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2 

Abstract 17 

 18 

Somatic mutation phasing informs our understanding of cancer-related events, like driver 19 

mutations. We generated linked-read whole genome sequencing data for 23 samples across 20 

disease stages from 14 multiple myeloma (MM) patients and systematically assigned somatic 21 

mutations to haplotypes using linked-reads. Here, we report the reconstructed cancer 22 

haplotypes and phase blocks from several MM samples and show how phase block length can 23 

be extended by integrating samples from the same individual. We also uncover phasing 24 

information in genes frequently mutated in MM, including DIS3, HIST1H1E, KRAS, NRAS, and 25 

TP53, phasing 79.4% of 20,705 high-confidence somatic mutations. In some cases, this 26 

enabled us to interpret clonal evolution models at higher resolution using pairs of phased 27 

somatic mutations. For example, our analysis of one patient suggested that two NRAS hotspot 28 

mutations occurred on the same haplotype but were independent events in different 29 

subclones. Given sufficient tumor purity and data quality, our framework illustrates how 30 

haplotype-aware analysis of somatic mutations in cancer can be beneficial for some cancer 31 

cases.  32 
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3 

Introduction 33 

 34 

Human genomes are diploid with two copies of each autosomal chromosome. Homologous 35 

chromosomes are distinct because they represent unique patterns of germline variation 36 

inherited from each parent. While genotypes represent the alleles at a specific locus, 37 

haplotypes are defined as groups of alleles across many loci separated according to which 38 

homolog they come from. Variant phasing and haplotype reconstruction may be achieved 39 

through technological and computational methods with a variety of data types and integration 40 

strategies from large public databases and individual samples.1-24 41 

 42 

Determining the haplotype of cancer-associated mutations informs our understanding of the 43 

oncogenic process, but that information is typically lost with next-generation bulk 44 

sequencing.25,26 Linked-read sequencing overcomes that limitation by labelling DNA from the 45 

same haplotype with the same barcode. Zheng et al. described this linked-read approach, 46 

accurately modeling fusion breakpoints and revealing biallelic TP53 inactivation by phasing a 47 

mutation and hemizygous deletion to opposite haplotypes.27 Marks et al. established the 48 

accuracy and reliability of linked-reads and explored the impact of variant density and 49 

heterozygosity on phasing performance.28 Linked-reads have impacted cancer study design 50 

and are especially well-suited for structural variant detection.29-38 Greer, et al. compared gastric 51 

cancer metastases and delineated a complex structural variant leading to FGFR2 52 

amplification.39 Viswanathan, et al. determined the order of events in a cohort of prostate 53 

cancer patients, showing androgen receptor (AR) gene duplications and CDK12 inactivation, 54 

phasing somatic mutations if the reads supporting it were assigned to a haplotype and phase 55 

block, and developing allele-specific copy number detection methods.40,41 Sereewattanawoot, 56 

et al. matched cis-acting regulatory variants with allele-specific expression in lung cancer cell 57 
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lines.42 ENCODE cell lines K562 and HepG2 have been used for deeply-integrated linked-read 58 

investigations.43,44 59 

 60 

In this study, we analyzed 23 samples from a cohort of 14 multiple myeloma patients using 61 

linked-read whole genome sequencing (lrWGS) generated using the 10X Genomics Chromium 62 

System. Multiple myeloma (MM) is the second most common form of blood cancer and has a 63 

median 5-year survival around 50%.45 MM is caused by clonal proliferation of plasma cells in 64 

the bone marrow. Primary genetic aberrations include hyperdiploidy and translocations that 65 

join the highly expressed IGH locus (chr14) with oncogenes, including t(11;14) (CCND1), t(4;14) 66 

(WHSC1), t(6;14) (CCND3), and t(14;20) (MAFB). Secondary events include MYC translocations 67 

and driver mutations. MAPK is the most commonly mutated pathway in MM, including somatic 68 

mutations in KRAS, NRAS, and BRAF.45 Better appreciation of the haplotype context of these 69 

events, both driver mutations and structural variations, is necessary to improve targeted 70 

therapies and understanding of myelomagenesis. We created a framework for systematically 71 

phasing somatic mutations to haplotypes, allowing for deeper interpretation of tumor evolution 72 

in some cases. We also illustrate the concept of extending phase blocks using shared germline 73 

information across samples from the same individual. Our cohort represents a large resource 74 

of multiple myeloma lrWGS data and improves our understanding of human haplotype and 75 

cancer haplotype analysis. 76 

 77 

Results 78 

 79 

Haplotype-aware methods build on phasing information to analyze somatic mutations 80 

 81 
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The advantage of lrWGS over traditional WGS is that reads mapping to the same genomic 82 

region with the same barcode most likely originated from the same piece of high molecular 83 

weight (HMW) DNA (Fig. 1a).27 The Long Ranger pipeline (10X Genomics) aligns reads, calls 84 

and phases variants, reports structural variants (SVs), and produces phasing quality metrics. 85 

With enough sequencing depth and allelic heterogeneity, Long Ranger is able to phase variants 86 

and reads. Variants and reads are grouped into phase blocks, defined as genomic ranges in 87 

which haplotype assignments are consistent. Within a phase block, all variants assigned to a 88 

certain haplotype are thought to have originated from the same biological haplotype. The 89 

haplotype order may switch in another phase block, so haplotype assignments cannot be 90 

compared between phase blocks. Long Ranger phasing is designed to work with germline 91 

variants and does not distinguish between germline variants and somatic mutations in cancer. 92 

Phasing performance may be suboptimal for somatic mutations with low variant allele 93 

frequency (VAF), in regions of copy number variation, and in tumor samples with low purity or 94 

heterogeneous clonal structure. Specific methods are necessary to overcome this limitation.46 95 

 96 

To enable further downstream processing of lrWGS data, we developed additional methods 97 

that use Long Ranger output to further analyze single nucleotide variant (SNV) mutations 98 

collectively referred to as SomaticHaplotype (Fig. 1b) (see Methods and Code Availability). 99 

Given the phased variant call format (VCF) file and phased bam file produced by Long Ranger, 100 

the phaseblock module constructs PhaseBlock and Variant objects with information derived 101 

from reads and variant calls for use by later modules. The summarize module reports summary 102 

information about each phase block, including genomic range and number of variants, and 103 

global statistics like phase block length N50. The somatic module uses two complementary 104 

approaches to assign high-confidence somatic mutations to haplotypes and then analyzes the 105 

haplotype relationship between proximal pairs of events. The extend module utilizes germline 106 
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Figure 1. Linked-read data generation and analysis pipeline. a. The 10X Genomics Chromium platform tags 
large DNA molecules with barcodes such that reads originating from the same molecule have the same barcode. 
The Long Ranger pipeline aligns reads and phases variants. b. SomaticHaplotype builds upon Long Ranger 
output with several modules, including phaseblock, summarize, somatic, extend, and ancestry. c. Our cohort 
comprises 14 multiple myeloma patients across several disease stages for a total of 23 tumor samples. d. Quality 
control measures for our tumor and normal samples plus 1000 Genomes samples NA12878 (+) and NA19240 
(x). Violin plots defined as: center line, median; violin limits, minimum and maximum values; points, every obser-
vation. Molecule Length (mean, Kb): length-weighted mean input DNA length in kilobases. Linked-Reads per 
Molecule (N50): N50 of read-pairs per input DNA molecule. Phase Block Length (N50, Mb): N50 length of phase 
blocks in megabases.
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variation from matched samples to bridge gaps between phase blocks and suggests how to 107 

make neighboring phase blocks have consistent haplotype assignments. The ancestry module 108 

augments lrWGS data with information from large-scale phased resources, like the 1000 109 

