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Abstract

Background:
Cannabis sativa with a rich history of traditional medicinal use, has garnered signi�cant attention in
contemporary research for its potential therapeutic applications in various human diseases, including
pain, in�ammation, cancer, and osteoarthritis. However, the speci�c molecular targets and mechanisms
underlying the synergistic effects of its diverse phytochemical constituents remain elusive.
Understanding these mechanisms is crucial for developing targeted, effective cannabis-based therapies.

Methods:
To investigate the molecular targets and pathways involved in the synergistic effects of cannabis
compounds, we utilized DRIFT, a deep learning model that leverages attention-based neural networks to
predict compound-target interactions. We considered both whole plant extracts and speci�c plant-based
formulations. Predicted targets were then mapped to the Reactome pathway database to identify the
biological processes affected. To facilitate the prediction of molecular targets and associated pathways
for any user-speci�ed cannabis formulation, we developed CANDI (Cannabis-derived compound Analysis
and Network Discovery Interface), a web-based server. This platform offers a user-friendly interface for
researchers and drug developers to explore the therapeutic potential of cannabis compounds.

Results:
Our analysis using DRIFT and CANDI successfully identi�ed numerous molecular targets of cannabis
compounds, many of which are involved in pathways relevant to pain, in�ammation, cancer, and other
diseases. The CANDI server enables researchers to predict the molecular targets and affected pathways
for any speci�c cannabis formulation, providing valuable insights for developing targeted therapies.

Conclusions:
By combining computational approaches with knowledge of traditional cannabis use, we have developed
the CANDI server, a tool that allows us to harness the therapeutic potential of cannabis compounds for
the effective treatment of various disorders. By bridging traditional pharmaceutical development with
cannabis-based medicine, we propose a novel approach for botanical-based treatment modalities.

Introduction
Cannabis sativa is among the most ancient cultivated plants, with evidence suggesting its utilization
may date back nearly a million years(Ren et al., 2021). Its multifaceted advantages, particularly as a
source of �ber, have resulted in its extensive function in both agricultural and industrial
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applications(Fordjour et al., 2023; H.-L. Li, 1974). Currently, cannabis is consumed for medicinal and
recreational purposes and is recognized for its various derived metabolites, including terpenoids,
�avonoids, sterols, and phytocannabinoids(Simiyu et al., 2022). Phytocannabinoid compounds are being
comprehensively reviewed and are stated to interrelate with a complex network of receptors and
signaling pathways that play a crucial role in modulating various physiological processes, including pain
perception, appetite, mood, and memory(Bonn-Miller et al., 2018; Pacher et al., 2006; Zou & Kumar,
2018). The principal psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC), has been the
focus of wide-ranging investigation and is the only approved cannabinoid-based prescription for the
healing of chemotherapy-induced sickness in patients(Badowski, 2017; Ng et al., 2024). However, the
therapeutic potential of cannabis extends far beyond THC, with numerous other cannabinoids and
terpenes exhibiting promising pharmacological activities(Alves et al., 2020).

On the other hand, cannabis, a formerly banned substance universally, has endured a substantial shift in
perception, with various countries like the United States and Canada acknowledging its long-standing
traditional medicinal use and legalizing its usage. This paradigm shift has been driven by scienti�c
research and an emerging understanding of the potential therapeutic bene�ts of cannabis and its active
compounds(Dalli et al., n.d.). Modern computational and experimental studies on phytocannabinoids
and other cannabis-derived compounds have elucidated their medicinal value in the treatment of diverse
human disorders, including in�ammatory bowel disease (IBD), cancer, Alzheimer's disease, Parkinson's
disease, and multiple sclerosis(Abd-Nikfarjam et al., 2023; Carkaci-Salli et al., 2023; Cassano et al., 2020;
Fadaka et al., 2022; Farrelly et al., 2021; Helcman & Šmejkal, 2022; Hryhorowicz et al., 2021; Varshney et
al., 2023). Consequently, the integration of cannabis-based therapeutics into conventional medical
practice continues to expand, offering new treatment avenues and improved outcomes for patients with
these debilitating conditions(Scherma et al., 2020). Hence, the historical signi�cance and value of
cannabis have further emphasized the importance of cannabis-based drug discovery, driving
advancements in our understanding of its therapeutic potential and facilitating its integration into
modern medical practice.

