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Abstract 

Human beings may have evolved the largest asymmetries of brain organization in the animal 

kingdom. Hemispheric left-vs-right specialization is especially pronounced in our species-unique 

capacities. Yet, brain asymmetry features appear to be strongly shaped by non-genetic 

influences. We hence charted the largest longitudinal brain-imaging adult resource, yielding 

evidence that brain asymmetry changes continuously in a manner suggestive of neural plasticity. 

In the UK Biobank population cohort, we demonstrate that asymmetry changes show robust 

associations across 959 distinct phenotypic variables spanning 11 categories. We also find that 

changes in brain asymmetry over years co-occur with changes among specific lifestyle markers. 

Finally, we reveal relevance of brain asymmetry changes to major disease categories across 

thousands of medical diagnoses. Our results challenge the tacit assumption that asymmetrical 

neural systems are highly conserved throughout adulthood. 
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Introduction 

It is hard to dispute that the brain has a role in controlling behaviour. Equally established is that 

both behaviour and environment led to fundamental structural adaptations in neural circuits 

(Zatorre et al., 2012). This interdependence between brain and lifestyle is perhaps not restricted 

to a critical period in early life. Rather, behavioral experiences influence brain structure 

throughout life (Boyke et al., 2008; May, 2011). Indeed, within-individual changes in brain 

architecture, as captured through structural brain scanning (T1-weighted MRI), can be observed 

after only 12 weeks of juggling practice, in young adults (Draganski et al., 2004), and middle-

aged persons (mean age 60) (Boyke et al., 2008). Over the span of weeks, regular practice of a 

complex whole-body balancing task resulted in increased grey matter volume in left hemispheric 

regions including supplementary motor area, and medial orbitofrontal cortex; alongside 

simultaneous reductions in grey matter volumes in the right hemisphere, including right 

putamen, inferior orbitofrontal cortex and middle temporal gyrus (Taubert et al., 2010). In less 

than an hour of training, unskilled individuals learning to play piano exhibited task-specific 

structural modifications in diffusivity measures (DW-MRI) in left premotor area and left middle 

temporal gyrus (Tavor et al., 2020). Recent work has also advocated for the necessity/utility of 

dedicated longitudinal analyses to understand lifelong neuroplasticity, owing to the tendency of 

cross-sectional models to underestimate individual-level brain changes (Di Biase et al., 2023). 

Behaviour-induced structural changes in adult brain structure are also evident in cognitive 

domains beyond motor capacities (Deary et al., 2010; Kanai & Rees, 2011; Zatorre et al., 2012). 

For example, both meta-cognition and language skills are responsive to regular active training. 

One month of mindfulness training resulted in within-individual white-matter changes in adults, 

including in the corpus callosum (Tang et al., 2010). Investigations conducted on identical twins 

showed strong evidence that white-matter structure inside the corpus callosum can be altered 

by specific environmental, rather than just genetic, factors (Chiang et al., 2009). Introduction of 

new lexical terms into the vocabulary of young adults was observed to induce diffusion-related 

structural modifications of cortical language areas, including left inferior frontal gyrus, left middle 

temporal gyrus, and left inferior parietal lobule (Hofstetter et al., 2017). These examples illustrate 

behavior-induced adaptations within the brain that involve both asymmetrical structural changes 

as well as alterations in the corpus callosum – the primary channel for information transfer 

between both brain hemispheres (Paul et al., 2007). 

Habits and other regularly recurring behaviors in humans probably entail distinct 

manifestations in the brain. Empathy is an evolved inter-personal capacity which can broadly be 

distinguished into cognitive (‘I understand what you feel’) and emotional (‘I feel what you feel’) 

empathy (Shamay-Tsoory et al., 2009). Over the course of weeks, regular participation in training 

modules specifically designed to target and improve only one of these two different empathy 

systems resulted in longitudinal structural grey matter changes specific to the trained empathy 

system. Improvements in ‘cognitive empathy’ cooccurred with measurable changes in right 

middle temporal gyrus and left ventrolateral prefrontal cortex, but not their contralateral 

homologs. Conversely, training in ‘emotional empathy’ related to structural changes in regions 

including the right supramarginal gyrus, right insular-opercular regions, and left posterior 

cingulate cortex (Valk et al., 2017). Beyond week-long experiments, behavioral experiences 

potentially influence brain structure throughout the lifespan (Boyke et al., 2008; May, 2011). 
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Language, in addition to being among the most sophisticated cognitive processes in humans, 

exhibits large degrees of asymmetrical brain specialization (Hartwigsen et al., 2021). In fact, in 

teenagers, growing proficiency in a second language occurring over the course of months was 

related to within-subject changes in grey matter density in the left inferior frontal gyrus and left 

anterior temporal lobe (Stein et al., 2012). Notably, absolute grey matter density was not linked 

to absolute language proficiency at any single timepoint; suggesting brain structure changes 

reflect language learning experiences, regardless of whether brain structure itself is associated 

with individual language skill (Stein et al., 2012). Thus, plastic changes in the brain can be specific 

to evolving mental capacities and may be sensitive to changes in a specific ability in a 

hemispherically differentiated manner. 

Asymmetric lateralization of neurocognitive processes is a defining feature of many 

advanced mental abilities (Hartwigsen et al., 2021). Indeed, the association between cognitive 

impairment and localized regional structure measurements has previously been shown to be 

captured by the relative hemispheric balance between left-right homologs and not the total 

structural volume of either region of a pair per se (Cherbuin et al., 2010). In semantic dementia, 

the impacted hemisphere affects the type and degree of incurred cognitive deficits (Kumfor et 

al., 2016). As dementias progress, local asymmetries become more pronounced while remaining 

directionally stable (Haxby et al., 1990; Wachinger et al., 2016). However, across the human 

population, there is a co-existence between instances of both greater left hemisphere impact 

and greater right hemisphere impact (Kumfor et al., 2016). Therefore, aggregating across these 

instances of greater left hemisphere changes and greater right hemisphere changes may suggest 

that there is no preferred direction of change across individuals (Wachinger et al., 2016). 

Nevertheless, hemispherical asymmetries still exist on an individual level, and offer insight into 

progression of certain brain diseases. 

Hippocampal asymmetry and its association with cognitive decline serves as a telling 

example for the interplay between structural asymmetry and behavioral measures. Looking into 

this region and its asymmetry, researchers have found that the magnitude of hippocampal 

volume asymmetry increases with the severity of neurodegenerative disease (Sarica et al., 2018). 

Another study of asymmetry of hippocampal morphological shape separately analyzed both 

amount of asymmetry (absolute hemispheric difference) and asymmetry (hemispheric difference). 

The authors found that dementia diagnoses were more strongly associated with absolute 

hemispheric differences than with the actual directional hemispheric differences (Wachinger et 

al., 2016). This was attributed by the authors to the lack of a dominant direction of hemispheric 

asymmetry across the population (Wachinger et al., 2016). In a separate analysis, the authors 

found longitudinal intraindividual factors captured two to five times more structural asymmetry 

change than cross-sectional age effects (Wachinger et al., 2016). This finding is consistent with 

the results of a more recent comparison of longitudinal versus cross-sectional brain trajectories, 

which found cross-sectional estimates of rate of change are insufficient to describe known 

longitudinal rates of brain change over time (Di Biase et al., 2023). Of importance to the present 

investigation, the authors argued that individual behavioural and cognitive measures may play a 

larger role than age in capturing observed brain feature changes (Di Biase et al., 2023). 

Mechanistically, macroscopic changes observed through MRI can reflect a broad array of 

microstructural plasticity changes (Assaf, 2018). Invasive histological studies are largely limited 
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to animal models and are ultimately necessary to link brain-imaging-derived measures of change 

to underlying cellular architecture (Caroni et al., 2012; Zatorre et al., 2012). Though few in 

number, existing histological studies in rats, mice, and monkeys pinpoint clear cellular substrates 

that underlie observed longitudinal changes in MRI signals (Zatorre et al., 2012). Mice trained on 

different kinds of the Morris water maze, each exercising different problem-solving and 

navigational skills, showed structural enlargement visible on MRI in the corpus callosum, striatum, 

and hippocampus. Each mouse training group exhibited distinct patterns of structural changes 

relevant to the cognitive approach to navigating their version of the water maze. Histological 

staining on these same mice, after training, showed that morphological brain changes coincide 

with GAP-43 protein expression: implicated in neural remodelling – a crucial component of the 

presynaptic terminal and axonal growth cones (Lerch et al., 2011). In another study on 

experimentally structured experience, rats which learned the location of a hidden platform in a 

water maze exhibited changes in fractional anisotropy (FA), a diffusion MRI-derived measure 

capturing white matter integrity, in the corpus callosum that was unseen in rats swimming in a 

water maze with no hidden platform. Histological staining revealed that changes in FA in the 

corpus callosum were associated with increased expression of myelin basic protein, a proxy of 

myelination (Blumenfeld-Katzir et al., 2011). In across-species investigations using comparable 

training programs for humans and rats, similar longitudinal structural changes across species 

were reported after completion of experimental tasks on short-term learning (Sagi et al., 2012). 

The magnitude of changes was associated with improvement in task performance, and 

histological staining in rats revealed changed expression of neuronal growth factors (BDNF) – 

encouraging growth and differentiation of new neurons and synapses – and synaptophysin, one 

of the most abundant synaptic vesicle membrane proteins, specifically in brain regions exhibiting 

structural changes (Sagi et al., 2012). Taken together, converging evidence suggests that 

macroscopic structural changes observed through MRI at different time scales can reflect cellular 

changes associated with synaptic vesicle formation and uptake, neuronal remodelling, and axon 

fiber myelination. 