Genomes Project. 110 

 111 

Our data set comprises lrWGS data from 14 patients diagnosed with multiple myeloma (Fig. 112 

1c). Longitudinal samples were taken from the premalignant smoldering multiple myeloma (S), 113 

primary diagnosis (P), pre-transplant (PrT), post-transplant (PoT), remission (Rem), and relapse 114 

(Rel) stage. In total, 23 tumor samples and 10 skin normal samples were processed with 115 

lrWGS. Four tumor samples were CD138+ sorted to enrich for plasma cells, increasing tumor 116 

purity. Other samples were not CD138+ sorted and contain varying compositions of 117 

microenvironment cells along with tumor plasma cells. In addition, for 9 CD138+ sorted tumor 118 

samples with matched lrWGS, we generated whole genome sequencing (WGS) data with 119 

increased tumor purity to make high confidence somatic mutation calls (6 samples available at 120 

first data freeze) and structural variant calls (9 samples) (Supplementary Table 1; see 121 

Methods). Please see Supplementary Table 1 for tumor purity estimates of lrWGS samples 122 

with matched CD138+ sorted WGS samples (median tumor purity of sorted lrWGS = 0.676, n = 123 

1; median tumor purity of unsorted lrWGS = .202, n = 4).  124 

 125 

Cell-type composition, including tumor purity, shapes our interpretation of results from the 126 

cohort collectively and from individual samples. CD138+ sorting of four tumor samples 127 

selected for tumor-associated plasma cells, increasing tumor purity and our ability to detect 128 

interesting somatic mutation events. In unsorted samples comprising many immune and 129 

stromal cells not carrying the somatic mutations found in the tumor, we found tumor purity to 130 

be an important limiting factor that restricted our ability to more broadly generalize our findings 131 
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across the dataset. Instead, we illustrate the types of analysis enabled by our framework by 132 

focusing on particular cases with the data quality sufficient for confident interpretation.  133 

 134 

Quality control measures of our tumor samples compared well with data from publicly-available 135 

gold-standard data from two 1000 Genomes samples (see Data Availability) (Fig. 1d, 136 

Supplementary Figure 1, Supplementary Table 2). Molecule length refers to the size of the long, 137 

HMW DNA fragments. In our tumor samples, the mean molecule length per sample ranged 138 

from 44.3 Kb to 85.8 Kb with a median of 62.8 Kb, whereas in our normal skin samples, the 139 

median value was 15.3 Kb. Linked-reads per molecule is the number of read pairs originated 140 

from each molecule, and the N50 value indicates that half of the molecules have that many 141 

reads pairs or more. In our tumor samples, the N50 linked-reads per molecule ranged from 40 142 

to 97 with a median of 62, compared to a median of 10 in our skin samples. Finally, the N50 143 

phase block length in tumor samples ranged from 1.3 Mb to 11.8 Mb with a median of 5.7 Mb, 144 

whereas the median was 0.4 Mb in skin samples. Given the consistent lack of informative 145 

linked-read information in our skin samples, we excluded them from downstream analysis. The 146 

skin samples were only used as a control for somatic mutation calling from our sorted WGS 147 

samples. For tumor samples, the median corrected mass of input DNA loaded into the 148 

Chromium chip was 1.3 ng, and the median mean sequencing depth was 71.6 reads. The 149 

median percentage of single nucleotide variants (SNVs) phased by Long Ranger was 99.2%. 150 

See Zhang, et al. for additional quality metrics that may be applied to linked-read data.47 151 

 152 

Phase block lengths reflect biologically-relevant genomic changes 153 

 154 

We examined the distribution of phase block lengths to explore patterns in our data. N50 155 

phase block lengths were consistent across chromosomes, with the median N50 ranging from 156 
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4.42 Mb on chr15 to 7.74 Mb on chr18 (Supplementary Figure 2a). Chr1 showed the least 157 

variation in N50 phase block length (median 4.52 Mb, standard deviation 1.37 Mb). Chr21 158 

showed the greatest variation (median 5.78 Mb, standard deviation 9.33 Mb) and also had the 159 

highest overall values, with 6 samples having N50 phase block lengths above 20 Mb, 4 of 160 

which came from Patient 59114. Some samples, such as 25183 (Rel), had consistently higher 161 

N50 values across many chromosomes (Supplementary Figure 2b). This may be due to this 162 

sample having the highest mean molecule length (85.8 Kb) and percentage of mapped reads 163 

(97.7%) of all tumor samples. Another sample, 58408 (P), had consistently shorter phase 164 

blocks, but quality control measures did not clearly indicate why. 165 

 166 

Chr13 and chr22 from 27522 (P) showed low N50 phase block lengths, and the distribution of 167 

phase block lengths from those two chromosomes is strikingly different from that of other 168 

chromosomes (Supplementary Figure 2c). The N50 phase block lengths for chr13 and chr22 169 

were 0.42 Mb and 0.38 Mb, respectively, compared to that sample’s overall median N50 of 5.9 170 

Mb. Both chr13 and chr22 had a one copy deletion across the entire chromosome, leading to a 171 

lack of heterozygosity needed for long phase blocks (Supplementary Figure 3). Hemizygous 172 

chr13 and chr22 phase blocks from 27522 (P) are much shorter across the entire chromosome 173 

compared to those from the remission sample, which is closer to an overall diploid state with 174 

low tumor content (Supplementary Figure 2d). However, we can interpret this sequencing 175 

artifact in a biologically meaningful way, and one benefit of homozygosity across an entire 176 

chromosome is the potential to resolve the entire chromosome’s haplotype structure. Deletion 177 

size, tumor purity, and the proportion of tumor cells with copy number loss are important 178 

factors determining the ability of deletion regions to be phased. 179 

 180 
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In total, phase blocks cover 60.6 Gb across our 23 tumor samples (Supplementary Figure 2e), 181 

for an average of 2.6 Gb per sample. 72.2% (32,426/44,918 phase blocks) of phase blocks are 182 

between 0 and 1 Mb, but those short segments account for only 8.4% (5.1/60.6 Gb) of the total 183 

amount of genome covered by phase blocks in these samples. In comparison, 3,776 phase 184 

blocks are between 1-2 Mb and cover 5.5 Gb (9.0%). The distribution of genomic coverage by 185 

phase blocks of increasing length has a right-skewed long tail distribution. There are 19 phase 186 

blocks longer than 30 Mb, and the longest phase block is 59.2 Mb. As expected, there is a 187 

strong linear relationship between phase block length and the number of phased heterozygous 188 

variants (r2 = 0.96). Over the 5.0 Mb human leukocyte antigen (HLA) region of chr6  189 

(chr6:28510120-33480577), we observed a median of 4 phase blocks greater than 1kb in 190 

length (range 1-13 phase blocks), which covered between 93.5% and 100% of the region 191 

(median 98.7%). HLA region haplotyping could help match patients and donors before 192 

allogeneic stem cell transplants in limited and specific MM cases.48 193 

 194 

Somatic mutations can be phased to specific haplotypes using linked alleles 195 

 196 

The haplotype context in which somatic mutations occur may be biologically relevant. For 197 

example, knowing the phase of two mutations affecting the same gene would indicate whether 198 

they cause biallelic inactivation or only alter one copy. However, tumor impurity, heterogeneity, 199 

and variable sequencing coverage make somatic mutations harder to identify and phase using 200 

standard approaches. To phase somatic mutations, we built upon the strengths of Long 201 