Naturally occurring chemical compounds from various sources are vital in diverse biological activities
and are at the forefront of drug discovery studies. However, identifying the targets for these compounds
remains a bottleneck in understanding their mechanisms of action(G. Li et al., 2021; Newman & Cragg,
2016). Experimental techniques, such as a�nity chromatography, protein microarrays, and genomic or
proteomic studies, are typically employed for target identi�cation, but they are highly time-consuming
and relatively expensive(Cheng et al., 2011; Zhang et al., 2022). In contrast to the traditional drug
development strategies, it is widely known that compounds often interact with multiple targets,
presenting a potential limitation for the experimental approaches(G. Li et al., 2021). Computational
methods offer an alternative by employing various algorithms to identify targets for compounds. For
instance, models, such as network-based approaches, data mining, and machine learning, have been
used to predict targets for compounds(Agamah et al., 2019; Ezzat et al., 2019; Nogueira & Koch, 2019).
Moreover, the recent development of deep learning networks has expanded the scope and improved the
predictability of target identi�cation from various biological databases that have grown enormously with
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abundant data on protein-ligand complexes. Deep learning models can effectively analyze large datasets
and complex biological networks, making them increasingly valuable in modern drug target
identi�cation(Askr et al., 2023; Chen et al., 2024; Zeng et al., n.d.; Zhou et al., 2023). DRIFT is one such
model that helps map the targets for the compounds using deep learning approaches by integrating
neural network architecture to predict the target-compound binding a�nity using the Yuel algorithm in
the backend(Chirasani et al., 2022; Wang & Dokholyan, 2022). Hence, advancing computational
methodologies for discerning compound-target correlations and extrapolating potential targets for
pharmaceuticals and bioactive substances through amalgamating and integrating critical target data
from myriad sources provides a valid approach to understanding the context of compound-target
interactions. Furthermore, pathways play a pivotal role in elucidating the intricate nature of various
diseases, as proteins function within complex networks of interactions(Liu & Chance, 2013). Complex
diseases often arise from the dysregulation of multiple targets within interconnected pathways or
variations in different genes within the same pathways across diverse patient populations(Y.-A. Kim et
al., 2011). Hence, elucidating the relationship between targets and disease-associated pathways is
crucial for comprehending disease mechanisms and holds promise for developing e�cacious
treatments.

Despite signi�cant advances, several critical knowledge gaps persist in our understanding of cannabis
pharmacology and its therapeutic potential. There remains a need for further exploration into their
mechanisms of action, e�cacy, and safety pro�les. Furthermore, the variability in cannabis strains, lack
of standardized formulations, and potential adverse effects associated with long-term use pose
signi�cant challenges to the development of cannabis-based therapeutics. Addressing these gaps is
imperative for advancing our understanding of cannabis pharmacology and translating it into safe and
effective treatments for a wide range of disorders. In light of these considerations, we have focused the
study on cannabis-based drug discovery, which aims to harness the synergistic effects of the plant's
diverse phytochemical constituents, a phenomenon known as the "entourage effect." This strategy
recognizes that the therapeutic e�cacy of cannabis may not be solely attributable to a single compound
but rather to the intricate interplay between multiple cannabinoids, terpenes, and other compounds
present in the plant(Ferber et al., 2020; Koltai & Namdar, 2020). Accruing data from numerous studies
suggests that cannabis extracts or combinations of cannabis-derived compounds may elicit synergistic
effects in alleviating pain, reducing in�ammation, and mitigating the psychoactive effects(Anand et al.,
2021; Bonn-Miller et al., 2018a; Chacon et al., 2022; Namdar et al., 2020; Sepulveda et al., 2022). Hence,
utilizing computational algorithms, we aim to shed light on the intricate interplay between cannabinoids,
terpenes, and other compounds, with the ultimate goal of contributing to the development of novel and
e�cacious cannabis-based therapeutics. Therefore, leveraging computational algorithms, we seek to
elucidate the complex synergistic interactions between cannabinoids, terpenes, and other bioactive
constituents within the cannabis plant. This multi-faceted approach aims to identify potential therapeutic
targets, optimize drug formulations, and ultimately contribute to the development of innovative and
effective cannabis-based therapies for a wide range of medical conditions. Furthermore, we have
developed a user-friendly web interface (CANDI, http://candi.dokhlab.org) to facilitate the prediction of
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targets and relevant pathways for cannabis compounds and formulations, thereby streamlining the drug
discovery process and enhancing accessibility for researchers and clinicians alike. Hence, our study
contributes to the advancement of drug discovery efforts aimed at harnessing the therapeutic potential
of cannabis compounds for the effective treatment of various disorders.