Previous studies on structural plasticity in both humans and model species have largely 

relied on targeted laboratory interventions to assess the relationship between pre-selected 

cognitive functions and brain structure. However, a strength of structural imaging is its ability to 

link individual’s lifestyle and behaviour in an ecologically valid environment, that is, everyday 

activities outside of the MRI scanner, to structural changes observed in MRI imaging (Kanai & 

Rees, 2011). Moreover, while plasticity has been reported to occur over the span of weeks (Boyke 

et al., 2008; Draganski et al., 2004), sometimes days (Taubert et al., 2010), and even hours 

(Hofstetter et al., 2017; Tavor et al., 2020), structural changes may persist over the course of 

years. Therefore, we propose an alternative approach towards naturalistic investigations into 

lifestyle events and habits and their correlates with within-individual changes. To this end, we 

leveraged the UKBB resource, which combines high-quality brain scans with concurrent real-

world phenotyping measures of unprecedented depth. We built on previous measures of brain 

asymmetry which encapsulate consistent brain-global motifs of structural asymmetry, as derived 

from careful examination of the brains of over 37,000 individuals (Saltoun et al., 2023). We 

examined how the extent and expression of these brain asymmetry patterns change over the 

span of years in individuals. We capitalized on concurrent brain imaging and behavioural 
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phenotyping conducted across years within the same individuals to specifically investigate how 

changes in global brain asymmetry, rather than global brain volume, relate to 977 demographic 

factors, behavioural measures, phenotypic characteristics across 11 domains. We further 

investigated how brain asymmetry changes relate to lifestyle and behavioural changes across 9 

domains that co-occur alongside our discovered brain asymmetry changes. Additionally, by 

linking brain asymmetry to 4,448 total medical health record items, we related brain asymmetry 

changes to several major health outcomes. In a multi-prong approach, we considered both 

directional changes and absolute amounts of longitudinal brain asymmetry change across 

multiple brain asymmetry patterns, each of which individually captures distinct aspects of global 

brain asymmetry. 
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Results  

The left and right brain hemispheres longitudinally change at different rates 

Here, we tested the possibility of longitudinal progression of brain asymmetry, alongside its 

associations with real-world lifestyle indices. The present investigation built on our recently 

established whole-brain asymmetry patterns, which capture concurrent left-right deviations from 

~37,000 UKBB participants (Saltoun et al., 2023). The examination of the structural brain 

asymmetries unveiled 33 robust patterns of structural asymmetry which implicate distinct sets of 

brain features from across the brain, including white matter tracts, subcortical structures, and 

cerebellar lobules (Saltoun et al., 2023). We extended this investigation beyond a single snapshot 

in time into the current longitudinal examination of the question if and how structural asymmetry 

changes within individuals over years (Fig. 1A). 

To reach this goal, we capitalized on all UKBB subjects with two brain-imaging visits, 

reaching a total of 1425 individuals (49% male; 27.4 ± 1.4 months between visits; 62.5 ± 7.2 

years old at first imaging visit). As a preparatory analysis step, we probed for the possibility of 

unequal structural changes between pairs of homologous grey matter volumes. By assessing 

regional volumes over time, we found that longitudinal volumetric change in homologous grey 

matter regions only track each other incompletely over years. Across 55 homologous grey matter 

pairs, the volume change over time in the left homolog was not perfectly aligned with the volume 

change over time in the right counterpart (r = 0.51 (mean), ranging from r = 0.19 to 0.84 for all 

55 grey matter regions). The lack of full correspondence between longitudinal volumetric 

changes in homologous pairs (i.e., rates of change were unequal between left and right 

hemisphere homologs) confirmed our intuition that longitudinal change in grey matter brain 

structure is a non-symmetric phenomenon in the human brain in general. 

Motivated by the observation of hemisphere-specific rates of longitudinal change, as well 

as the recent insight that brain asymmetry is global rather than local phenomena  (Saltoun et al., 

2023), we elected to investigate structural brain asymmetry change through the lens of whole-

brain structural asymmetry patterns (Fig. 1A).  These asymmetry patterns holistically combine 

structural asymmetries from across the brain into composite measures which delineate specific 

motifs of structural asymmetry which respects the natural inter-dependence of brain parcels. 

First, we computed the expressions of all brain asymmetry patterns for all individuals with two 

time points using our publicly available asymmetry pattern definitions (Saltoun et al., 2023). 

Mathematically, asymmetry pattern definitions consolidate regional structural asymmetries, 

represented by lateralization indices (𝐿𝐼 = 	 !!"!"

#.%∗(!!(!")
), of 85 brain features (spanning 9 cerebellar 

parcels, 21 white matter tracts, 48 cortical grey matter regions, and 7 subcortical grey matter 

regions) into a single value which captures the expression level of a single asymmetry pattern in 

each participant and time point (Fig. 1B). 

Once this “pertinence” of asymmetry patterns was calculated for both time points, a 

comparison across visits was conducted to examine if and how whole-brain asymmetry shifts in 

individuals across time. Taking into account previous studies indicating a lack of preferentially 

impacted hemisphere in some forms of brain change (Wachinger et al., 2016), we elected to 

describe structural asymmetry changes with two complementary measures. Namely, we 

concurrently investigated both lateralized brain asymmetry changes (LBACs) and absolute 
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magnitude of brain asymmetry change (MBACs). LBACs were measured as 𝐿𝐵𝐴𝐶* = +#$"+#%

,-	
 

where 𝑃*& indicated asymmetry pattern expression at timepoints 1 (𝑃*%) and 2 (𝑃*$) while k 

indexed a particular asymmetry pattern k. LBACs captured consistent brain asymmetry changes 

across the population and are sensitive to instances where the hemisphere undergoing faster 

rate of longitudinal change for a particular homologous pair is shared across the population. For 

example, the planum temporale is heavily implicated in asymmetry pattern 2, and may undergo 

imbalanced structural change over time. If, across the population, the volume of the right planum 

temporale shrinks at a more rapid rate as compared to the left planum temporale, the observed 

asymmetry pattern 2 LBAC would be large indicating more extreme leftward planum temporale 

asymmetry at the follow-up timepoint. On the other hand, MBAC, measured as 𝑀𝐵𝐴𝐶* =
|+#$"+#%|

,-	
	, which captured the amount of asymmetry change independent of direction, is suited 

to capturing hemispherically-specific rates of change, even when distinct directions of asymmetry 

change co-occur across the population.  Thus, if half of the population exhibits longitudinal 

increase of leftward asymmetry and the other half of the population exhibits similar increases in 

rightward asymmetry, the LBACs would be small (suggesting that the rate of change in the left 

and right hemispheres are similar). Yet, on the individual level, there is consistent skewing in one 

or the other direction. This would result in a measurable MBAC without a corresponding LBAC 

effect, highlighting the value of indexing change through both LBAC and MBAC in parallel. 

By construction, our measures of asymmetry change (LBAC and MBAC) concurrently 

combine longitudinal changes across different levels of brain organization, including cerebellar 

tissue, white matter tracts, and cortical and subcortical volumes. To aid interpretation, we also 

related all LBACs to relative right versus left grey matter change. Based on evidence that onset 

of age-related volume change occurs earlier in grey matter than in white matter (Fotenos et al., 

2005), we calculated a reference measure which captures which hemisphere exhibited larger 

cortical grey matter decrease. To do so, the yearly rate of change in cortical grey matter in the 

left (Δ𝐺0) and right hemisphere (Δ𝐺1) was computed, at which point the difference between 

observed volumetric change across hemispheres (Δ𝐺1 − Δ𝐺0) revealed which hemisphere 

exhibits faster volume changes. We found a common overall trend of volume declines, rather 

than volume gains, across the population for both hemispheres, with the right hemisphere 

exhibiting slightly slower volume declines (Δ𝐺1 = -1243 ± 69 mm3 / year; standard error of mean 

(SEM)) than the left hemisphere (Δ𝐺0 = -1328 ± 64 mm3 / year; SEM). To relate the overall cortical 

change to the LBACs, we computed the Pearson’s correlation coefficient between LBACs and 

hemisphere preferential longitudinal cortical volume change. Through this, we confirmed that 

positive LBACs correspond to the left hemisphere getting smaller faster than the right 

hemisphere. 

 

Distinct whole-brain asymmetry patterns show unique changes over several years 

We found that structural brain asymmetry is not static in adults from our UK Biobank cohort. Brain 

asymmetry (28 out of 33 examined patterns) exhibited robust LBACs over time (Fig. 2A). While 

5 out of the 10 asymmetry patterns with the largest LBACs also were among the 10 patterns with 

largest MBACs, mean LBACs were relatively small compared to mean MBACs. This suggests that 

although individual brains change a lot in their asymmetry, across the population there may be 
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a less consistent direction which becomes relatively larger or smaller. Indeed, all patterns showed 

salient MBACs, even asymmetry patterns with no mean change in LBAC across the population. 

For example, asymmetry pattern 21, which combines ipsilateral middle frontal gyrus and 

amygdala shifts with contralateral shifts in paracingulate gyrus and corticospinal tract, exhibited 

a mean LBAC consistent with zero across the population. This isolated observation may be taken 

to suggest that this particular asymmetry pattern exhibits modest longitudinal changes towards 

a particular hemisphere. However, this same asymmetry pattern (21) displayed the third largest 

MBAC amongst all our studied asymmetry patterns. Therefore, though individually this measure 

of asymmetry changes significantly with time, across the population there are individuals whose 

asymmetry pattern moves in the opposite direction. 

As a reminder, our LBACs did not capture the total hemispheric volume decline or gain. 

Instead, the grey/white matter imbalances between hemispheric homologs across the whole 

brain and the way in which these left-right deviations evolve with time within individuals. As 

indicated by its small MBAC (i.e., total asymmetry change), asymmetry was most stable for 

pattern 4 (Fig. 2A), which highlighted several language-related brain regions. Pattern 4 was 

characterized by asymmetrical bias to the same hemisphere in inferior frontal gyrus, pars 

triangularis and frontal operculum cortex alongside asymmetries which favour the contralateral 

hemisphere in planum polare and central opercular cortex. Furthermore, LBAC for pattern 4 

overlaps with zero, indicating there is no preferred left-ward or right-ward direction of asymmetry 

change for this pattern at the population level. 

In contrast, overall, pattern 6 showed the most prominent plastic asymmetry with time 

(largest MBAC, Fig. 2A). This pattern strongly emphasizes cerebellar asymmetries, with an 

emphasis on cerebellar lobule VIIIa, 8b, 9 asymmetries in the same direction, alongside ipsilateral 

shifts in language-related cortical grey matter features including the supramarginal gyrus and 

contralateral central operculum cortex (Fig. 1B). In addition, pattern 6 also exhibited the largest 

directed left-right shift (LBAC) across all examined asymmetry patterns, suggesting a common 

motif across the population wherein cerebellar homologs become more left biased with time. 

The directional trend of asymmetry pattern 6 progression (LBAC) was associated with greater 

right hemispheric (versus left) cortical volume decline. 

Taken together, brain asymmetry patterns with consistently large magnitude (MBACs) did 

not necessarily show consistent direction (LBACs) of change over time. However, patterns which 

exhibited large MBACs consistently draw upon distinct and complementary brain locations of 

left-right divergence. By contrast, the two patterns with largest LBACs both drew upon cerebellar 

regional masses: pattern 6 (largest LBAC) emphasizes lobes 8, 9 and crus I and II; asymmetry 

pattern 16 emphasizes cerebellar lobes 6, 7b and crus 2. Pattern 16 emphasized concurrent 

cerebellar shifts with white matter asymmetries, including asymmetries in cerebellar and cerebral 

peduncle, medial lemniscus, and corticospinal tract. Instead, in pattern 6, cerebellar asymmetries 

systematically related to cortical regions rather than white matter tracts.  