Ranger by examining germline variants that occur on each barcode associated with a somatic 202 

mutation site (Fig. 2a). We defined linked alleles as alleles co-occurring on the same barcode 203 

with either the reference or alternate allele at the somatic mutation site. We know that alleles 204 

co-occurring with the same barcode most likely originated from the same molecule of HMW 205 
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DNA, and we know the haplotype assignment of most (~99%) linked alleles. We developed two 206 

methods to phase somatic mutations even if the mutation was not phased by the standard 207 

pipeline. In the “linked alleles” approach, if the linked alleles co-occurring with the somatic 208 

mutation are consistently phased to the same haplotype, we can infer the haplotype of the 209 

somatic mutation since it is most likely the same as the linked alleles. Alternatively, we can also 210 

use the “barcodes” approach which leans on the assigned phased of reads supporting the 211 

alternate allele as evidence. We required complete agreement of reads with assigned phases 212 

to confidently infer the haplotype of somatic mutations. In this approach, we extract the 213 

haplotype annotation for each read, which is reported as a tag in the phased bam output from 214 

Long Ranger. However, this information is not given for all reads. In our tumor sample data, 215 

71.6% of reads overlapping a somatic mutation site were assigned a haplotype. Combining 216 

these two approaches increases phasing power when one approach lacks adequate coverage. 217 

 218 

For six lrWGS samples with matched CD138+ sorted WGS, we called high-confidence somatic 219 

mutations using the sorted WGS tumor sample (see Methods). In total, we detected 32,842 220 

somatic SNVs from our six sorted WGS samples, or 5,474 somatic SNVs per sample. Of those, 221 

29,896 mutations (4,983 per sample) were SNVs with coverage in the matched lrWGS samples, 222 

and 20,705 (69.2%) met our minimum coverage requirement of at least 10 linked alleles from 223 

barcodes supporting the mutant allele or at least one phased read supporting the mutant allele. 224 

To establish a linked allele threshold at which we could confidently phase somatic mutations, 225 

we overlapped high-confidence somatic mutations from our WGS calls with phased Long 226 

Ranger calls to create a comparison set. Using the phased Long Ranger calls as the gold 227 

standard, we found that requiring at least 91% of linked alleles to be from the same haplotype 228 

before phasing a mutation led to an optimal balance of precision (0.997) and recall (0.936) 229 

(Supplementary Figure 4a) (see Methods). Overall, 79.4% (16,440/20,705 mutations) of 230 
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somatic mutations with enough coverage were phased using that cutoff. Overall, the linked 231 

alleles and barcodes phasing methods were concordant on 99.95% of phasing decisions 232 

where both methods made a phasing decision (H1 or H2) (9,541/9,546 calls) (Fig. 2b). The 233 

barcodes approach added 5,760 calls where linked alleles did not have enough coverage or 234 

did not meet the phasing threshold. The linked alleles approach added 1,139 calls. See 235 

Supplementary Figure 4b for an overview of all results by phasing method. 236 

 237 

We sought to contextualize the phasing performance of our simple heuristics focused on 238 

known somatic mutations within the broader landscape of genome-wide variant phasing 239 

software tools. We intersected variant phasing results reported by three tools (Long Ranger 240 

(v2.2.2), WhatsHap49 (v1.1), and HapCUT211 (v1.3)) (see Methods) with our results to compare 241 

when each tool made a confident phasing decision. Of 20,705 variants with enough coverage, 242 

34.0% (7,033/20,705 variants) were reported by each tool and were either phased or not 243 

phased. Our targeted, heuristic approach limited to known somatic mutations phased 88.2% 244 

(6,203/7,033 variants) in that intersection, while WhatsHap phased 59.3% (4,171/7,033 245 

variants), HapCUT2 phased 52.0% (3,656/7,033 variants), and Long Ranger phased 52.0% 246 

(3,654/7,033 variants). 247 

 248 

Figure 2c highlights seven samples with somatic mutations commonly associated with multiple 249 

myeloma, including mutations in CYLD, DIS3, HIST1H1E, KRAS, NRAS, and TP53.45 In 9 out of 250 

16 examples shown, we confidently phased somatic mutations that were either not called or 251 

were not phased by Long Ranger. One mutation in ATR was not called by Long Ranger and 252 

was not phased by our approach since the linked alleles did not clearly favor one haplotype 253 

over the other (60.2% of phased linked alleles supporting the somatic mutation were phased to 254 

Haplotype 1, and 39.8% were phased to Haplotype 2). In 27522 (P), the NRAS G13R mutation 255 
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was phased by our method to Haplotype 2, but was phased to Haplotype 1 in 27522 (Rel). 256 

However, since haplotype numbering is arbitrary, such differences are trivial. Further, we 257 

noticed that well-known hotspot NRAS mutations G13R and Q61K were both phased to the 258 

same haplotype in 27522 (P). Later analysis suggested that these two events occurred 259 

independently in separate tumor subclones. 260 

 261 

We grouped high-confidence somatic mutations by phase block and found the proportion 262 

phased by our approach (Fig. 2d). The number of phased somatic mutations per megabase 263 

within each phase block showed a log2-normal distribution ranging from 0.10 to 241.3, with a 264 

median of 2.25. One application of phasing somatic mutations is establishing the pairwise 265 

haplotype relationship with other somatic mutations. Close to half of phase blocks longer than 266 

1 kb had zero pairs of somatic mutations (44.8%, 2,212/4,941 phase blocks), with 11.1% 267 

having zero somatic mutations and 33.6% having only one somatic mutation. But among those 268 

2,729 phase blocks longer than 1 kb with at least one pair of somatic mutations, 33.2% had 269 

exactly one pair, 18.0% 2-3 pairs, 20.4% 4-10 pairs, 22.3% 11-100 pairs, and the remaining 270 

6.0% had more than 100 pairs. 64.6% of those phase blocks had every mutation phased, and 271 

77.5% had at least 75% of mutations phased.  272 

 273 

Pairs of phased somatic mutations illustrate patterns of clonal evolution 274 

 275 

In short read sequencing, if two mutant alleles are called together on the same read or read 276 

pair, then we can infer they occurred in the same cell and on the same molecule of DNA. With 277 

lrWGS, we have the benefit of more linked-reads to consider when we look for such co-278 

occurring mutations. From six samples with lrWGS as well as high-confidence somatic 279 

mutation calls and CNV profiles from WGS, we focused on mutations in copy number neutral 280 
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regions with coverage between 10 and 100 phased barcodes at that position and one or more 281 

barcodes supporting the alternate allele (Supplementary Figure 5a). We examined 59,063 pairs 282 

of mutations and, as expected, the probability of one barcode covering both sites decreases 283 

as the distance between sites increases, with 98.4% (54,643/55,559 pairs) of mutation pairs 284 

located greater than 62 kb apart sharing no overlap. (62 kb is the median of the mean molecule 285 

lengths described in Fig. 1d.) Therefore, we focused on the 3,504 mutation pairs within 62 kb. 286 

For the 2,648 mutation pairs within this proximity but greater than 100 bp apart, 13.0% did not 287 

share any barcodes, 77.3% shared between 1 and 10 barcodes, 8.3% between 11 and 20 288 

barcodes, and 1.4% greater than 20 barcodes (Fig. 3a). For the 856 mutation pairs located less 289 

than 100 bp apart, each pair had at least one shared barcode (Supplementary Figure 5b). 290 

Overall, 5.9% (3,504/59,063 pairs) of somatic mutation pairs were within 62 Kb (Fig. 3b). Of 291 

those, 90.2% (3,159/3,504 pairs) share at least one barcode in common, and, of those, 64.6% 292 

(2,042/3,159 pairs) have a barcode on which one or both somatic mutations is represented, 293 

potentially enabling direct observation of mutation patterns in the same cell. 294 