Materials and Methods
Data Curation and Compilation. The initial dataset comprising compounds sourced from the cannabis
plant was curated from Pennsylvania state-approved keystone state testing – cannabis laboratory(Raup-
Konsavage et al., 2020). These compounds were systematically classi�ed into three main categories:
cannabinoids, terpenes, and �avonoids. In total, 73 compounds, with 16 falling under cannabinoids, 39
under terpenes, and 18 under �avonoids, as detailed in Table 1.
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Table 1
A curated dataset of 73 compounds extracted

from Cannabis sativa through experimental
studies. This dataset encompassed 16

cannabinoids, 39 terpenes, and 18 �avonoids.
S.no Cannabis Compounds

Cannabinoids

1 Cannabichromene

2 Cannabichromenic Acid

3 Cannabidiol (CBD)

4 Cannabidiolic Acid (CBDA)

5 Cannabidivarin (CBDV)

6 Cannabidivarinic Acid (CBDVA)

7 Cannabigerol (CBG)

8 Cannabigerolic Acid (CBGA)

9 Cannabicyclolic Acid (CBLA)

10 Cannabinol (CBN)

11 Cannabinolic Acid (CBNA)

12 Delta8-Tetrahydrocannabinol (d8-THC)

13 Tetrahydrocannabinolic Acid (THCA)

14 Tetrahydrocannabivarin (THCV)

15 Tetrahydrocannabivarinic Acid (THCVA)

16 Delta9-Tetrahydrocannabinol (d9-THC)

Terpenes

17 β-Farnesene

18 β-Caryophyllene

19 α-Humulene

20 α-Farnesene

21 (-) α-Bisabolol

22 β-Myrcene

23 R (+) Limonene
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S.no Cannabis Compounds

24 3-Carene

25 Endo-Fenchyl Alcohol

26 α-Terpineol

27 Guaiol

28 α-Pinene

29 Linalool

30 (-)-Caryophyllene Oxide

31 Camphene

32 α-Terpinene

33 Eucalyptol

34 �-Terpinene

35 Fenchone

36 Trans-Nerolidol

37 (1R)-(+)-Camphor

38 Valencene

39 (+) Cedrol

40 Cis-Nerolidol

41 L-Fenchone

42 α-Phellandrene

43 Hexahydro Thymol

44 α-Cedrene

45 Geranyl Acetate

46 cis-Ocimene

47 (-)-Borneol

48 β-pinene

49 Terpinolene

50 Nerol

51 Trans-Ocimene
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S.no Cannabis Compounds

52 Sabinene

53 (1S)-(-)-Camphor

54 Isoborneol

55 (+)-Borneol

Flavonoids

56 Kaempferol

57 Luteolin

58 Vitexin

59 Rutin

60 Chrysin

61 Baicalin

62 Orientin

63 Quercetin-3-glucoside

64 Isovexitin

65 Luteolin-7-o-glucoside

66 Apigenin-7-glucoside

67 Catechin

68 Quercetin

69 Epicatechin

70 Epigalocatechin

71 Cann�avin B

72 B-Sitosterol

73 Cann�avin A

Target prediction. Targets for the cannabis compounds were initially determined using the DRIFT
algorithm, with the SMILES notation serving as the input format. Subsequently, the obtained targets were
re�ned to include only protein-related factors. The resultant sorted targets and their respective scores
were then utilized for subsequent analyses. Further, the results were structured in a matrix (C, T), where
C represents compounds and T represents targets, each with corresponding predicted scores.
Subsequently, for each compound, the user-provided formulation was incorporated as weights (Wj),
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which were then multiplied with the corresponding scores in the matrix (MScore). The resulting values
were summed over all targets (j = 1 to n), yielding a �nal score for each compound.