Large asymmetry changes occur in both directions throughout adulthood 

Each asymmetry pattern captured a distributed set of brain features at the population level which 

exhibited linked deviations from symmetry across levels of brain organization. We also confirmed 
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that LBACs and MBACs describe separate reasons behind asymmetry changes, as noted by the 

weak correlation between LBACs and MBACs (mean |r| of 0.04 ± 0.03) across our UKBB 

participants (Supp. Fig. 1C). LBAC and MBAC of the same pattern showed the relatively 

strongest correlation (mean |r| of 0.13 ± 0.08). The complementarity of our separate measures of 

brain asymmetry change suggests that large absolute asymmetry changes (MBACs) can occur 

regardless of direction of change (as captured by LBACs). We also note that MBACs are weakly 

coupled with one another (|r| of 0.12 +- 0.06 (mean + std), with maximum |r| of 0.45 between 

MBACS in pattern 2 & 3), suggesting that brain asymmetry exhibits appreciable changes in 

adulthood across the whole brain in multiple distinct ways (Supp. Fig. 1C). These observations 

add bricks of evidence to structural brain asymmetry as a dynamically shifting property of human 

brain organization. 

By construction, asymmetry patterns integrate structural brain asymmetries across the 

brain (based on singular value decomposition), and are linearly independent from one another 

at the first measurement time point (Saltoun 2023). Yet, we revealed that the longitudinal 

trajectories of these distinct patterns nevertheless exhibited interdependencies. The evidence of 

these interrelationships between distinct asymmetry patterns, over time, suggests that 

asymmetry patterns are potentially subject to similar driving factors which result in observed 

trend of changes in one asymmetry pattern to be linked to changes in other patterns. However, 

the interrelationship between different patterns is not driven by a joint emphasis on the same 

constituent brain features. 

For example, directional (lateralized) progression over time of pattern 2 and pattern 3 

expression (LBACs) exhibited the strongest observed relationship across all examined 

interrelationships (anti-correlation of r = -0.66). Both patterns 2 and 3 implicate planum 

temporale asymmetry change as a driving contributor to the overall asymmetry pattern. 

However, both asymmetry patterns call upon the planum temporale such that greater left versus 

right cortical decline would result in a positive-valued LBACs in both patterns. Yet, positive-

valued pattern 3 LBACs were linked to negative valued pattern 2 LBACs in the same individual. 

Thus, the relationship between pattern 2 and 3 LBACs is perhaps driven by the concurrent 

asymmetry shifts in distinct brain features, such as cerebellar lobules VI and VIIb in pattern 2 and 

the hippocampus and Heschl’s gyrus in pattern 3. 

Linked brain asymmetry changes also occurred in the absence of overlapping brain 

features. For example, the second largest absolute correlation between asymmetry pattern 

changes is the relationship between changes in patterns 3 and 8 (LBACs, r = -0.51). Pattern 3 

drew upon ipsilateral asymmetry changes in the planum temporale, superior temporal gyrus, 

Heschl’s gyrus, and hippocampus. Pattern 8 drew upon ipsilateral asymmetry changes in inferior 

and middle temporale gyrus, temporal fusiform cortex, pars triangularis of inferior frontal gyrus 

alongside contralateral changes in superior temporal gyrus, temporal pole and occipital fusiform 

gyrus. Of the top 10 brain atlas features describing pattern 3, none were among the top 10 

features describing pattern 8. In fact, the planum temporale, which was the single strongest 

driving feature of pattern 3, was the second smallest contributor to pattern 8 expression (84th out 

of 85 constituent brain features).  

In summary, asymmetry patterns are linearly independent from one another at the first 

measurement time point, yet we observed interdependencies between longitudinal changes of 
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these distinct patterns. This observation suggests potential common underlying motifs 

governing how brain asymmetry changes within an individual over time. Additionally, LBACs and 

MBACs are largely unrelated from each other, indicating that a double pronged approach to 

investigating brain asymmetry change opens a more holistic window onto how hemispheric 

imbalance progresses within and across individuals. 

 

Brain asymmetry changes explain total brain volume change better than age and sex 

Next, we examined the relationship between total brain volume change – a commonly studied, 

global measure of brain structure progression – and our measures of asymmetry pattern change. 

Middle and late adulthood (age 35+) is typically associated with overall brain volume loss, with 

healthy individuals over age 60 showing steady brain volume losses of >0.5% per year (Hedman 

et al., 2012). We use L2-penalized linear regression models to predict overall brain matter change 

across different tissue types given exclusively longitudinal asymmetry pattern information (either 

LBAC or MBAC). These results were compared by competition against baseline models that only 

have access to information about age and sex (including common covariates: age2, age*sex, 

age2*sex). Age and sex are usually among the strongest obtainable effects in human brain 

biology in general and in structural brain scans in particular (Cole & Franke, 2017; Driscoll et al., 

2009; Franke et al., 2010; Kiesow et al., 2020; Ritchie et al., 2018; Taki et al., 2011) and may be 

meaningfully tied to changes in brain volume (Blinkouskaya & Weickenmeier, 2021; Driscoll et 

al., 2009).  

 Importantly, asymmetry-pattern models (LBACs, MBACs) outperformed analogous age-

sex models in explaining total brain volume progression between participants (Supp Fig. 2). In 

contrast, when considering overall brain volume at baseline, rather than its change, asymmetry-

pattern models (LBACs, MBACs) performed worse than analogous age-sex models (Supp Fig. 3). 

We also observed better performance in explaining total brain volume change when considering 

asymmetry pattern progression instead of age and sex persisted when taking into account 

different types of brain tissues – grey matter only, white matter only, or combined grey and white 

matter. The ability of lateralized brain asymmetry changes to explain gross brain volume change 

is most apparent when assessing change in total white matter volume. Hence, models with 

access to information about either LBACs or MBACs were consistently able to track changes in 

total brain volume across all types of brain mass assessed (Supp Fig. 2). 

 We reason that, if changes in brain structure – either overall growth or overall decline — 

occur at an equal rate in both hemispheres, individual divergences in the relative rate of decline 

or growth between hemispheres, as captured by LBACs and MBACs, would not provide 

additional information on overall structural brain change. On the other hand, if brain changes 

occurred at a different pace in each homolog, measures capturing the relative difference in rate 

of change across hemispheres, such as LBACs and MBACs, would be able to capture total 

structural brain change – as encountered in our analyses. Overall, changes in total brain volume 

are a reflection of added-up effects from longitudinal changes in structural brain asymmetry of 

spatially distributed brain features. These findings attest to the biological meaningfulness and 

strength of effect of our examined longitudinal asymmetry pattern measures. 
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Sex and age tie into how much, but not how, brain asymmetry is progressing 

Both sex-divergent and age-sensitive cognitive processes are known to be tied to structural 

asymmetries. Biological sex plays a salient role in cognitive processes spanning from language, 

to viso-spatial reasoning, to social reasoning (Hirnstein et al., 2019; Kiesow et al., 2020; Nisbett 

et al., 2012). We here explored the role of sex and age in longitudinal changes in brain 

asymmetry, starting with how asymmetry patterns reconfigure over time (LBACs). Among our 

collection of examined asymmetry patterns, the longitudinal progression in brain asymmetry was 

most starkly different between males and females in asymmetry pattern 21 (Cohen’s d = -0.176, 

cf. above), followed by pattern 17 (Cohen’s d = 0.106) which tracks ipsilateral cerebellar lobule 

VIIIb, parietal operculum cortex and inferior temporal gyrus asymmetries (Fig. 1B). 

Age at baseline played a large effects in directional longitudinal progression of brain 

asymmetry across multiple patterns (Supp Fig. 1A), which is different from cross-sectional aging 

effects, including pattern 20 (Cohen’s d = 0.219), pattern 6 (Cohen’s d = 0.156), and pattern 16 

(Cohen’s d = -0.130). Pattern 21 was the most dissimilar between the sexes (Cohen’s d = -0.176) 

yet longitudinal progression of this asymmetry motif appeared similar in relatively younger and 

relatively older individuals (Cohen’s d = 0.005). To recap, asymmetry pattern 21 combines 

ipsilateral asymmetries in grey matter regions including middle frontal gyrus, amygdala, and 

paracingulate gyrus with asymmetries in contralateral white matter tracts including posterior 

corona radiata, medial lemniscus, and corticospinal tract. The Cohen’s d sex contrast indicated 

that male participants on average exhibited stronger asymmetry shifts corresponding to a left 

cortex undergoing larger longitudinal volume declines than the right cortex, compared to 

females. The result of the Cohen’s d analysis indicates a relative separation between the male 

and female UKBB participants but does not directly convey the mean asymmetry change in either 

group. When examining the mean LBAC change in males and females respectively, we found 

that the mean pattern 21 in males is positive (indicating a left cortex shrinking faster than the 

right cortex), whereas the mean LBAC in females is negative (indicating the right cortex shrinking 

faster than the left cortex) (Supp Fig. 1A). That is, the mean female exhibited pattern 21 

asymmetry shifts in the opposite direction as the mean male. The number of males (n =695) and 

females (n = 730) is relatively balanced in the cohort. The combined effect of similar magnitude 

of asymmetry changes (MBACs) across sexes but in opposite directions may contribute to the 

observation of an across-population mean LBAC consistent with zero in pattern 21 (Fig. 1A). 

Nevertheless, this motif of sex-dependent longitudinal progression of asymmetry seems limited 

to the sex-dependent asymmetry pattern 21. Only three other asymmetry patterns (patterns 4, 

14, and 15) exhibited LBACs in opposite directions in males and females, with absolute sex-

contrast Cohen’s d ranging from 0.034 (pattern 4) to 0.102 (pattern 14). Overall, we found 

asymmetry pattern progressions in general occur in the same direction (LBAC in same direction) 

between sexes across most examined patterns. 

Sex-specific longitudinal trajectories in asymmetry pattern changes could not be entirely 

attributed to sex differences in initial asymmetry pattern expression at baseline. Among our 

catalogue of 33 examined asymmetry patterns, 25 patterns exhibited significant sex-related 

divergences in expression at time point 1, without considering longitudinal brain change (Saltoun 

et al., 2023). Here now, the Cohen’s d analysis of the sex-related divergences in asymmetry 

pattern changes (LBACs) for each of these 25 patterns yielded absolute Cohen’s d ranging from 
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0.021 (pattern 13) to 0.176 (pattern 21). Asymmetry pattern 6 exhibited the largest sex-

divergence in pattern expression at baseline (Saltoun et al., 2023), yet revealed small sex 

differences in the longitudinal progression of pattern expression (Cohen’s d = -0.024; Fig. 2B). 

Overall, we found modest differences in the changes in hemispheric balance in males and in 

females even in asymmetry patterns where baseline asymmetry was significantly different 

between the sexes. 

Subsequently, contrasting asymmetry magnitude changes (MBACs), our results revealed 

a consistent trend for males to show larger absolute asymmetry changes than females. MBACs 

in males exceeded those in females in 29 out of 33 asymmetry patterns. We also founnd that 

particular motifs of hemispheric asymmetry appear particularly sensitive to biological sex, 

providing hints that demographic characteristics may coincide with specific asymmetry changes. 