 295 

We then considered the observed pairwise relationship of each reference and alternate allele 296 

on barcodes covering the two somatic sites (Fig. 3c). Of the 2,042 remaining mutation pairs, 297 

most (53.3%) share barcodes that only support either both reference alleles (REF-REF) or both 298 

alternate alleles (ALT-ALT). This means they have at least one barcode where both alleles are 299 

REF and at least one barcode where both alleles are ALT. Other observed patterns are less 300 

common, but include REF-REF with REF-ALT or ALT-REF, in which there is at least one 301 

barcode supporting one of the alternate alleles but not both. 6.7% of pairs show barcodes 302 

supporting REF-ALT and ALT-REF. In these cases, if the two alternate alleles are phased to the 303 

same haplotype in a copy number neutral context, this could indicate that the two mutations 304 

occurred on the same haplotype but in different cells. Finally, 7.1% of pairs have a pattern of 305 
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REF-ALT or ALT-REF along with ALT-ALT, suggesting a pattern of sequential mutation events. 306 

With greater tumor purity, we would expect to see a higher proportion of informative allele 307 

patterns with the potential to inform patient-specific models of tumor evolution. 308 

 309 

One such example where the pattern of somatic mutations may be informative for refining 310 

tumor phylogenies and may have clinical implications came from CD138+ sorted sample 27522 311 

(P). We observed two hotspot mutations in NRAS (G13R and Q61K) (Fig. 3d). NRAS is a known 312 

cancer driver oncogene and mutations may lead to dysregulation of the Ras pathway. We 313 

phased both mutations to the same haplotype (H2) (Supplementary Figure 6). We observed 2 314 

barcodes supporting REF-REF, 1 barcode supporting REF-ALT, and 1 barcode supporting 315 

ALT-REF. Based on sorted lrWGS data, the variant allele frequency (VAF) of the G13R mutation 316 

was 35.7% and the Q61K VAF was 22.2% at the primary stage. At relapse, the G13R VAF was 317 

20.5% and the Q61K mutation was not detected (VAF 0.0%). Such basic VAF calculations 318 

must be interpreted within the context of imperfect tumor cell sorting, tumor heterogeneity with 319 

subclonal structure, and potential partial copy number loss on the opposite haplotype 320 

(Supplementary Figure 3, Supplementary Figure 6). It may be clinically relevant to know if the 321 

two mutations occurred independently or in the same subclone even though multiple activating 322 

mutations in the same gene are not necessary for clonal expansion. Without the benefit of 323 

phasing, one possible interpretation could be that Q61K occurred in the same clone as G13R, 324 

and then the double mutant subclone was eliminated after therapy. However, with linked-325 

reads, we directly observed both mutations occurring without the other, and we never 326 

observed them together, guiding the interpretation that these mutations occurred 327 

independently in separate subclones and that the Q61K subclone was later lost (Fig. 3e).50 328 

 329 
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In another instance, we detected a pair of mutations in ACTG1 (G156 and L104) that may have 330 

occurred in sequential order on the same biological haplotype. Six barcodes demonstrate the 331 

ALT-REF pattern, with ALT G156 and REF L104, and 24 barcodes had ALT-ALT with both sites 332 

mutated (Fig. 3f). Under a parsimonious model in which the same mutation occurs only once, 333 

the G156 mutation must have preceded the L104 mutation. Since there are barcodes 334 

supporting both mutant alleles simultaneously, the mutations most likely occur within the same 335 

cells, and we interpret this to mean the cells with both mutations form a later subclone within 336 

the subclone of cells with only the G156 mutation (Fig. 3g). We also noted elevated copy 337 

number in this region (estimated to be 2.65). This would often preclude clonality analysis due 338 

its effect on the VAF.51 However, the combination of alleles present on the same barcodes 339 

enables us to interpret a sequential order of events. 340 

 341 

Oncogenic IGH translocations in myeloma map to specific haplotypes 342 

 343 

Multiple myeloma is characterized by recurrent clonal translocations that take advantage of 344 

overexpressed IGH locus by dysregulating oncogene expression. Barwick, et al. analyzed 795 345 

newly-diagnosed multiple myeloma patients from the Multiple Myeloma Research Foundation 346 

CoMMpass study (NCT01454297) and reported clonal translocations across the cohort, 347 

including 16% of patients with t(11;14) impacting CCND1, 11% with t(4;14) (WHSC1), 3.3% 348 

with t(14;16) (MAF), 1.1% with t(6;14) (CCND3), and 1.0 % with t(14;20) (MAFB).52 In our cohort 349 

of 14 patients, we detected common myeloma translocations from lrWGS using the Long 350 

Ranger pipeline and as well as from sorted WGS in 9 matching samples and found t(11;14) in 2 351 

patients and t(4;14) in 1 patient (see Methods).53 After selecting high-confidence events 352 

reported from sorted WGS, we found supporting evidence from lrWGS barcodes and mapped 353 

those events to haplotypes. 354 
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 355 

From the 9 matched sorted WGS samples, we identified 88 high-confidence translocations 356 

(see Methods). We then interrogated matching lrWGS data to find barcodes supporting the 357 

event. Of those 88 high-confidence events, 20.5% (18/88 events) had at least two barcodes 358 

with a read pattern in support of the translocation. This low rate of support may be attributed 359 

to most lrWGS samples not being sorted to select for tumor cells. However, of the 18 events 360 

with at least two barcodes, the read haplotype assignment of 94.4% (17/18 events) of 361 

translocations showed a consistent haplotype assignment, suggested that using high-362 

confidence SV calls from WGS is a robust prior for haplotype mapping of SVs in high purity 363 

lrWGS data. 364 

 365 

In Patient 27522, 6 out of 7 SVs detected from both Primary and Relapse samples were also 366 

detected from WGS (Supplementary Figure 7a). This patient had a t(4;14) event detected at 367 

primary diagnosis present later at relapse which juxtaposed the IGH enhancers with WHSC1 368 

and FGFR3, leading to overexpression of both oncogenes (Supplementary Figures 7b, 8a-b). 369 

WHSC1 overexpression in t(4;14) tumors increases dimethylation of H3K36 and broadly 370 

dysregulates the myeloma epigenome.54 The coverage heat map showing where discordant 371 

barcodes map on chr4 and chr14 clearly shows the translocation breakpoint within the first 372 

intron of WHSC1 at chr4:1871962 and near IGHM on chr14 and also indicates a deletion 373 

proximal to the translocation breakpoint on chr14. We then visualized the coverage pattern of 374 

barcodes with reads mapping to both chromosomes in a window around the reported t(4;14) 375 

breakpoints (Supplementary Figure 7c). The barcode coverage indicates a reciprocal event 376 

leading to two new derived chromosomes der(4) and der(14) with reads from barcodes 377 

supporting t(4;14) arbitrarily assigned to H2 on both chromosomes. A pair of events in 27522, 378 

t(6;17) and t(4;6), showed similar breakpoints on chr6, approximately 14 kb apart. However, we 379 
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did not observe convincing evidence of barcodes with a read coverage pattern linking the three 380 

chromosomes, supporting the interpretation that these events occurred independently. 381 

 382 

For 77570 (P), Long Ranger reported two t(11;14) events affecting different regions of IGH but 383 

with the same breakpoint upstream of CCND1 (Supplementary Figure 7d-e, 8c-f). One event 384 

linked the IGH variable gene region (chr14:106269142) to CCND1 on chr11. The other at 385 

chr14:105741942 linked the coding region of IGHG1 to the same CCND1 breakpoint. Barcode 386 

coverage analysis suggests these two reported events may actually be one complex reciprocal 387 

event with a t(11;14) translocation and deletion on chr14 giving the observed pattern of read 388 

coverage upstream and downstream of each breakpoint (Supplementary Figure 7f). 389 