This computation yielded the �nalized results, presented in concatenated form, which were subsequently
sorted according to normalization criteria. Ultimately, the targets associated with the user-provided
formulation for the set of compounds were obtained, along with their normalized scores.

Pathway Mapping. We undertook a systematic curation process to map the pathways associated with
the identi�ed targets utilizing data from the REACTOME database(Milacic et al., 2024). Initially, the
mapping of UniProt identi�ers to pathways was facilitated through an in-house Python script.
Subsequently, the UniProt identi�ers and their corresponding normalized scores derived from the target
analysis were employed as input for pathway prediction. Notably, these scores were utilized as weights
during the prediction process. The mapping procedure involved querying the REACTOME database to
retrieve pathways associated with the identi�ed UniProt entries. The retrieved pathways were
concatenated, forming a comprehensive list. To rank the pathways, we utilized pathway scores. To
compute the pathway scores, the weights of the UniProt identi�ers mapped to each pathway were
aggregated and divided by the total number of UniProt identi�ers provided as input.

,

where MW, NM, and NT represent mapped target weights, the number of mapped targets, and the
number of total targets, correspondingly.

This systematic approach ensured the accurate prediction of pathways associated with the identi�ed
targets, enhancing our understanding of the biological processes in�uenced by the investigated
compounds.

Compound-Target-Pathway Similarity Analysis. To assess the relationship between the compounds and
targets, we have utilized the DRIFT predictions on the cannabis compounds to establish an indirect
relationship between them. We leveraged the target information and scores to generate vector
representations for each compound. These vectors served as the basis for computing cosine similarity
scores, enabling the quanti�cation of compound-target relationships.

where A and B represent the vectors corresponding to two compounds. The computed similarity scores
were visualized as a heatmap using the Matplotlib library in Python. This visualization method provided

Target scores = ∑
n

j=1
MScore ∗ Wj

Pathway score = ∑ ( MW) ∗
NM

NT

cosθ = ,
A. B

∥A∥∥B∥
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users with an intuitive means to comprehend the degree of similarity between compounds and their
associated targets. The approach allowed for a clear representation of the complex relationships within
the dataset, enabling researchers to rapidly identify patterns and potential areas of interest. We extended
our analysis by curating pathways associated with the compounds using the Reactome database, a
comprehensive open-source database of human biological processes. This additional step allowed us to
map the similarity between compounds and their related pathways, providing a more holistic view of the
potential biological impacts of these substances.

Construction of CANDI Web Interface. We developed a user-friendly web interface using Flask, HTML5,
CSS, and JavaScript. HTML5 was utilized to structure the content of the web pages, while CSS3 was
employed for styling and layout customization. JavaScript was integrated to enhance user interactivity
and functionality, ensuring a seamless browsing experience. Python Flask was used to handle data
retrieval and processing tasks for back-end development. The compatibility of CANDI was tested across
popular web browsers such as Chrome and Firefox to ensure consistent performance and rendering.
Overall, CANDI provides users with an intuitive and versatile platform for accessing and analyzing
cannabis compound data.

CANDI Web Interface. CANDI offers a suite of interactive modules, each tailored to address distinct
stages of cannabis-based drug discovery (Fig. 1A)

Compound Search: This module serves as a comprehensive repository of information on individual
cannabis-derived compounds (Fig. 1B). Users may search for speci�c compounds using various formats,
including generic names, SMILES strings, and PubChem IDs. Upon searching, users can access detailed
data, including the function to download the results in table format.