Asymmetry pattern 6 showed the largest asymmetry magnitude difference in males compared 

to females (Cohen’s d = -0.240), indicating that the rate of asymmetry changes in males exceeds 

that in females. Of the 4 asymmetry patterns where change magnitude in females exceeded that 

of males (patterns 20, 23, 27, 32), Cohen’s d effect sizes were modest, ranging from 0.032 to 

0.050. By contrast, the trend for males to exhibit larger gross amounts of asymmetry change 

compared to females extended across a greater number of asymmetry patterns, and exhibited 

larger effect sizes (Supp Fig. 1D). Taken together, the larger effect size of sex divergences in 

MBACs as compared to LBACs indicates sex impacts how much brain asymmetry changes, more 

strongly than it impacts how brain asymmetry changes. This could be a potential reason for why 

larger brain asymmetries are observed in males rather than females. 

Next, to investigate the role of age in the longitudinal progression of whole-brain 

asymmetries, the cohort was partitioned by age brackets, and the longitudinal brain asymmetry 

progressions were contrasted between the 25% oldest participants at baseline (age >= 69 years 

old; n = 342) and the 25% youngest participants at baseline (age <= 58 years old; n = 345). The 

effect sizes separating the LBACs of the relatively older and relatively younger participants were 

modest (mean absolute effect size d = 0.0649 +- 0.0504 across 33 patterns). Relatively older 

individuals displayed larger shifts in the asymmetries of brain features including cerebellar 

lobules 8 and 9 alongside lingual gyrus and posterior supramarginal gyrus compared to relatively 

younger individuals. Examining the absolute amount of change in relatively older compared to 

younger adults revealed a consistent motif of faster rates of brain asymmetry change in relatively 

older individuals (Cohen’s d < 0 in 32 examined patterns, associated with larger MBACs in older 

adults). Age-related effect sizes in MBACs (mean absolute effect size d = 0.176 +- 0.079 across 

33 pattern MBACs) consistently exceeded effect sizes in LBACs. Age was associated with larger 

effect sizes in comparison to sex. 

Overall, we found that both age and sex are meaningfully tied to longitudinal progression 

of global brain asymmetry (both LBACs and MBACs); with age being the more relevant factor for 

both measures of global brain asymmetry progression. Put differently, both age and sex were 

tied to how much brain asymmetry changes (MBAC) more strongly than they are tied to how 

brain asymmetry changes (LBAC). 
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Transitioning into a new phase of life shows brain asymmetry reconfigurations 

Investigations into structural brain changes to date have repeatedly highlighted the role of 

regular training and skills development as precursors to plastic brain adaptations, as measurable 

by MRI technology, even over the course of weeks (cf. Introduction). Here, 2-3 years elapsed 

between consecutive structural brain scans, over which time larger changes in lifestyle and 

behaviour may potentially occur. Because structural brain scan measurements, unlike functional 

brain scans, are not influenced by in-scanner tasks or activities, it has been argued that the 

resultant neuroanatomical measures are particularly well suited to capturing brain-correlates of 

lifestyle factors measured in ecologically valid (non-scanner) scenarios (Kanai & Rees, 2011). In 

this spirit, we turned to the onset of retirement (a lifestyle factor) to carry out a naturalistic study, 

or quasi-experiment, on how a major transition from one life phase to another may ignite plastic 

structural brain changes. 

Leaving the workforce for retirement marks an important inflection point in individuals’ 

lives. This step has wide-ranging repercussions on social environment, sense of purpose, and 

daily environmental exposures. Therefore, we confronted retirement as a prime target to 

organically investigate how major life events may coincide with reconfigurations of structural 

brain asymmetry. We considered i) individuals in full-time employment at both imaging visits (n 

= 870 UKBB biobank participants), ii) individuals in retirement at both imaging visits (n = 308), 

and iii) individuals who were transitioning between these two life phases in the years between 

imaging visits (n = 121; henceforth retiring). To analyze how such distinct demographic statuses 

relate to brain asymmetry change, we computed Cohen’s d group differences in three separate 

contrasts of employment status pairs. We found effect size strengths across all employment 

contrasts consistently exceeded the largest effect size of the most sex-dependent patterns (cf. 

above. This observation suggests that tangible lifestyle factors may have more prominent 

relationships with brain asymmetry reconfigurations than more commonly studied dimensions 

such as sex. Our collective findings (LBAC effects > MBAC effects) suggested that within-subject 

brain changes dependent on employment status may be especially tied to direction, rather than 

magnitude, of hemispheric asymmetry shifts.  

 Retirement emerged as a salient feature describing re-arrangements in several of our 

asymmetry patterns. Six separate asymmetry patterns exhibited absolute Cohen’s d >0.175, the 

level of the strongest sex differences in our study (cf. above), in at least one contrast (Fig 2B and 

C). In 3 of the 6 most retirement-sensitive patterns, as expected, the most relevant employment 

contrast occurred when comparing brain morphology changes in individuals in full-time 

employment at both time points to those in full-time retirement at both time points. These 

asymmetry patterns drew upon largely distinct local shifts. Full-time employment versus 

retirement distinguished longitudinal shifts in asymmetry pattern 25 (employed – retired Cohen’s 

d = -0.220; Fig. 2B), which drew upon asymmetries in white matter fibers including ipsilateral 

shifts in cerebral peduncle, posterior internal capsule and superior corona radiata; and also 

implicated asymmetries in ipsilateral pallidum and contralateral ventral striatum (Fig. 1B). 

Additionally, the retirement versus employment contrast flagged pattern 15 (employed – retired 

Cohen’s d = -0.206; Fig. 2B) and pattern 7 (employed – retired Cohen’s d = -0.197; Fig. 2B). 

Pattern 15 drew upon structural asymmetry changes particularly in cortical regions, including 

ipsilateral angular gyrus, subcallosal cortex and contralateral postcentral gyrus; as well as crus 1 
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of the cerebellum and ventral striatum. Overall, distinct modes of life (full-time employment 

versus long-term retirement) reverberate in longitudinal structural brain changes across spatially 

distributed brain features in an asymmetric manner. 

We next shifted focus from the contrast between static work environments (employed 

against retirement) to the transition into retirement itself in our UK Biobank participants. We 

observed the largest retirement-related effect size across all contrasts (33 patterns x 3 retirement 

contrasts) in pattern 19’s change directions (LBACs) when contrasting retiring individuals (whose 

retirement occurred in the 2-3 year interval between consecutive imaging visits) versus retired 

individuals (whose retirement occurred prior to the first imaging visit). Pattern 19 draws upon 

asymmetries in ipsilateral temporal occipital fusiform gyrus, middle frontal gyrus and anterior 

parahippocampal gyrus, alongside concurrent contralateral shifts in tapetum, and posterior 

thalamic radiation fiber tracts (Fig. 1B). The longitudinal trajectory of pattern 19 expression 

appeared more similar in retired versus employed individuals (employed – retired Cohen’s d = 

0.100). Taken together, our contrast analyses suggested that the onset of retirement coincided 

with longitudinal reconfigurations of brain asymmetry in a distinct way. Beyond pattern 19, we 

found that the transition to retirement (contrasting full-time employment) yielded effects in 

asymmetry patterns 9 (Cohen’s d = 0.198; Fig. 2C), which highlights asymmetries in cerebellum, 

fusiform cortex, and supramarginal gyrus, as well as pattern 14 (Cohen’s d = 0.181; Fig. 2C) with 

asymmetry effects in frontal pole, and medial lemniscus. The collective findings suggest that the 

very act of retirement - a major life transformation – tended to co-occur with dedicated left-right 

hemisphere shifts in the whole brain. 

Subsequently, we compared magnitude against direction properties in these 

progressions of hemispheric re-organizations. We consistently observed that direction effects 

(LBACs) were larger than magnitude effects in brain asymmetry change (MBACs). In contrast to 

sex and age effects (cf. above), retirement resonates more with how asymmetry changes rather 

than how much asymmetry patterns change. Nevertheless, our MBAC analyses shed light on how 

the various employment states influence brain asymmetry change. Consistently across patterns, 

the absolute rate of brain asymmetry change (MBAC) is faster in individuals who are retired as 

compared to individuals who are employed (employed – retired Cohen’s d contrast is < 0 in 28 

out of 33 patterns; Supp Fig. 1D). Individuals who are retired also displayed faster absolute rates 

of asymmetry change than individuals who are retiring (retiring – retired Cohen’s d < 0 across 25 

patterns; Supp Fig. 1E; for more details also see Supp Fig. 4). 

Taken together, the act of retirement marks an incisive turning point in life, which may 

also help neuroscientists see deeper into tectonic progression of whole-brain structural 

asymmetry. We found retirement – and its contemporaneous revision in living environment – on 

the whole to be especially closely tied into how, rather than how much, asymmetry patterns 

progressed. Different life stages impacted distributed sets of local asymmetries in distinct ways. 

Notably, retirement-related asymmetry effect sizes exceeded those of sex effects, suggesting 

that lifestyle may explain more variation in within-subject asymmetry progression than more 

commonly studied demographic factors. 
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Day-to-day lifestyle and cognitive performance are reflected in brain asymmetry changes 

Next, we put the real-world relevance of the delineated asymmetry pattern trajectories to the 

test. Employment status change is only one of a variety of candidate changes in behavior and 

environment that potentially evoke neural processes that contribute to plastic remodelling. To 

gain a phenome-wide synopsis of how changes in various lifestyle indicators may resonate in 

within-individual changes of whole-brain asymmetry motifs, we conducted L2 penalized linear 

regression models predicting asymmetry pattern changes based on a rich array of 

behavioural/lifestyle phenotypes and phenotype changes (cf. Methods). Our 959 phenotypes 

spanned a total of 11 domains as measured at initial UKBB visit, ranging from mental health to 

cardiac measures, to blood assay results to early life factors. For brevity, we refer to this collection 

of phenotypes as lifestyle and behavioural factors. Phenotype changes captured difference in 

questionnaire responses or physical assessment as assessed at each imaging visit. Within each 

domain, a model estimating brain asymmetry change was constructed integrating one domain 

of either baseline or change in phenotypes alongside to demographic indicators (age, sex, age-

sex covariates) and time between visits. To confirm the added value of considering lifestyle 

variables from these demographic indicators in assessing brain asymmetry change, we compared 

against base models containing only age, sex, age-sex covariates, and time between visits with 

no additional lifestyle phenotypes (cf. Methods). In so doing, we have systematically charted how 

a palette of everyday life indicators reverberate in longitudinal brain asymmetry changes.  