 390 

One application of translocation mapping is matching allele-specific expression to 391 

translocation events, for example if a germline heterozygous coding variant from the same 392 

haplotype of the dysregulating translocation were detected from RNA-seq, then the connection 393 

between translocation and expression could be made more explicitly. 394 

 395 

Shared germline variants from matched samples enable phase block extension 396 

 397 

Phase block boundaries may differ between samples originating from the same patient. 398 

However, samples from the same patient do share germline variants, and those germline 399 

variants should be phased together in the same groups in both samples.55 In contrast to 400 

previous sections in which somatic mutations from the same sample and same phase block 401 

were analyzed together, by comparing the phase of germline variants from overlapping phase 402 

blocks from two samples, we can determine if the two phase blocks are oriented the same 403 

way, or if one needs to be flipped for them to be consistent. We compared germline variants 404 
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from overlapping phase blocks found in two samples, the target sample and the reference 405 

sample (Fig. 4a) (see Methods). If the shared germline variants were consistently assigned to 406 

the same haplotype, the target and reference phase blocks have the same orientation. If they 407 

were consistently assigned to opposite haplotypes, they have opposite orientation and the 408 

target needs to be switched. If two target phase blocks overlap the same reference phase 409 

block, then we can infer the haplotype orientation of the target phase blocks. However, if a 410 

switch error occurs in one phase block, that error will propagate as phase blocks are extended. 411 

 412 

We analyzed data from 6 patients having multiple tumor samples, with a total of 68,374 413 

overlapping phase blocks from 26 target and reference sample pairs. For example, we 414 

examined phase blocks originating from chr1 of 27522 (P) and 27522 (Rel), using 27522 (P) as 415 

the reference sample (bottom) and 27522 (Rel) as the target sample (top) (Fig. 4b). Reference 416 

phase block 1 (R1) (colored blue) spans multiple target phase blocks (T1-T7). For T1, T2, T3, 417 

and T5, there are not enough overlapping variants to draw conclusions about their orientation 418 

relative to R1. Phase blocks T4 and T7 must be switched in order to be consistent with R1, and 419 

T6 is already consistent with R1. Since T4 and T7 have the same orientation relative to R1, they 420 

have the same haplotype orientation and do not need to be switched. However, T6 must be 421 

switched to be consistent with T4 and T7. By grouping disconnected phase blocks together, 422 

we increase the number of pairs of loci with known haplotype orientation. 423 

 424 

In general, at least 10 overlapping phased variants are required before making a switch or no 425 

switch recommendation (Fig. 4c). Since the number of shared variants is correlated with the 426 

length of the overlap, the length of overlap tends to be greater than 100 kb before a 427 

recommendation can be made (Fig. 4d). We were not surprised to find roughly equal 428 

proportions of recommendations to switch (28.3%) and not switch (27.6%) given that 429 
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haplotype numbering is random. For the remaining 44.1% of cases, the algorithm was not able 430 

to make a recommendation to switch or not switch. For extendable phase blocks from chr1 in 431 

target sample 27522 (P) (extended by reference 27522 (Rem)), we found that, before extension, 432 

the median phase block length was 1.6 Mb, and after extension, it was 5.7 Mb, a 3.5-fold 433 

increase (Fig. 4e). Similarly, from all samples with extendable phase blocks, we found that 434 

median phase block length increased from 1.2 Mb (6.1 on log10 bp scale) to 5.5 Mb (6.7 on 435 

log10 bp scale), a 4.6 fold increase from before extension to after extension (Fig. 4f). 436 

 437 

We also developed methods to leverage publicly available population-scale phased data to 438 

learn more about the origin of haplotypes present in our cohort and to improve our lrWGS 439 

results. After reporting identical-by-descent (IBD) segments shared between 2,504 individuals 440 

from 1000 Genomes data (see Methods; see Data availability), we identified IBD segments 441 

overlapping multiple lrWGS phase blocks in NA12878.56 Using phased heterozygous variants 442 

shared between the 1000 Genomes VCF of this sample and the VCF output from Long Ranger, 443 

we found the proportion of IBD alleles matching each haplotype in each phase block. IBD 444 

alleles consistently matched one haplotype or the other with the occasional short switch error. 445 

For example, NA12878 shares an IBD segment with NA10851 from position 59,094,547 to 446 

59,706,930 on chr18 (LOD score 15.64, 1.576 cM) (Fig. 4g). That IBD segment bridges multiple 447 

lrWGS phase blocks. Since the IBD alleles match Haplotype 2 from phase block 448 

chr18:52160074 and match Haplotype 1 from chr18:595505042, those two phase blocks may 449 

be in opposite orientation. 450 

 451 

Discussion 452 

 453 
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As sequencing technologies evolve and analysis methods more regularly include haplotype 454 

phasing, somatic mutation phasing will become a more common practice. The current 455 

methodological approaches to haplotype-aware somatic mutation analysis will mature from ad 456 

hoc investigations to standard pipelines. We have developed a systematic approach to 457 

somatic mutation analysis in a cohort of multiple myeloma patients over the course of disease. 458 

Our methods build on the backbone of the Long Ranger variant calling and phasing pipeline for 459 

linked-read sequencing data. These methods are an opportunity for future development in a 460 

climate of rapid technological advances with many applications. We need better understanding 461 

of the haplotypes carrying germline variants related to predisposition of many diseases, 462 

including cancer, as well as better methods to identify ancestry-specific risk modifiers.57-63 463 

Biallelic TP53 inactivation indicates poor prognosis in multiple myeloma64, and double PIK3CA 464 

mutations on the same haplotype can be more oncogenic but also more susceptible to PI3Ka 465 

inhibitors.65 Other medical applications of linked-read sequencing include more sensitive 466 

prenatal diagnosis 66,67, better predictions about how protein structure may change in response 467 

to multiple mutations 68, and more accurate neoepitope prediction.69 Tools such as 468 

HAPDeNovo capitalize on haplotype structures from linked-reads to eliminate false-positive 469 

from studies of rare, de novo variation.70 470 

 471 

We noted several limitations in our analysis potentially due to data generation. We observed 472 

shorter phase blocks in our skin normal controls samples potentially due to lower input 473 

molecule size or sequencing depth. For our somatic analyses, an important caveat was 474 

controlling for copy number changes which disrupt the strict two haplotype paradigm of variant 475 

phasing. Another limitation of our somatic analysis was low tumor purity. Only 4 of our 23 476 

samples were CD138+ sorted, and two samples in particular gave us the most confident 477 

results. Higher tumor purity and lower variability in cell-type composition are likely important for 478 
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robust somatic variant haplotype analysis. Calling somatic mutations with low variant allele 479 

frequency is a challenge for any mutation caller, especially those like Long Ranger built for 480 

germline variant detection. In our case, pairing linked-read data with high-confidence somatic 481 

mutation calls from a separate WGS sample was necessary to gain sensitivity. Future analyses 482 

using lrWGS in multiple myeloma should include analysis of chromoplexy and chromothripsis 483 

as these complex events are important in MM pathogenesis but cannot be fully appreciated 484 

using short reads.71 Additionally, long-range PCR of known somatic variant regions could 485 

validate the phasing performance and data interpretations enabled by our framework. 486 

 487 

Moving beyond next-generation sequencing to Third Generation and single-cell approaches 488 

holds the promise of increased resolution in cancer genome analyses.72-75 With long reads and 489 

linked-reads, we get haplotype resolution. With single-cell RNA-seq, we observe cell-specific 490 

patterns of gene expression and copy number and can map coding mutations to specific 491 

cells.76 Single-cell DNA sequencing analyses, including approaches that incorporate 492 

haplotypes, offer even deeper resolution of tumor evolution and the ability to optimize 493 

treatment strategies.18,77-84 Methodological integration of single-cell data with the resolution 494 

gained from haplotype analysis is a direction for continued research.  495 
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Methods 496 

