactive updating procedure to track 

the value of each shape based on the history of received rewards. The exceedance probability for the 

Bayesian model was 1, and 0 for the vRL model, suggesting that Bayesian model, which tracked 

transition probabilities between choices and outcomes, better fit participants actual choices compared to a 

value tracking model. C. Logistic regression curves estimating the change in choice probabilities given 

the expected value difference between choices. Gray line shows participant specific lines, and the black 

line shows the effect across groups (associated t-statistics are calculated across participants). The left side 

shows the effect in the direct transition condition and the right side shows the indirect transition 

condition.  
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Figure S2. Pre-selected anatomical ROIs  

Illustrations of pre-selected anatomical ROIs taken from Neubert et al, 2015. The lOFC ROI corresponds 

to index 9 and 30, FPl corresponds to indexes 14 and 35. The HC ROI was defined in Yushkevich et al., 

2015. 

 

 

 

 

Figure S3. Functionally defined ROIs for in the direct transitions condition.  

A) Despite having a priori defined anatomical ROIs for our decoding analysis of the causal choice, we 

wanted to test whether our results depended on these ROI definitions by using a data-driven approach. 

Here, we trained an SVM classifier to decode representations of the causal choice in run 1 of the direct 

transition condition, then tested the decoder on run 2 to find regions of the orbitofrontal cortex (OFC) and 
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hippocampus (HC) that significantly decoded causal choice representations at a significance level of t(19) 

> 2.54, p < .01, uncorrected. We then used these regions as ROIs for a separate analysis which trained the 

classifier in run 1 and tested the classifier in run 2.  B) Shows ROIs generated from the same procedure as 

described in A, but the use of each run for training and testing are switched.  

 

 

 

 
Figure S4. Main effect of choice decoding accuracy at the time of feedback TFCE corrected in each 

run of the direct transition condition 

A. Regions of the OFC showing significant decoding of the causal choice in run 1 of the direct transition 

condition. Significance was tested using TFCE correction over voxels with the ROI generated from run 

2, using the procedure described above (Fig.S1). For illustration, we show voxels that survive at threshold 

to t(19)=1.73, p<.05 uncorrected. B. Shows the same as A but for voxels in run 2, using the ROI generated 

from run 1. 
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Figure S5. Significnant informaton connectivity between FPl and OFC in functionally defined ROI 

from direct transition condition   

A. We did not observe signficiant decoding of the causal choice a in bilateral OFC ROI defined by 

significant cluseter in in the idirected transition condition. Thus, we used the accuracy map for decoding 

choices at feedback during the direct transition condition (t (19) > 1.73; p < .05) in the OFC, averaged 

across runs. B) We then used those cluster as ROI for TFCE correction for regions of the lOFC that 

showed significant information connectivity with FPl. We did this by testing for significant correlations 

between the trial-by-trial fidelity of pending representations in the FPl and causal choice representation 

during feedback in lOFC (see Methods).  
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A. 

 
 

 

B. 

 
 

Figure S6. Depiction of catch trials 

A. To ensure that participants where we included valuable catch trials in the passive observing “template 

task”. Participants were asked to report which image out of the four (2 gift cards and 2 stimuli) was the last 

one presented on the screen. They were endowed an extra £10 from which we removed £1 for every 

incorrect response. There were four catch trials per template run. B. The decision task included “bonus 

trials” in which participants could predict which gift card they expected to see on the subsequent feedback 

screen given their choice. They were given 3£ extra on the final gift card that was given to them for every 

correct answer. The first run of the direct transition condition had two catch trials; the second run had one. 

Both runs of the indirect transition condition had one catch trial each.  
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Figure S7. Control Analysis for Pending-to-Credit Assignment Information Connectivity in the 

Indirect Transition Condition 

A. Axial (left) and coronal (right) slices through a t-statistic map showing the results of a control analysis 

in which test the proportion of correct classifications of causal stimulus information in OFC and HPC at 

the time of the outcome for trials in which the FPl showed correct classification for the causal stimulus 

during pending trials. The proportion of correct trials was compared to a permuted baseline of randomly 

drawn trials for each participant then combined over participants to create a t-statistic. B. Secondary control 

analysis in which we reran the classification analysis for causal choice stimulus information at the time of 

outcome, but only on trials where FPl was found to correctly decode pending causal choice information. 

Note that this test is different from A because we allowed the classifier to create a new hyperplane 

separating categories for only those trials in which the FPl decoding was “correct”. For illustration, all maps 

are displayed at threshold of t(19)=2.54, p<.01 uncorrected. All effects survive small volume correction in 

a priori defined anatomical ROIs.   
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