As a recurring tendency, changes in asymmetry patterns were explained by mental health 

self-report markers, cognitive performance, and lifestyle indicators (Fig. 3A). This trifecta 

persisted across measured kinds of brain asymmetry change (MBACs and LBACs) and across 

examined patterns (Supp Fig. 5). Additionally, specific asymmetry patterns were characterized 

by distinct sets of lifestyle and behavioural indicators. Adding to its relationship with retirement 

(cf. above), pattern 19’s change directions (LBACs) were related to both baseline and changes in 

measures of socioeconomic status, including educational attainment, local employment and 

crime scores. In contrast, asymmetry pattern 16 was linked to baseline measures of 

socioeconomic status only, namely household income and local greenspace and pollution 

measures. Asymmetry pattern 16 was linked to changes in life stressors such as the development 

of illnesses or death in close family members. Hence, distinct lifestyle factors related to separate 

brain asymmetry progression. 

To further summarize consistent motifs of lifestyle which linked to brain asymmetry 

progression in a principled approach, we gained insight estimating a domain-level model of the 

obtained brain asymmetry change-specific model fits (cf. above in this section). We applied 

principal component analysis on the coefficients of derived behaviour-brain models (L2-

penalized linear regression models). Across asymmetry patterns, living in a rural versus urban 

environment tracked MBACs to a stronger extent than on LBACs (Supp Fig. 5). MBACs were 

additionally related to familial instances of Alzheimer’s and related dementias; which were not 

as relevant for LBACs. Social home environment, such as living with relatives, was more relevant 

for how brain asymmetry progresses (LBACs) than how much (MBACs). Importantly, performance 

on specific cognitive tasks for assessing fluid intelligence related to both LBACs and MBACs. 

Mental health phenotypes, and in particular mental health diagnoses, were reflective of LBACs 
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and MBACs. Age and sex did not reflect longitudinal progression of brain asymmetry as strongly 

as these specific domains of lifestyle and behavior. 

We also observed links between brain asymmetry changes to socioeconomic status 

indicators, cognitive functioning, and health. Socioeconomic status indicators, such as change in 

household income and home heating type, were linked to asymmetry pattern change (Fig. 3B). 

For example, directional change in asymmetry pattern 6 (LBAC) was the strongest regressor in 

evaluating change in total household income. Varied performance on fluid-intelligence questions 

across imaging visits was linked to brain asymmetry changes; in particular, assessments which 

involved language proficiency, such as word or concept interpolation. Finally, altered health 

landscapes of family members reveal links to changes in brain asymmetry. Overall, our findings 

point to a complex interplay between multifaceted aspects of life and the re-configuration of 

brain asymmetry patterns. 

 

Brain asymmetry changes explain diagnoses from health records  

Motivated by cues from self-report health measures (cf. last section), we next capitalized on 

diagnoses from the linked electronic health record data of UK Biobank participants. To this end, 

we condensed a total of 4,448 ICD codes (both ICD9 and ICD 10) in the UK Biobank imaging 

cohort into 174 composite disease groups (cf. Methods) – naturally linked diagnosis groups. We 

then conducted a medical diagnosis-wide association study (MeDiWAS) linking brain asymmetry 

changes to clusters of physician-certified disease spanning 17 broad disease categories, ranging 

from congenital diseases, to respiratory or digestive illnesses, to malignant neoplasms. 

 We identified physician-diagnosed mental health disorders to be associated with within-

individual changes in brain asymmetry across both methods of quantifying brain asymmetry 

changes (LBACs and MBACs). In particular, asymmetry pattern 12 LBACs and pattern 13 MBACs 

were associated with a disease cluster encapsulating depression and related diagnoses (major 

depressive disorder, suicide attempts and suicidal ideation; Fig. 3). These two brain asymmetry 

measures were weakly correlated to each other (Pearson’s r = -0.011, Supp Fig. 1C), and 

highlighted asymmetries in separate areas of the brain. Pattern 12 highlighted concurrent 

asymmetry shifts in ipsilateral lingual and anterior cingulate gyrus and contralateral superior 

frontal gyrus. Pattern 13 emphasized concurrent asymmetry shifts in postcentral gyrus, posterior 

middle temporal gyrus, and anterior supramarginal gyrus alongside contralateral shifts in 

asymmetry of angular gyrus and parietal operculum cortex. Pattern 12 LBACs, but not pattern 

13 MBACs, were associated with a disease cluster implicating physician-diagnosed anxiety 

disorder diagnoses. Our previously noted relationship between self-reported mental health 

indicators and brain asymmetry changes (cf. previous section) was reflected by here-discovered 

associations between specific longitudinal whole-brain asymmetry changes and physician-

diagnosed clinical mental health and psychological disorders. 

Extending beyond the mental health disease category, the magnitude of changes in 

pattern 8, which highlights asymmetries in the temporal gyrus with particular emphasis on inferior 

temporal gyrus and temporal fusiform cortex, was linked to a disease cluster emphasizing sleep 

disorders, including insomnia (F51.X, G47.X, 307.4),  and sleep apnea (G47.3) (Fig. 4). A separate 

category of diseases, dermatological disorders, emerged as significantly associated with 
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measures of brain asymmetry change. Clusters within the dermatological disorder category were 

linked to both MBACs and LBACs in circumscribed brain asymmetry patterns. In particular, a 

cluster of dermatological conditions including ichthyosis, scleroderma, actinic keratosis, and 

scarring conditions including keloids was significantly associated to changes in asymmetry 

patterns 27 (LBAC and MBAC) and 31 (MBAC only) (Fig. 4). Asymmetry pattern 27 implicated 

the temporooccipital part of inferior temporal gyrus alongside ipsilateral asymmetry of posterior 

cingulate gyrus and contralateral asymmetry in superior parietal lobule. Asymmetry pattern 31 

meanwhile implicated asymmetry in white matter tracts involved in linking areas of the limbic 

system, including uncinate fasciculus and cingulum cingulate gyrus. Skin scarring, which we here 

linked to circumscribed changes in whole-brain asymmetry patterns, is known to result in poorer 

emotional well-being and quality of life (Brown et al., 2008), while access to dermatological care 

more broadly has been linked to socioeconomic strata (Tripathi et al., 2018). 

Certain disease categories were tightly linked to changes in particular asymmetry 

patterns. Asymmetry pattern 2, which links asymmetries in brain features including planum 

temporale, cerebral peduncle, corticospinal tract, and specific cerebellar lobules including 

lobules VI, VIIb, and VIIIa, was specifically associated with disease clusters containing infectious 

diseases. In particular, LBAC in asymmetry pattern 2 was linked with intestinal and bacterial 

infections, including staphococcus, streptococcus and septicemia (Fig. 4). In the analysis relating 

longitudinal changes in brain asymmetry to the aspects of behaviour which may track them (cf. 

Fig. 2A), LBACs in asymmetry pattern 2 was related to multiple measures of socioeconomic 

status, including homeownership status, educational qualifications. 

Overall, we found that changes in the relative hemispheric balance of circumscribed sets 

of brain regions show coherent associations with physician-assigned medical diagnoses. These 

associations ranged from highly specific relations between particular asymmetry patterns and 

particular disease categories, to more broad associations between brain asymmetry changes in 

general and physician-diagnosed disease clusters, flagging the domains of mental health 

disorders, sleep disorders, and dermatological conditions.  
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Discussion 

The acquisition of new skills (e.g., learning a new language (Stein et al., 2012), how to juggle 

(Boyke et al., 2008; Draganski et al., 2004) or the development of existing ones (e.g., learning 

new words in a language you already know (Hofstetter et al., 2017), strengthening empathy skills 

(Valk et al., 2017)), have been shown to induce structural changes in the adult brain, even across 

short time spans of hours or weeks in boutique datasets. To expand this purview, we here 

examined brain-global changes in the brain hemispheres at a large breadth (population scale), 

depth (extensive phenotyping) and width (over the course of years). Across our analyses, the 

most important finding is that brain asymmetry is not static over time, taking into account brain-

wide neuroanatomical features of the cerebellum, cortex, subcortex, and major white matter 

tracts. Rather, our findings attest to specific longitudinal changes in principled patterns of 

structural brain asymmetry that readily track hundreds of markers across lifestyle domains. 

Complementing this finding, we further revealed that structural brain asymmetry changes can 

reflect specified physician-diagnosed illnesses (ICD9/10 codes), including mental health 

disorders, like depression and anxiety, but also sleep disorders. Collectively, our findings 

establish an intimate link between life events and brain remodeling of hemispheric asymmetry. 

To our knowledge, a focused study on the longitudinal progression of whole-brain 

asymmetry has not yet been done. In our view, one or several of the following recurring 

characteristics marked brain asymmetry research to date: (i) small sample size, (ii) cross-sectional 

study design, (iii) limited repertoire of available phenotype measurements, (iv) focus of analysis 

and interpretation on one anatomical region at a time, separately from the respective other brain 

parts, or v) consideration of a single kind of brain measurement modality. Until recently, 

neuroscientific endeavours have been conducted on cohorts of dozens of people on average 

(Szucs & Ioannidis, 2020; Woo et al., 2017). Within the field of hemispheric asymmetry, there 

exist a handful of studies examining cohorts over 1000 individuals (Kong et al., 2018; Kong et 

al., 2021; Kong et al., 2022; Saltoun et al., 2023; Zhao et al., 2022). Of these existing large sample 

size studies, all are limited to cross-sectional cohorts. Yet, longitudinal changes have been 

demonstrated to reveal stronger effects than cross-sectional analyses (Di Biase et al., 2023). 

Further, longitudinal research in general often uncovers biologically relevant rates of change in 

one hemisphere (cf. introduction). Here, we conducted a large-scale (n > 1,000) longitudinal 

study examining structural brain asymmetry, revealing progression of relative hemispheric 

structural balances which pervade all examined levels of brain organization. Comprehensive 

reviews have noted a tendency to examine one phenotype of interest in isolation of others 

(Vingerhoets, 2019); here, we systematically assessed hundreds of tangible behaviours and 

lifestyle factors, and changes therein. Moreover, examinations of structural asymmetry have often 

focused on either the cortical shell or subcortical structures, while neglecting cerebellar 

asymmetry (Kong et al., 2018; Kong et al., 2021; Kong et al., 2022; Zhao et al., 2022). Here, we 

concurrently considered brain asymmetry across cerebellar, cortical, subcortical, and white 

matter structures. 

By overcoming such important shortcomings, our present study revealed complex, 

multifaceted dynamics of whole-brain structural brain asymmetry change manifesting over the 

course of years. Asymmetry pattern changes co-occurred across the population in ways that defy 

simple region-based explanations. Patterns emphasizing similar regions showcased diverging 



 19 

population-level rates of change, and patterns with similar population-level dynamics emphasize 

disparate regional asymmetries. These finding potentially point to underlying factors which have 

varied interrelationship with the evolving brain asymmetry. 

Our results suggest that asymmetry change itself is biologically relevant. Despite a 

paucity of longitudinal research explicitly targeting hemispheric brain asymmetry change, 

existing longitudinal studies which focus on regional changes across the brain repeatedly link 

hemispherically unbalanced changes in brain structure to behaviours spanning social awareness 

(Valk et al., 2017), visuospatial awareness (Boyke et al., 2008; Draganski et al., 2004), and 

language (Stein et al., 2012). Here, we found structural asymmetry change to largely tie into 

markers of mental health, cognitive abilities, and environmental factors. One’s relationship with 

one’s inner social circle is amongst the most important social interaction for one’s psychological 

and physical well-being (Dunbar, 2018; Schurz et al., 2021). Time since last contact is strongly 

tied to emotional closeness, particularly for kin relationships (Roberts & Dunbar, 2011). 