Predicted Molecular Targets: A curated list of proteins or receptors likely to interact with the compound
is provided based on experimental evidence and computational predictions with corresponding predicted
scores. The interface also includes a bar plot to represent the targets and their scores visually.

Similarity Search Results: A list of structurally similar compounds and similarity scores calculated using
the FP2 �ngerprint and SMILES strings are provided to explore potential analogs with enhanced or
altered pharmacological pro�les.

Assay Data: When available, results from relevant biological assays are presented, offering insights into
the compound’s potency with a value alongside the assay method.

Formulation: Recognizing the importance of the entourage effect, this module allows users to input a
speci�c formulation of multiple cannabis compounds. CANDI then leverages its underlying algorithms to
e�ciently predict the target and map its relevant pathways (Fig. 1C). Potential molecular targets that the
speci�c combination of compounds in the formulation may uniquely or preferentially modulate are
identi�ed. The associated biological pathways likely to be impacted by the formulation are mapped
highlighting potential therapeutic applications.
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Compound-target-pathway Similarity: This module facilitates target-based drug discovery by enabling
users to identify novel cannabis compounds based on their relationship to speci�c targets and pathways
(Fig. 1D). Users can input a set of cannabis compounds, and CANDI employs a cosine similarity
algorithm to assess the similarity between the input compounds, known targets and pathways. This
analysis identi�es cannabis compounds predicted to interact with similar and potentially distinct targets
and pathways. This method enhances our understanding of individual compounds and illuminates the
complex network of interactions within biological systems. By providing a holistic view of the
relationships between compounds and their targets, this feature aids in discerning combinations of
compounds that may synergistically modulate multiple targets within a given pathway.

Results and Discussion
Cannabis sativa exhibits promising therapeutic potential, substantiated by accumulating scienti�c
evidence. However, the development of standardized cannabis-based therapeutics is hampered by
challenges inherent to the plant's phytochemical complexity. We employ a deep learning computational
approach to predict molecular targets and associated pathways for cannabis formulations, elucidating
the synergistic effect. This research is facilitated by CANDI, a user-friendly web server designed to
analyze compound-target interactions and therapeutic mechanisms comprehensively.

Architecture of CANDI. The CANDI web server is an integrated computational platform designed to
facilitate the identi�cation of molecular targets and associated pathways for user-speci�ed formulations
of cannabis-derived compounds (Fig. 2). The work�ow is instigated by user input, wherein the speci�c
combination and concentrations of cannabinoids, terpenes, and other relevant molecules of interest are
de�ned. Leveraging the DRIFT algorithm(Chirasani et al., 2022), a deep learning model trained on
structural and chemical properties, the platform predicts potential targets for the compounds. It assigns
scores based on the likelihood of interaction. These scores are normalized and re-ranked, considering
the user-speci�ed formulation composition and concentrations. The ranked targets are mapped to their
corresponding UniProt identi�ers(The UniProt Consortium, 2023), enabling the identi�cation of relevant
pathways within the Reactome database(Milacic et al., 2024), a comprehensive resource of biological
pathways and processes. The �nal output provided by CANDI is a ranked list of pathways, weighted by
the number and scores of associated targets, offering insights into the potential mechanisms underlying
the therapeutic effects of the speci�ed cannabis formulation. This integrated computational approach
enables researchers to systematically explore the intricate interplay between cannabis compounds and
their molecular targets, accelerating the development of targeted therapies and elucidating the
mechanistic underpinnings of cannabis-based therapeutics.