 497 

SomaticHaplotype modules 498 

 499 

Our framework of interconnected modules builds on the phased bam and variant output files 500 

from the Long Ranger pipeline (10X Genomics). Our analysis code was written in python and is 501 

freely available under the MIT license (see Code availability). Additional inputs to our pipeline 502 

may include high-confidence somatic mutation calls and identity-by-descent segments. There 503 

are five analysis modules: phaseblock, summarize, somatic, extend, and ancestry. 504 

 505 

Phaseblock: The phaseblock module is the first module run on any new data. The inputs are a 506 

phased bam and phased variant call format (VCF) file from the Long Ranger pipeline. Given a 507 

genomic range of interest, such as an entire chromosome, phaseblock constructs PhaseBlock 508 

and Variant objects by extracting information from reads and variant calls. PhaseBlock objects 509 

collect information about variants common to phase blocks identified by Long Ranger. Variant 510 

objects store information about small variants, including genotype and phase, and map to 511 

specific PhaseBlock objects based on tags given by Long Ranger. Each Variant also stores the 512 

barcodes of reads supporting the reference and alternate allele at that position. The objects are 513 

designed with methods for later utility. Dictionaries referencing those objects are stored in an 514 

output file used as input to downstream modules. 515 

 516 

Summarize: The summarize module takes input from phaseblock and produces a summary of 517 

each phase block and a global summary about phase block lengths. Output from summarize is 518 

used as input to somatic and extend. 519 

 520 
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Somatic: The somatic module collects barcode and haplotype information supporting somatic 521 

mutation sites. Somatic mutation sites are defined using an input parameter, either as a 522 

mutation annotation format (MAF) file or list of mutations. Barcodes supporting somatic 523 

mutation sites are extracted by a separately-run submodule called 10Xmapping which mines 524 

the bam for reads supporting the mutation site and also from the VCF if the mutation was 525 

called by Long Ranger. The 10Xmapping submodule identifies bam reads supporting the 526 

reference and alternate alleles at a somatic mutation site and gathers barcode and haplotype 527 

information from each read. 10Xmapping is contained as a submodule of in our repository but 528 

is also freely available at https://github.com/ding-lab/10Xmapping. Output from somatic 529 

includes information about every (germline and somatic) variant from barcodes overlapping 530 

each somatic mutation site, information necessary for phasing each somatic mutation, barcode 531 

sharing analysis of each pair of somatic mutations, and somatic mutation summaries for each 532 

phase block. 533 

 534 

In later analysis, users interpret output from somatic to decide if somatic mutations are phased 535 

or not. For example, we combined two approaches to determine the phase of each somatic 536 

mutation. In our “linked alleles” approach, we analyzed the proportion of linked alleles mapping 537 

to a particular haplotype and found 0.91 (and above) to be an appropriate threshold that 538 

balanced phasing decision precision and recall. We combined that with the “barcodes” 539 

approach, which relies on the reported haplotype assignment of reads supporting the somatic 540 

mutation. We determined a somatic mutation to be phased if at least one barcode supported 541 

the mutant allele and all barcodes supporting the mutant allele agreed on the haplotype 542 

assignment. For pairs of somatic mutations, the barcode sharing analysis finds barcodes with 543 

reads mapping to both somatic mutation sites. For each barcode, the alleles supporting each 544 

site are combined as allele pairs (REF-REF, REF-ALT, ALT-REF, and ALT-ALT). 545 
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 546 

Extend: The extend module combines germline variants from two related samples (e.g. from 547 

the same individual) to determine the haplotype orientation between disconnected phase 548 

blocks in one of the samples. Once the haplotype orientation between two phase blocks is 549 

determined, the phase blocks can be conceptually extended. The two samples are defined as 550 

the “target” (with phase blocks to be extended) and the “reference”, which the target is 551 

compared against. To determine if the target and reference phase blocks have the same or 552 

different haplotype orientation, extend compares the haplotype assignments of overlapping 553 

germline variants and finds the proportion of target haplotype assignments that need to be 554 

switched in order to be consistent with the reference. Extend uses a two-sided binomial test 555 

(significant number of “switch” or “not switch” given a conservative switch error rate) and a 556 

hard cutoff (more than 95% “switch” or less than 5% “switch”) to determine if the target and 557 

reference phase blocks have the same or opposite orientation. Then extend module then builds 558 

a bipartite graph in which nodes are phase blocks and edges connect overlapping target and 559 

reference sample phase blocks. Edge weights are defined as 1 if a switch is necessary 560 

between the target and reference phase block or 2 if a switch is not necessary. If two target 561 

phase blocks overlap the same reference phase block, then there is a connected path between 562 

the target phase blocks and we find the sum of the weighted edges connecting them. If the 563 

sum (mod 2) is zero, then the two target phase blocks have the same orientation. If the sum 564 

(mod 2) is one, then they have opposite orientation. Extend output describes the overlap of 565 

each target phase block with reference phase blocks and also forms groups of connected 566 

target phase blocks that may be extended via this method. 567 

 568 

Ancestry: The ancestry module uses a similar concept to extend but instead relies on output 569 

from an identity-by-descent tool such as Refined IBD instead of phase blocks from a related 570 
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sample.56 By examining the haplotype assignment of alleles from overlapping IBD segments 571 

and phase blocks defined by Long Ranger, ancestry may bridge gaps between phase blocks 572 

and find where phase block haplotype orientations are congruent or not. Ancestry also assigns 573 

population history to portions of phase blocks that overlap IBD segments. 574 

 575 

Generation of linked-read whole genome sequencing data 576 

 577 

The 10X Genomics Chromium System generates linked-read sequencing data. From a bulk 578 

sample of cells, long fragments of DNA, also called high-molecular weight (HMW) DNA, are 579 

isolated into an individual gel bead in emulsion (GEM). Each GEM contains a gel bead with 580 

primers including a 16-bp DNA barcode unique to that GEM. The gel bead dissolves and 581 

releases the barcoded primers, which attach to the DNA and undergo isothermal amplification. 582 

Now each short fragment of amplified DNA contains a barcode identifying which GEM it 583 

originated from. The GEMs break and the barcoded fragments are pooled together and 584 

sequenced. 585 

 586 

Patient cohort 587 

 588 

Fourteen (10 male, 4 female) patients with multiple myeloma were included in the analysis. The 589 

median age at diagnosis was 63 (range 46-69). Eight patients had IgG isotype (4 kappa and 4 590 

lambda), 2 had IgA kappa isotype, 2 had light chain only disease (1 kappa and 1 lambda), and 591 

2 were non-secretory. Five were International Staging System Stage I, 2 were Stage II, 3 were 592 

stage III, and 4 were unreported. The median plasma cell burden by flow cytometry in bone 593 

marrow at diagnosis was 24% (range 4-63). By standard fluorescence in situ hybridization 594 

(FISH), 1 patient had t(4;14), 3 had t(11;14), and 2 showed del(17p). A total of 23 samples were 595 
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collected from multiple disease stages, including smoldering multiple myeloma (SMM), primary 596 

diagnosis, pre- and post-transplant, remission, and relapse. 597 

Sample collection and data generation 598 

Research bone marrow aspirate samples were collected at the time of the diagnostic 599 

procedure. Bone marrow mononuclear cells (BMMCs) were isolated using Ficoll-Paque. 600 

BMMCs were cryopreserved in a 1:10 mixture of dimethyl sulfoxide and fetal bovine serum. 601 