Individuals within a shared household may thus represent ones strongest emotional connections 

as well as most frequently contacted individuals. Our results repeatedly highlight a relationship 

between longitudinal progression of brain asymmetry and household composition across 

patterns. Household composition and size were consistently more strongly related to how brain 

asymmetry changes (LBAC) than to how much asymmetry changes (MBAC). The frequency of 

family and friends visit was more strongly linked to amount of brain asymmetry changes (MBAC) 

rather than directional change (LBAC). Social interactions, and lack thereof, have previously been 

linked to Alzheimer’s disease and related dementia (Flicker, 2010; Fratiglioni et al., 2004; Shafighi 

et al., 2023). The link charted herein between social markers and brain asymmetry may thus 

illuminate one putative factor in the relationship between brain asymmetry and Alzheimer’s 

disease and other dementias previously observed (Cherbuin et al., 2010; Haxby et al., 1990; 

Kumfor et al., 2016; Wachinger et al., 2016). As a separate recurring theme, we found that 

demographic factors, such as age and sex, are more strongly linked to amount of brain 

asymmetry change, not directional change. By contrast, tangible behaviour and lifestyle markers, 

such as retirement and social interaction proxies, were more strongly linked to directional rather 

than magnitude of asymmetry changes. 

Different shades of asymmetry patterns do not all tell the same story. Rather, particular 

brain patterns of distributed local changes provide unique insight into brain-behavioural 

coupling in the context of longitudinal progression of brain structure. For example, directional 

change in asymmetry pattern 2 was specifically tied to hospitalization for infectious disease in 

the intestine. A growing body of experimental animal studies link the gastrointestinal tract and 

its microbiome to the brain and its functioning (for reviews see (Cryan & Dinan, 2012; Cryan et 

al., 2019; Foster & McVey Neufeld, 2013; Nicholson et al., 2012). In mice, specific alterations to 

the intestinal microbiota, either through administration of antimicrobials or microbiotic 

transplantation, lead to changes in behaviour and, notably, to brain-derived neurotrophic factor, 

a key neuronal growth factor, expression in the brain. These changes were independent of the 

autonomic nervous system, gastrointestinal-specific neurotransmitters, or inflammation (Bercik 

et al., 2011). Though a growing topic of interest, research into the gut-brain axis in humans is 

relatively sparse in comparison to within animal models (Cryan et al., 2019). Directional change 

in pattern 19 was specifically tied to the act of retiring. Future work is needed to disentangle how 
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distinct aspects of major life transitions, which have repercussions on social, environmental, 

psychological, physical aspects of life, relate to retirement-linked brain asymmetry changes, with 

perhaps special emphasis on brain regions implicated in asymmetry pattern 19, such as tapetum, 

temporal occipital fusiform gyrus, and anterior parahippocampal gyrus. Separate lines of inquiry 

into other major life events, including but not limited to parenthood, finishing university studies, 

moving to a new city, children leaving home ("empty nest syndrome”), and concurrent brain 

asymmetry changes can serve as a fruitful contrast to retirement-level results presented herein. 

Such research may provide insight into how experiencing another period of rapid (external) 

change reflects in observed (internal) brain changes. 

In conclusion, evolutionarily uniquely evolved brain asymmetries appear to be strongly 

shaped by many non-genetic mechanisms (Badzakova-Trajkov et al., 2010; Carrion-Castillo et al., 

2020; Corballis, 2009); neither are they static. By in-depth explorations into within-subject 

changes in asymmetries in brain morphology over the span of years, we revealed that structural 

asymmetry is a dynamic rather than inert property of the brain. Our results further revealed the 

intricate interdependences of external experiences with internal brain adaptations. We found 

that changes in hemispheric balance between brain regions are closely tied into health and 

disease: behaviour, cognitive performance, socioeconomic status, and lifestyle as well as mental 

and physical medical conditions. These connections in some cases exceeded the effect sizes 

obtained for pervasively studied demographic factors, such as age and sex. In light of the here 

disclosed multifaceted dynamics, our study emphasizes the relevance of asymmetry changes in 

understanding human behavior. Our study also highlights the necessity of longitudinal research 

in comprehending the brain's adaptation to diverse life events. 
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Figures 

 

 
 
Figure 1: Systematic longitudinal changes occur in multiple structural whole-brain asymmetry patterns spanning 

white matter, cerebellum, and cortical structures 

(A) Two measure of structural brain asymmetry change both showcase relevant longitudinal progression. Amount of 

asymmetry change (MBAC) captures how much the structural imbalance between hemispheres progressed, regardless 

of direction. Asymmetry change (LBAC) captures how structural imbalance between hemispheres progresses, 

including which hemisphere showcases greater change. Mean LBAC and MBAC across all 33 statistically defensible 

asymmetry patterns. All asymmetry patterns concurrently consider brain features spanning cortical and subcortical 

grey matter, major white matter tracts, and cerebellar grey and white matter. All LBACs were compared in terms of 

relative right versus left grey matter cortical change to aid in interpretation. This reference composite reference 

measure tracks aggregate cortical asymmetry change but does not reflect the hemispheric bias of any individual grey 

matter homolog, or on the hemispheric biases of cerebellum or white matter tracts. (B) Asymmetry patterns exhibiting 

large asymmetry changes across the population draw upon distinct combinations of brain features spanning the whole 

brain. Brain feature contributions of the 10 asymmetry patterns with the largest LBACs. Square size represents relative 

amount of change amongst the top 10 pattern encapsulated by the given asymmetry pattern. Brain maps show cortical 

and subcortical; major white matter tracts, and cerebellum contributions to the specified asymmetry pattern. Brain 

features shown on the right hemisphere represent right hemisphere homologues exhibiting larger longitudinal shifts 

than left hemisphere counterparts in the positive direction, and the reversed configuration in the negative direction. 

Asymmetry patterns with negative mean directional change (LBAC) are illustrated with blue coloured brain maps. This 

corresponds to the reversed configuration of brain feature changes as delineated above, with brain features shown 

on the right hemisphere exhibiting diminished R>L asymmetry or equivalently increased L>R asymmetry with time.  

(C) and (D) The (Cohen’s d) effect of retirement status across multiple separate patterns is larger than the (Cohen’s d) 

effect of the pattern with the largest sex effect. Cohen’s d effect size of LBACs between sex or employment contrasts. 

Three employment Cohen’s d contrasts were conducted per asymmetry pattern, comparing participants who were in 

full-time employment at both time points (employed), in retirement at both time points (retired) or transitioned from 

full-time employment at first imaging visit and retired at second imaging visit (retiring). Grey rectangle indicates single 

largest absolute Cohen’s d for sex-contrast (pattern 21, |d|=0.176).  
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Figure 2: Major lifestyle events reflect in longitudinal progression of structural whole-brain asymmetry patterns 

(A) Two measure of structural brain asymmetry change both showcase relevant longitudinal progression. Amount of 

asymmetry change (MBAC) captures how much the structural imbalance between hemispheres progressed, regardless 

of direction. Asymmetry change (LBAC) captures how structural imbalance between hemispheres progresses, 

including which hemisphere showcases greater change. Mean LBAC and MBAC across all 33 statistically defensible 

asymmetry patterns. All asymmetry patterns concurrently consider brain features spanning cortical and subcortical 

grey matter, major white matter tracts, and cerebellar grey and white matter. All LBACs were compared in terms of 

relative right versus left grey matter cortical change to aid in interpretation. This reference composite reference 

measure tracks aggregate cortical asymmetry change but does not reflect the hemispheric bias of any individual grey 

matter homolog, or on the hemispheric biases of cerebellum or white matter tracts. (B) and (C) The (Cohen’s d) effect 

of retirement status across multiple separate patterns is larger than the (Cohen’s d) effect of the pattern with the 

largest sex effect. Cohen’s d effect size of LBACs between sex or employment contrasts. Three employment Cohen’s 

d contrasts were conducted per asymmetry pattern, comparing participants who were in full-time employment at both 

time points (employed), in retirement at both time points (retired) or transitioned from full-time employment at first 

imaging visit to retired at second imaging visit (retiring). Grey rectangle indicates single largest absolute Cohen’s d 

for sex-contrast (pattern 21, |d|=0.176).  
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Figure 3: Changes in lifestyle and cognition reflect changes in structural brain asymmetry  

A (A) Specific behavioural domains capture longitudinal progression of brain asymmetry. Coefficient of determination 

(R2) of L2 penalized linear regression models predicting pattern 6 LBACs on the basis of behavioural phenotypes within 

a given domain. All models additionally contained sex, age at first imaging visit, and time between visits information. 

R2 scores were adjusted for number of parameters in the models. Phenotype changes represent the difference in 

response variables between the first and second imaging visits, and do not contain information about baseline 

response. Cerebellar contributions to pattern 6 are showcased in the centre of the graph. Ipsilateral cerebellar lobule 

VIIIa, 8b, 9 shifts alongside contralateral cerebellum crus I and II shifts characterize asymmetry pattern 6. (B) Whole-

brain asymmetry pattern changes reflect changes in lifestyle and behaviour. Coefficient of determination (R2) gain 

derived from including LBAC and MBAC information in L2 penalized linear regression models predicting a behavioural 

phenotype on the basis of non-brain variables as well as brain asymmetry changes. Baseline comparison models 

contained only information about age, sex, and time between visits. R2 scores were adjusted for number of parameters 

in the models. A separate regression model was constructed for each phenotype.  Shape of points represent the 

largest absolute coefficient contributing to the behavioural prediction, categorized according to membership to LBAC 

(triangle), MBAC (circle) or non-brain variables (age, sex, time between visits; star). Measures of socioeconomic status, 

including change in household income and employment status feature among phenotypic changes linked to structural 

brain asymmetry change.   
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Figure 4: Diagnoses from physicians relate to measures of brain asymmetry change  

Manhattan plots relate (A) LBACs and (B) MBACs across the population to 174 composite medical diagnosis 

phenotypes spread across 17 domains. For each composite diagnosis phenotype, Pearson’s correlation coefficients 

are shown in units on logarithmic scale of the associated P value. Results from all 33 distinct asymmetry patterns are 

showcased. Horizontal lines indicate the significance thresholds at FDR labeled FDR, Bonferroni correction (0.05/174) 

labeled BON, with 5 and 6(LBAC) or 8 and 12 (MBAC) phenotypes passing each respective threshold. Composite 

medical diagnoses were constructed either by (i) PCA on 1,662 medical diagnosis phecodes from the full UKBB cohort 