Case Study on Cannabis Oil Formulation. To validate CANDI's functionality, performed studies utilizing a
commercial cannabis oil formulation comprising various composition of cannabinoids and terpenes
(Table 2). The formulation's composition, obtained from experimental data, was input into CANDI by
modifying the platform's sample CSV �le. Upon analysis, CANDI generated results that were presented in
two sections: predicted molecular targets and associated pathways.
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Table 2
Dataset of the cannabis compounds with formulation used for the case study

Compounds Cannabis oil Cannabinoids Terpenes

Cannabichromene 1.55 3.89 0

Cannabidiol (CBD) 36.56 34.87 0

Cannabidivarin (CBDV) 0 0 0

Cannabidivarinic Acid (CBDVA) 0 61.09 0

Cannabigerol (CBG) 35.63 21.31 0

Cannabigerolic Acid (CBGA) 0 8.45 0

Cannabicyclolic Acid (CBLA) 0 0.13 0

Cannabinol (CBN) 0 0.15 0

Tetrahydrocannabivarin (THCV) 0 0.19 0

Tetrahydrocannabivarinic Acid (THCVA) 0 0.34 0

Delta8-Tetrahydrocannabinol (d8-THC) 0 0 0

Delta9-Tetrahydrocannabinol (d9-THC) 0 2.64 0

(-)-Caryophyllene Oxide 0 0 0.47

(+) Cedrol 0 0 0.09

(-) α-Bisabolol 0.04 0 1.58

α-Cedrene 0 0 0.07

α-Farnesene 0 0 1.49

α-Humulene 0.023 0 1.32

α-Phellandrene 0 0 0.04

α-Pinene 0 0 0.01

α-Terpineol 0.001 0 0.09

β-Farnesene 0 0 5.46

β-Myrcene 0.001 0 0.25

β-pinene 0 0 0.02

Camphene 0 0 0.01

Cis-Nerolidol 0 0 0.02

cis-Ocimene 0 0 0.03
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Compounds Cannabis oil Cannabinoids Terpenes

Endo-Fenchyl Alcohol 0.002 0 0.08

Eucalyptol 0 0 0.01

Fenchone 0 0 0.01

�-Terpinene 0 0 0.01

Geranyl Acetate 0 0 0.01

Guaiol 0.04 0 0.56

Linalool 0 0 0.07

R (+) Limonene 0.003 0 0.12

Terpinolene 0 0 0.25

β-Caryophyllene 0.091 0 5.37

Trans-Nerolidol 0 0 0.11

Valencene 0 0 0.72

The predicted targets section displayed a ranked list, ordered by their predicted interaction scores, with
the highest-scoring targets listed �rst. For further reference, each target was linked to its corresponding
UniProt entry. The analysis revealed that the formulation was predicted to interact with cannabinoid
receptors CB1 and CB2, followed by G protein-coupled receptor 55 (GPR55), cytochrome P450 enzymes,
and other receptors (Fig. 3A). The associated pathways section provided a detailed overview of the
Reactome pathways linked to the predicted targets. These pathways were ranked based on their
predictive score. Among the identi�ed pathways were nuclear receptor transcription, G alpha(i) signaling
events, the release of apoptotic factors from mitochondria, and SUMOylation of intracellular receptors all
implicated in various physiological processes (Fig. 3B). Hence, the analysis revealed that this
formulation could modulate multiple targets and pathways associated with pain management,
in�ammation, and neurological disorders. The formulation was predicted to interact with the
endocannabinoid system, including the CB1 and CB2 receptors. These interactions could contribute to
the formulation's potential analgesic, anti-in�ammatory, and neuroprotective effects(Donvito et al., 2018;
Gonzalo-Consuegra et al., 2024). Furthermore, the analysis identi�ed several relevant pathways related
to pain perception and in�ammation (Che, 2021; Zhao et al., 2020). Hence, CANDI-generated hypothesis
is that this formulation shows promise as a potential therapeutic agent for these conditions. Further
research, including preclinical and clinical studies, is warranted to validate these �ndings and explore the
full therapeutic potential of this formulation.