Upon thawing, whole BMMCs were used for linked-read whole genome sequencing. Plasma 602 

cells were separated from a sub-aliquot by positive selection using CD138-coated magnetic 603 

beads in an autoMACs system (Miltenyi Biotec, CA) and used for whole genome and exome 604 

sequencing. Skin punch biopsies were performed at the time of the diagnostic bone marrow 605 

collection to serve as normal controls. Although many studies use peripheral blood 606 

mononuclear cells (PBMCs) as a control, abnormal B cells and circulating tumor cells 607 

frequently contaminate the peripheral blood of patients with multiple myeloma. Therefore, 608 

using PBMCs may lead to the omission of genetic events potentially important in disease 609 

pathogenesis. 610 

Linked-read whole genome sequencing (lrWGS). Normal skin samples were processed with a 611 

standard Qiagen DNA isolation kit resulting in 10-50Kb DNA fragments. 250K tumor cells were 612 

processed with the MagAttract HMW DNA extraction kit (Qiagen) resulting in 100-150Kb DNA 613 

fragments. 600-800ng of normal DNA was size selected on the Blue Pippin utilizing the 0.75% 614 

Agarose Dye-Free Cassette to attempt to remove low molecular weight DNA fragments. The 615 

size selection parameters were set to capture 30-80 Kb DNA fragments (Sage Science). The 616 

resulting size selected DNA from the normal samples and the HMW DNA from the tumor cells 617 

were diluted to 1ng/μL prior to the v2 Chromium Genome Library prep (10X Genomics). 618 
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Approximately 10-15 DNA molecules were encapsulated into nanoliter droplets. DNA 619 

molecules within each droplet were tagged with a 16 nucleotide barcode and 6 nucleotide 620 

unique molecular identifier during isothermal incubation. The resulting barcoded fragments 621 

were converted into a sequence ready Illumina library with an average insert size of 500bp. The 622 

concentration of each library was accurately determined through qPCR (Kapa Biosystems) to 623 

produce cluster counts appropriate for sequencing on the HiSeqX/NovaSeq6000 platform 624 

(Illumina). 2x150 sequence data were generated targeting 30x (normal) and 60x (tumor) 625 

coverage providing linked-reads across the length of individual DNA molecules. 626 

Standard whole genome sequencing (WGS). Manual libraries were constructed with 50-2000ng 627 

of genomic DNA utilizing the Lotus Library Prep Kit (IDT Technologies) targeting 350bp inserts. 628 

Strand-specific molecular indexing is a feature associated with this library method. The 629 

molecular indexes are fixed sequences that make up the first 8 bases of read 1 and read 2 630 

insert reads. The concentration of each library was accurately determined through qPCR (Kapa 631 

Biosystems). 2x150 paired-end sequence data generated ~200 Gb per tumor sample leading 632 

to 60x (tumor) haploid coverage. 633 

lrWGS data processing with Long Ranger 634 

Long Ranger (10X Genomic) performs linked-read alignment, variant calling, and variant 635 

phasing. We ran Long Ranger (v2.2.2) to align reads to the human genome reference GRCh38 636 

(GRCh38-2.1.0) and used --vcmode with GATK85,86 (version 3.7.0-gcfedb67) for variant calling. 637 

Long Ranger also produces quality metrics associated with each sample. Publicly-available 638 

1000 Genomes lrWGS samples were processed with Long Ranger (version 2.2.1) and aligned 639 

to hg19. 640 

lrWGS data processing with other tools 641 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.607342doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.09.607342
http://creativecommons.org/licenses/by/4.0/


28 

In addition to Long Ranger, we used WhatsHap49 (v1.1) and HapCUT211 (v1.3) to phase our 642 

linked read WGS samples using human genome reference GRCh38 (GRCh38-2.1.0). We 643 

applied the additional extractHAIRS and LinkFragments steps to prepare our 10X data for use 644 

by HapCUT2. 645 

High-confidence somatic mutation detection 646 

Somatic mutations were called by our SomaticWrapper pipeline, which includes four 647 

established bioinformatic tools, namely Strelka87, Mutect88, VarScan289 (2.3.83), and Pindel90 648 

(0.2.54). We retained SNVs and INDELs using the following strategy: keep SNVs called by any 649 

2 callers among Mutect, VarScan, and Strelka and INDELs called by any 2 callers among 650 

VarScan, Strelka, and Pindel. For these merged SNVs and INDELs, we applied coverage cut-651 

offs of 14X and 8X for tumor and normal, respectively. We also filtered SNVs and INDELs with 652 

a high-pass variant allele fraction (VAF) of 0.05 in tumor and a low-pass VAF of 0.02 in normal. 653 

The SomaticWrapper pipeline is freely available at https://github.com/ding-654 

lab/somaticwrapper. 655 

Copy number profiling 656 

 657 

We used BIC-seq291, a read-depth-based CNV calling algorithm to detect somatic copy 658 

number variations (CNVs) using standard WGS tumor samples and paired skin linked-read 659 

WGS data. The procedure involves 1) retrieving all uniquely mapped reads from the tumor and 660 

paired skin BAM files, 2) removing biases by normalization (NBICseq-norm_v0.2.4) 3) detecting 661 

CNV based on normalized data (NBICseq-seg_v0.7.2) with BIC-seq2 parameters set as --662 

lambda=90 --detail --noscale --control. We defined copy number neutral regions as having a 663 

log2 copy number ratio between -0.25 and 0.2 in the sorted WGS. 664 
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 665 

Tumor purity estimation 666 

 667 

We used the R package sciClone51 (v1.1.0) to estimate tumor purity based on clusters detected 668 

using variants from copy number neutral regions. We designated the cluster with the greatest 669 

median variant allele frequency (VAF) as the founding clone and doubled its VAF to estimate 670 

the sample’s tumor purity. 671 

 672 

Structural variant detection 673 

 674 

Somatic structural variants (SVs) were detected by Manta53 using tumor/normal sample pairs of 675 

standard WGS and paired skin linked-read WGS. SVs were filtered according to the following 676 

guidelines. Record-level filters included a QUAL score < 20; somatic variant quality score < 30; 677 

depth greater than 3x the median chromosome depth near one or both variant breakpoints; for 678 

variants significantly larger than the paired read fragment size, no paired reads support the 679 

alternate allele in any sample. Sample-level filters included a Genotype Quality < 15. This 680 

approach optimizes the analysis of somatic variation in tumor/normal sample pairs. In addition 681 

to the built-in Manta filters (labeled as PASS), we further prioritized the high-confidence variants 682 

by (1) the number of support spanning read pairs >= 5; (2) the coverage at the given 683 

breakpoints > 10; (3) events must involve only autosomes and/or sex chromosomes; (4) events 684 

passing manual IGV review on the read evidence. 685 

 686 

We also used gemtools33 (https://github.com/sgreer77/gemtools) and the python package 687 

pysam (0.15.3) with samtools92 (v1.9) to identify reads and barcodes supporting SVs in lrWGS. 688 

 689 
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Identity-by-descent reporting 690 

 691 

We obtained phased haplotype information for 2,504 individual from the 1000 Genomes and 692 

ran Refined IBD with default parameters (refined-ibd.16May19.ad5) (see Data availability).56 693 

 694 

Data availability 695 

 696 

The Washington University Institutional Review Board approved the study protocol, and all 697 

relevant ethical regulations, including obtaining informed consent from all participants, were 698 

followed. Patients were treated and sampled at Washington University in St. Louis. 699 