(~500,000 individuals) (crosses) (ii) CCA on 1,447 medical diagnosis phecodes from the brain imaging UKBB cohort 

(~40,000 individuals) and resting state fMRI (circles) or (iii) PLS-C on 1,447 medical diagnosis phecodes from the brain 

imaging UKBB cohort (~40,000 individuals) and resting state fMRI (squares). Inlaid graphs showcase the 6 largest 

absolute medical diagnosis phecodes which contribute to the composite diagnosis phenotype. Text within inlaid 

graphs indicate which asymmetry pattern was significantly correlated to the composite diagnosis phenotype. Brain 

asymmetry changes are consistently related to common physician diagnosed mental health disorders including 

depression, suicidality and anxiety, substance use and sleep disorders. 
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Methods 

Population Data Source 

The UKBB is an epidemiological cohort initiative that offers extensive behavioral and 

demographic assessments, medical and cognitive measures, as well as biological samples for 

~500,000 participants recruited from across Great Britain (https://www.ukbiobank.ac.uk/). This 

openly accessible population dataset aims to provide multimodal brain-imaging for ~100,000 

individuals, in the years to come. Initial MRI brain scanning for participants began being collected 

in 2014 onwards. Repeat brain-imaging visits commenced in 2019. All participants provided 

informed consent. The present analyses were conducted under UK Biobank application number 

25163. Further information on the consent procedure can be found here 

(biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). Our present study was based on the data 

release from February 2020 that augmented brain scanning information to ~40,000 participants 

(48% male). Participants were aged 40-69 years when recruited (mean age 55, standard deviation 

[SD] 7.5 years). Of these ~40,000 participants, a subset of 1,425 (49% male) participants were 

scanned on two occasions that were 2-3 years apart. 

In an attempt to improve comparability and reproducibility, our study built on the uniform 

data preprocessing pipelines designed and carried out by FMRIB, Oxford University, UK (Alfaro-

Almagro et al., 2018). Participants in the UKBB underwent homogeneous data collection and 

processing pipelines as described before (Miller et al., 2016). Resultant brain imaging measures 

were made available to researchers in the form of expert-curated image-derived phenotypes 

(IDPs). Such IDPs span several complementary brain-imaging modalities. As our study aimed to 

specifically investigate structural asymmetries, we drew on carefully curated IDPs related to grey 

matter morphology captured by T1-weighted structural magnetic resonance imaging (sMRI) and 

white matter morphology captured by diffusion-weighted magnetic resonance imaging (dMRI). 

dMRI-derived measures, made available by the UKBB Imaging team, quantify microstructural 

aspects of major white matter connections (see Miller et al. (2016) for a review of dMRI 

modalities). Relying on common practices, we elected to use only one kind of dMRI-derived IDPs: 

fractional anisotropy (FA), which is typically described as a sensitive measure of white matter 

integrity (Miller et al., 2016). The final collection totalled to 184 anatomical target structures 

combined three different reference atlases with brain-derived information: i) 111 cortical and 

subcortical volumes (Harvard-Oxford atlas), ii) 48 major white matter tract integrities (John-

Hopkins University atlas), and iii) 25 cerebellum lobe volumes (Diedrichsen atlas). 

Data integrity and quality control was undertaken by the UKBB team. In our present study, 

participants who underwent two imaging scans were selected. Of these, any participant with no 

IDPs for a given modality of interest for either visit was discarded from downstream analysis. For 

example, any participant with sMRI IDPs related to region volume but no dMRI IDPs related to 

white matter FA was excluded from further analysis. In total, our dataset consisted of 1,425 

participants (695 male) with biologically interpretable brain measures drawn from three 

commonly used anatomical reference atlases. 

 

https://www.ukbiobank.ac.uk/
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
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Complementary Notions of Asymmetry Change 

Quantification of individual-level structural brain asymmetry capitalized on previously-

established whole-brain asymmetry patterns, which directly integrate structural asymmetries 

across cerebellum, cortex, subcortex and white matter structure into holistic measures of whole-

brain structural asymmetries. Full details on the creation and are available in the work by Saltoun 

and colleagues (2023). 

 

In brief, structural brain information are unified into 85 unitless lateralization indices 

capturing the relative left-right imbalance between homologous brain features. Mathematically, 

the lateralization index (LI) of each pair of corresponding atlas parcels was computed as the 

normalized difference between the right (R) and left (L) homologues according to the following 

formula: LI = (R-L) / (0.5*(R+L)). Once computed, the lateralization indices were normalized and 

corrected for technical deconfounding sources in accordance with Saltoun and colleagues 

(2023). Technical confound variables comprised head and body size, head motion at task, head 

motion at rest, head position in scanner, and scan site, following previous work on the UKBB 

(Schurz et al., 2021; Spreng et al., 2020).  In the present study, normalization and technical 

deconfounding parameters were identical to those used in Saltoun and colleagues (2023), which 

were obtained from the baseline MRI scans of participant set of 37,441 individuals (17,537 male).  

 

Once obtained, the nuisance-adjusted, z-score-transformed LI metrics were transformed 

into individual-level whole-brain asymmetry pattern expressions, according to the previously 

defined asymmetry pattern definitions (Saltoun et al., 2023). Mathematically, asymmetry patterns 

𝑃 ∈ 𝑅2	3	44  are defined as 𝑃 = 𝐴 ∙ 𝑉, where 𝐴 ∈ 𝑅2	3	5%  is the LI metrics for all n = 1425 individuals, 

and 𝑉 ∈ 𝑅5%	3	44  is the pre-defined, publicly available asymmetry pattern definitions. Asymmetry 

patterns V were originally obtained from singular value decomposition of the laterization indices 

for 37,441 individuals (Saltoun et al., 2023). In that previous work, only asymmetry patterns robust 

to noise were retained in the analyses. The top 33 most-explanatory asymmetry patterns were 

retained as these asymmetry patterns are robust to noise (Saltoun et al., 2023). 

 

Thus, pattern expression P was here obtained on the basis of publicly available pattern 

definitions V and individual-level LI expression of 85 brain features. The procedure of obtaining 

asymmetry pattern expression P was carried out as described above identically for both time 

points, for a total of 33 asymmetry patterns for 1425 individuals at 2 timepoints per individual.  

 

Within all individuals, the expression levels of a particular asymmetry pattern was 

compared across timepoints. That is, the expression strength of a given asymmetry pattern at 

baseline, 𝑃6, was compared to the expression strength of the same asymmetry pattern in the 

same person at the follow-up visit 𝑃7. To account for variations in the time intervening between 

subsequent scans, changes in asymmetry pattern were further adjusted for the number of days 

between visits to acquire a yearly rate of asymmetry pattern change. Overall, the longitudinal 

change in expression of an asymmetry pattern k in a person is given by the following expression 
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Δ𝑃* =
𝑃*$ − 𝑃*%
𝑡[9:;<] 	 ∗ 365	𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟 

 

More precisely, the quantity Δ𝑃* represents the lateralized brain asymmetry change 

(LBAC) of asymmetry pattern k, which captures the directional shift in brain asymmetry. That is, 

the LBAC quantifies instances where hemispheric homologs display larger left-hemispheric bias 

with time separately from instances where a larger right-hemispheric bias with time. As a 

complementary viewpoint, the degree of asymmetry was also captured in a measure that we 

referred to as magnitude of brain asymmetry change (MBAC). The MBAC quantifies instances 

where the brain becomes more structurally asymmetric (positive MBAC) separately from those 

where the brain becomes less structural asymmetric (negative MBAC). This is done without 

regard for whether, as an example, the increase of structural asymmetry was the result of existing 

left-biased structural asymmetries becoming more pronounced (increasing left-bias LBAC), or 

from a homologous pair that is symmetric at baseline later displaying an asymmetry 

corresponding to a larger right-hemisphere homolog (increasing right-bias LBAC). In the 

previous examples, two opposing directions of asymmetry change (LBAC) resulted in the same 

macroscopic trend of increased magnitude of brain asymmetry (MBAC). 

 

Mathematically, these quantities are related to the quantity Δ𝑃* described above as 

follows: 

LBAC> = 	Δ𝑃* =
𝑃*$ − 𝑃*%
Δ𝑡[9:;<] ∗ 365	𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟 

and 

MBAC> = |Δ𝑃*| =
|𝑃*$ − 𝑃*%|
Δ𝑡[9:;<] ∗ 365	𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟 

 

The two measures of brain asymmetry offer complementary viewpoints into the 

morphological asymmetry changes of particular brain features. The MBAC measure considers 

whether the total amount of asymmetry in the brain has increased or decreased, whereas the 

LBAC measure considers which hemisphere experienced larger relative shifts in brain volume 

(grey matter) or structural integrity (white matter). Across the population, these measures diverge 

from each other if, for example, asymmetry patterns may consistently become more pronounced 

over time (positive MBAC values indicating larger degrees of absolute asymmetry over time) but 

individually this asymmetry manifesting as a combination of some individuals whose asymmetry 

becomes more right-hemisphere biased while in others the brain becomes more left-hemisphere 

biased. Hence the two perspectives on brain asymmetry thus allowed us to disentangle how the 

brain sides change (LBAC) from how much the brain sides change (MBAC).  

 

As a final point, the interpretability of LBAC measures was assisted by means of a 

reference measure. Broadly, LBACs were benchmarked such that positive-valued LBACs 

correspond to larger cortical grey matter decrease in the left hemisphere as compared to the 

right hemisphere. To this end, the cortical grey matter in each hemisphere was assessed by 

taking the sum of all 48 Harvard-Oxford atlas-identified cortical grey volumes for each 
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hemisphere (96 total volumes) for each timepoint. The total hemispheric cortical grey matter 

volume (𝐺1 and 𝐺0 for the right and left hemisphere respectively) at each time point was 

compared. The change in grey matter volume for each hemisphere was calculated as 

 

Δ𝐺? = 𝐺?$ − 𝐺?%, 
 

where 𝐺? is the cortical grey matter volume for a given hemisphere H, and 𝐺?$ is the 

cortical grey matter volume at timepoint 2 for hemisphere H. Once the change in cortical grey 

matter volume was obtained for both hemispheres, the relative rate of cortical grey matter 

volume change was assessed as following  

 

ΔG, = ,@!",@"

,-[()*+]
∗ 365	𝑑𝑎𝑦𝑠/𝑦𝑒𝑎𝑟 , 

 

where ΔG,is a measure of the asymmetry of cortical grey matter volume change between 

hemispheres. If both hemispheres show enlargement of cortical grey matter volume over time 

(ΔGA	 > 0	and ΔGB>0 ) then the quantity ΔG,would be positive if the right hemisphere experience 

greater grey matter volume gains than the left hemisphere over the same period of time. If the 

cortical grey matter volume shrinks in both hemispheres over time (ΔGA	 < 0	and ΔGB<0 ), then 

the quantity ΔG, would be positive if the volume decline observed in the left cortex is faster than 

the volume decline observed in the right cortex (mathematically, if ΔGB is more negative than 

ΔGA ). This whole-cortex measure of relative hemispheric volume change serves as the yardstick 

we used to contextualize LBAC measures. The sign of LBAC measures was adjusted such that 

LBAC measures are positively correlated with a positive ΔG, quantity. That is, positive LBAC 

measures indicated faster cortical volume growth in the right hemisphere, or equivalently faster 

cortical volume decline in the left hemisphere.  