Case Study on Cannabinoids. In the second case study, we analyzed a cannabis oil formulation
containing only cannabinoids. From the analyses we could decipher that the formulation was predicted
to interact with cannabinoid receptors CB1 and CB2, DNA polymerase kappa, and G protein-coupled
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receptor 55 (GPR55), vitamin receptor, and other receptors (Supp. Figure 1A). The associated pathways
were G alpha(i) signaling events, Interlukin-4 and Interlukin-13 signaling, and neutrophil degranulation,
entirely associated in several biological activities (Supp. Figure 2B). Notably, this formulation was
predicted to interact with the well-characterized CB1 and CB2 receptors, which are primary targets in
cannabinoid research. These receptors are involved in various physiological processes, including pain
modulation and in�ammatory responses(Raup-Konsavage et al., 2023; Turcotte et al., 2016). In accord
with our �ndings, the mapped pathways, particularly G alpha(i) signaling events and Interleukin-4 and
Interleukin-13 signaling, have been implicated in pain perception and in�ammatory processes(Ibsen et
al., 2017; Oláh et al., 2017).

Case Study on Terpenes. In the third case study, a formulation containing only terpenes was analyzed.
Predicted targets and associated pathways were charted. The formulation was predicted to interact with
solute carrier organic anion transporter family members 1B1 and 1B3, bile acid receptor FXR,
arachidonate 15-lipoxygenase receptors and also cannabinoid CB2 receptor (Supp. Figure 2A).
Associated pathways included nuclear receptor transcription, aspirin ADME, SUMOylation of intracellular
receptors, Interleukin-4 and Interleukin-13 signaling, and G alpha (i) signaling events all implicated in
various biological processes (Supp. Figure 2B). These �ndings suggest that this terpene formulation
may contribute to modulating diverse physiological functions through its interactions with these targets
and pathways. In accord with our �ndings, the identi�ed targets and pathways are commonly involved in
in�ammatory bowel disorders, various in�ammatory diseases, and metabolic disorders(Del Prado-
Audelo et al., 2021; T. Kim et al., 2020; LaVigne et al., 2021).

Conclusion
The development of cannabis-based therapeutics holds signi�cant potential for treating diverse medical
conditions. However, this potential is constrained by the intricacy of the cannabis plant and the current
lack of standardized, targeted therapies. The study exempli�es a noteworthy improvement in overcoming
these challenges by leveraging computational approaches, speci�cally deep learning algorithms. CANDI
facilitates the identi�cation of molecular targets and associated pathways for speci�c combinations of
cannabis-derived compounds, addressing research gaps related to the entourage effect. Additionally, the
user-friendly interface allows researchers to investigate the complex interplay between these
compounds and their potential therapeutic targets. By integrating information on compound-target
interactions and relevant biological pathways, CANDI facilitates a comprehensive analysis of the
molecular mechanisms underlying the therapeutic effects of cannabis formulations and offers a
plausible hypothesis on health outcomes of such compounds and formulations. Hence, the study
contributes to the advancement of drug discovery efforts aimed at harnessing the therapeutic potential
of cannabis compounds for the effective treatment of various disorders.
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Figure 1

The overall functioning of the CANDI webserver. (A) Front page of the CANDI user interface for the
compounds, formulation and similarity functions. (B) The compound information data could be obtained
for all 73 cannabis compounds using common names, SMILES, and PubChem IDs. By browsing the
compound information, users can intuitively obtain targets for the compound with a predicted score,
pharmacophore-similar compounds with similarity values, assay value and type, and graphical
representation of the targets vs. score as a bar plot. (C) The Formulation page lets users download the
�le to add user values and upload the �le for the target and pathway prediction. (i) Predicted targets are
ranked according to the score and linked to their corresponding uniport entries. (ii) Pathways were
mapped for the predicted targets from the Reactome database, and the pathway score was shown as an
interactive table. (D) The compound-target-pathway similarly page allows the user to provide input for
the cannabis compounds to identify the relationship between the compound-target and compound-
pathway. The output is a heatmap with the download option for the image �le and data in CSV format.
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Figure 2

The work�ow adapted in this study to identify the targets and map associated pathways for the
formulation of cannabis compounds.
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Figure 3

A case study on cannabis oil from the experimental studies. (A) The predicted targets for the cannabis
oil formulation were ranked according to the predictive scores suggesting that CB1 and CB2 are top
targets for the given formulation (B) Mapped pathways for the targets predicted were plotted elucidating
the involvement of the targets in nuclear receptor transcription factor and G alpha (i) signaling events
pathways.
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