 700 

All data and scripts necessary to recreate figures are available at 701 

doi.org/10.6084/m9.figshare.12295922. 702 

 703 

Publicly-available 1000 Genomes lrWGS samples can be downloaded from 704 

https://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA12878_WGS_v2 and 705 

https://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA19240_WGS_v2. 706 

 707 

Phased 1000 Genomes VCFs (2,504 samples) were downloaded from  708 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. 709 

 710 

The remaining data and methods are available in the Article, Supplementary Tables, or are 711 

available from the author upon reasonable request. 712 

 713 

Code availability 714 
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 715 

SomaticHaplotype is freely-available at https://github.com/ding-lab/SomaticHaplotype. 716 
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Figure legends 976 
 977 
Figure 1. Linked-read data generation and analysis pipeline. a. The 10X Genomics 978 
Chromium platform tags large DNA molecules with barcodes such that reads originating from 979 
the same molecule have the same barcode. The Long Ranger pipeline aligns reads and phases 980 
variants. b. SomaticHaplotype builds upon Long Ranger output with several modules, including 981 
phaseblock, summarize, somatic, extend, and ancestry. c. Our cohort comprises 14 multiple 982 
myeloma patients across several disease stages for a total of 23 tumor samples. d. Quality 983 
control measures for our tumor and normal samples plus 1000 Genomes samples NA12878 (+) 984 
and NA19240 (x). Violin plots defined as: center line, median; violin limits, minimum and 985 
maximum values; points, every observation. Molecule Length (mean, Kb): length-weighted 986 
mean input DNA length in kilobases. Linked-Reads per Molecule (N50): N50 of read-pairs per 987 
input DNA molecule. Phase Block Length (N50, Mb): N50 length of phase blocks in 988 
megabases. 989 
 990 
Figure 2. Phasing somatic mutations to haplotypes. a. Overview of methods used to phase 991 
somatic mutations. b. Number of somatic mutations phased using two phasing methods (H1 = 992 
phased to haplotype 1; H2 = phased to haplotype 2; NC = not enough coverage for phasing; 993 
NP = not phased). c. Phasing somatic mutations commonly observed in multiple myeloma. d. 994 
Distribution of somatic mutations per phase block and the proportion of mutations phased. 995 
 996 
Figure 3. Tumor evolution models derived from mutation pairs. a. Number of overlapping 997 
barcodes by distance between somatic mutations. b. Proportion of somatic mutation pairs in 998 
close proximity sharing barcodes and mutations. c. Patterns of mutation pairs observed on 999 
barcodes (REF = reference allele; ALT = alternate allele). A dark green square indicates that a 1000 
barcode with that pattern of two alleles was observed. Combinations of patterns can 1001 
interpreted as evidence of sequential (e.g. 1101, 1011) or distinct (e.g. 1110) mutations. d. 1002 
NRAS mutation pair observed in 27522 (P) and evolution model (NC = no coverage). e. 1003 
Interpretation of evolution model observed from NRAS mutation pair in 27522 (P). f. ACTG1 1004 
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mutation pair observed in 27522 (Rel) and evolution model. g. Interpretation of evolution model 1005 
observed from ACTG1 mutation pair in 27522 (Rel). 1006 
 1007 
Figure 4. Extension of phase blocks using additional sample information. a. Model for 1008 
phase block extension using overlap between target and reference phase blocks. b. Data-1009 
driven example of phase block overlap between samples. c. Number of phased variants 1010 
needed for switch/no switch recommendation. d. Length of phase block overlap needed for 1011 
switch/no switch recommendation. e. Phase block groups extended by overlap with another 1012 
sample. f. Distribution of phase block lengths before and after extension. Violin plots defined 1013 
as: center line, median; violin limits, minimum and maximum values; individual points not 1014 
shown. g. Use of identity-by-descent segments as overlap between phase blocks. 1015 
 1016 
Supplementary Figure Legends 1017 
 1018 
Supplementary Figure 1. Phasing performance quality control summary measures for our 1019 
tumor and normal samples plus 1000 Genomes samples NA12878 (+) and NA19240 (x). Violin 1020 
plots defined as: center line, median; violin limits, minimum and maximum values; points, every 1021 
observation. Definitions of metrics may be found here: 1022 
https://support.10xgenomics.com/genome-exome/software/pipelines/latest/output/metrics. 1023 
 1024 
Supplementary Figure 2. Phase block length distribution. a. Phase block length by 1025 
chromosome across all samples. Outlier phase blocks from sample 25183 (Rel) circled. Violin 1026 
plots defined as: center line, median; violin limits, minimum and maximum values; points, every 1027 
observation. b. Phase block length per sample across all chromosomes. c. Phase block 1028 
lengths of chr13, chr22, and others from 27522 (P). Phase blocks less than 1 kb filtered out for 1029 
plotting. d. Chr13 and chr22 phase block boundaries from 27522 (P) and 27522 (Rem). 1030 
Alternating dark and light boxes indicate adjacent phase blocks. e. Total phase block genome 1031 
coverage from all samples combined, grouped by phase block length. 1032 
 1033 
Supplementary Figure 3. Copy number profile of Patient 27522 at the primary disease stage. 1034 
Y-axis values are copy number ratios on the log2 scale. 1035 
 1036 
Supplementary Figure 4. Additional information related to somatic mutation phasing. a. 1037 
Precision/recall rates at various cutoffs for the proportion of linked-alleles assigned to one 1038 
haplotype. b. Comparison of phasing results with Long Ranger genotypes. 1039 
 1040 
Supplementary Figure 5. Additional information related to the relationship of pairs of somatic 1041 
mutation. a. Number of barcodes covering each mutation site and those supporting the mutant 1042 
allele. b. Number of overlapping barcodes by distance between somatic mutations less than 1043 
100 bp apart. 1044 
 1045 
Supplementary Figure 6. Barcodes supporting 27522 (P) NRAS hotspot mutation pair. 1046 
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 1047 
Supplementary Figure 7. Common myeloma translocations mapped to haplotypes. a. 1048 
Overlap of translocations observed in 27522 (P) and (Rel). b. Model of t(4;14) translocation. c. 1049 
Barcodes supporting t(4;14) indicate a single haplotype origin. d. Translocations observed in 1050 
77570 (P). e. Model of t(11;14) translocation. f. Barcodes supporting t(11;14) indicate a single 1051 
complex event. 1052 
 1053 
Supplementary Figure 8. Barcode support for common myeloma translocations. a-b. 27522 1054 
(P) t(4;14). c-f. 77570 (P) t(11;14). 1055 
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Supplementary Figure 1. Phasing performance quality control summary measures for our tumor and normal 
samples plus 1000 Genomes samples NA12878 (+) and NA19240 (x). Violin plots defined as: center line, 
median; violin limits, minimum and maximum values; points, every observation. Definitions of metrics may be 
found here: https://support.10xgenomics.com/genome-exome/software/pipelines/latest/output/metrics.
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Supplementary Figure 3. Copy number profile of Patient 27522 at the primary disease stage. Y-axis values are 
copy number ratios on the log2 scale.
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Supplementary Figure 4. Additional information related to somatic mutation phasing. a. Precision/recall 
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Supplementary Figure 6. Barcodes supporting 27522 (P) NRAS hotspot mutation pair.
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Supplementary Figure 7. Common myeloma translocations mapped to haplotypes. a. Overlap of transloca-
tions observed in 27522 (P) and (Rel). b. Model of t(4;14) translocation. c. Barcodes supporting t(4;14) indicate a 
single haplotype origin. d. Translocations observed in 77570 (P). e. Model of t(11;14) translocation. f. Barcodes 
supporting t(11;14) indicate a single complex event.
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Supplementary Figure 8. Barcode support for common myeloma translocations. a-b. 27522 (P) t(4;14). c-f. 
77570 (P) t(11;14).
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