 

A Curated Portfolio of Target Behavioural Phenotypes 

In order to ground our computed indices of LBACs and MBACs in potential real-world 

implications, we performed a rich annotation of the derived asymmetry pattern changes 

benefitting from a wide variety of almost 1,400 lifestyle factors, behavioural changes, 

demographic indicators, and mental health assessments. These ~1,400 indicators are subdivided 

into ~1,000 baseline behavioural phenotypes as well as ~400 behavioural changes which 

contrast behaviour and lifestyle at imaging visits 1 and 2. 

 

Baseline behavioural phenotypes were extracted in the identical manner as described in 

previous work  by Saltoun and colleagues (2023). As a broad overview, feature extraction for 

‘baseline’ behaviour was carried out using two utilities designed to obtain, clean and normalize 

UKBB phenotype data according to predefined rules. Initially, a raw collection of ~15,000 

phenotypes was fed into the FMRIB UKBB Normalisation, Parsing And Cleaning Kit (FUNPACK 

version 2.5.0; https://zenodo.org/record/4762700#.YQrpui2caJ8). FUNPACK was used to 

carefully curate a collection of phenotypes associated with the categories of interest and conduct 

data harmonization. The output of FUNPACK, consisting of ~3,300 phenotypes, was then input 

https://zenodo.org/record/4762700#.YQrpui2caJ8
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into PHEnome Scan Analysis Tool (PHESANT; (Millard et al., 2018),  

https://github.com/MRCIEU/PHESANT) for further refinement, cleaning and data categorization. 

The final set of 977 baseline phenotypes obtained from PHESANT was tested for systematic 

relations to the discovered asymmetry pattern changes (i.e., LBAC, MBAC) to explore possible 

relations between brain asymmetry change and behaviour.  

More specifically, we used FUNPACK on the UKBB sample to extract phenotype 

information covering 11 major categories, ranging from lifestyle, to mental health and cognitive 

phenotypes to blood pressure measurements. These categories of interest were predefined in 

the FUNPACK utility through the -cfg fmrib arguments. They included only lifestyle phenotypes 

and excluded any brain-imaging-derived information. As there were only four phenotypes 

associated with diet, we discarded this category from downstream analysis. The FUNPACK 

setting which defined categories also contained built-in rules tailored to the UKBB. This tool 

performed automated refinements of the phenotype data, such as ruling out ‘do not know’ 

responses and replacing unasked dependent data. For example, a participant who indicated that 

they do not use mobile phones was not asked how long per week they spent using a mobile 

phone. In this case, FUNPACK would fill in a value of zero hours per week as a response to the 

latter question, though a value was not obtained at the time of assessment. FUNPACK’s thus 

built-in rules pipeline yielded 3,330 curated phenotype columns. 

The FUNPACK output was then feed into PHESANT, a tool designed specifically for 

curating UKBB phenotypes (Millard et al., 2018),  https://github.com/MRCIEU/PHESANT). The 

PHESANT toolkit combined phenotypes across visits, normalized, cleaned and categorized the 

data as belonging to one of four datatypes: categorical ordered, categorical unordered, binary 

and numerical. All categorical unordered columns were converted into binary columns to encode 

a single response. For example, the employment status phenotype was originally encoded as a 

set of values representing different conditions (e.g., retired, employed, on disability). Each of 

these conditions was converted into a binary column (e.g., retired true or false). The output of 

categorical one-hot encoding on unordered phenotypes was then combined with all measures 

classified by PHESANT as binary, numerical, or categorical ordered. The final set comprised 

carefully curated 977 phenotypes. 

We deployed both FUNPACK and PHESANT with their default parameter choices 

regarding missing data on the full set of ~40,000 individuals with brain-imaging scans at the 

initial imaging visit. As a consequence, all columns with fewer than 500 participants were 

automatically discarded from further analysis as per PHESANT’s workflow protocols. Additionally, 

FUNPACK by default assessed pairwise correlation between phenotypes and discarded all but 

one phenotype of a set of highly correlated (>0.99 Pearson’s correlation rho) phenotypes. For 

example, left and right leg fat percentages were highly correlated (Pearson’s rho 0.992). Hence, 

only right leg fat percentage was included in the final set of phenotypes. The choices which 

phenotypes to discard were also automatically streamlined and conducted by FUNPACK. 

 

 

https://github.com/MRCIEU/PHESANT
https://github.com/MRCIEU/PHESANT
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Change of Target Behavioural Phenotypes 

To complement our measures of longitudinal change in brain morphology (cf. above), we aimed 

to also create measures of intra-subject change in our behavioral phenotypes (henceforth, 

behaviour change). Feature extraction for behavioural ‘change’ phenotypes underwent a similar 

procedure as for ‘baseline’ behavioral indicators. Measures of behavioural change were obtained 

for behaviours and phenotypes which measured at both imaging visits in the same subject. As 

before, both FUNPACK and PHESANT were utilized in conjunction, with the same set of 

categories extracted as for ‘baseline’ behaviour. However, slight adjustments were necessary 

into order to enable the comparison of behavioural response variables across time. Therefore, a 

number of steps, detailed below, were taken to ensure that behavioural responses from imaging 

visit 1 are comparable to behavioural responses from imaging visit 2 in the UK Biobank  

imaging cohort.  

 

Part of PHESANT’s standard pipeline is the integration of behavioural responses across 

timepoints. As our goal was to contrast a snapshot of behaviour at imaging visit 1 with a snapshot 

of behaviour at imaging visit 2, we separately fed imaging visit 1 behaviour and visit 2 behaviour 

into PHESANT. FUNPACK was used to extract phenotypes collected at each respective visit prior 

to being fed into PHESANT. A separate feature of PHESANT’s standard pipeline is the automatic 

normalization applied to categorical variables. As our goal was to compare phenotypes at visit 1 

and 2, normalization procedures applied separately to each visit may obfuscate behavioural 

change. Hence, PHESANT’s normalization procedure was suppressed using the 

‘standardise=FALSE’ argument, with manual checks to verify that input values matched output 

variables after PHESANT was run. A third consideration in ensuring comparability between 

behavioural phenotypes at each visit related to PHESANT’s automatic categorization of 

phenotypes into categorical (ordered), categorical (unordered), binary, or continuous. For some 

phenotypes, the behaviour at one time point was categorized as categorical (ordered or 

unordered) but binary in another timepoint. In instances where different encoding was used on 

the same behaviour from different timepoints, behaviour from timepoint 2 was manually recoded 

according to rules PHESANT automatically applied to behaviour at timepoint 1. 

 

Once behaviour at each timepoint was acquired, a measure of behavioural change was 

acquired through the following: 

ΔΦ =	Φ7 −	Φ6 , 

 

where ΔΦ is the behaviour change of phenotype Φ, and Φ7 and Φ6 are the behaviour as recorded 

at imaging visit 2 and 1 respectively. In the case of binary or categorical phenotypes, a value of 

‘0’ indicates no change in behaviour between the two imaging visits. A value of ‘1’ indicates a 

behaviour which was present at timepoint 2 but not at timepoint 1 (for example, a non-smoker 

at timepoint 1 who smokes at timepoint 2). A value of ‘-1’ indicates a behaviour which was 

present at timepoint 1 but absent at timepoint 2. Normalization to mean 0 and standard 

deviation 1 was conducted on behavioural change phenotypes for all PHESANT-tagged 

continuous behaviours. As the total number of participants in the present study was 1,425 

individuals, PHESANT’s native workflow step to remove all behaviours with fewer than 500 
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participants was suppressed. Behaviours with fewer than 10% response rate at either timepoint 

were dropped. In so doing, a total of 397 behavioural change phenotypes spanning 9 domains, 

were extracted through this procedure.  

 

Exploration of Asymmetry Change Linked to Life and Disease 

To get a snapshot of how various aspects of life and behaviour track whole-brain asymmetry 

changes, we related a given domain of lifestyle or lifestyle change to a measure of brain 

asymmetry change. To this end, we regressed a given brain asymmetry change (LBAC or MBAC) 

onto phenotypes from a particular lifestyle domain. To disentangle the impact of common 

demographic factors from behavioural phenotypes, 6 demographic features (age, sex, age2, 

age*sex, sex*age2, time between visits measured in days) were included in all regressions.  

 

LBAC = 	β# + J βC ∗ F
D	∈	FGHIJK:LMNO<

+ J β,P-
∗ ΔΦQ

F	∈	FIH:N2

 

and 

MBAC = 	β# + ∑ βC ∗ FD	∈	FGHIJK:LMNO< +∑ β,P-
∗ ΔΦQF	∈	FIH:N2  , 

 

where F is the full collection of 6 demographic features (age, sex, age^2, age*sex, age^2*sex, 

time between visits) and D is the set of phenotypes belonging to either a single baseline lifestyle 

domain, or a single lifestyle change domain. There are a total of 20 groups of analysis (11 

baseline domains and 9 change domains). 

 

For all regression analyses, the coefficient of determination, 𝑅7, was used as an 

established performance metric to quantify the amount of variance in brain asymmetry change 

(model outcome variable) that can be explained by the lifestyle domain at hand (model input 

variables). As the number of behaviours within a domain depends on the domain at hand, we 

adjusted the resultant coefficient of determination to account for the number of features in the 

regression model as follows 

𝑅7 = 𝑅#7 	 2"6

2"9"6
 , 

 

where 𝑅#7 is the unadjusted coefficient of determination, n is the number of participants, and d 

is the number of regression features. This formulation is called the adjusted R2 statistic and is 

widely used when comparing models of different size (James et al., 2013, p. Section 6.1.3).  

 

The results from estimating these linear regression model specifications provide a broad 

snapshot of how broad lifestyle domains relate to brain asymmetry changes. They were 

conducted based on the 33 measures (i.e., number of previously reported brain asymmetry 

patterns) of directional brain asymmetry change (LBAC) and amount of brain asymmetry change 

(MBAC). A final set of regression anlayses without any lifestyle domain (in other words, with only 

6 demographic features and intercept as regressors) was carried out – as a null baseline model 

without behavior effects to compare against.  
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We next sought to establish a complementary viewpoint into the relationship between 

brain asymmetry change and tangible behaviour changes. To this end, we conducted a series of 

regression analyses which related a given behavioural change to underlying brain asymmetry 

changes and demographic factors.  

 

ΔΦ =	β# + J βC ∗ F	 +JβBRST. ∗ LBACU
44

NV6

+JβWRST. ∗ MBACU
44

NV6D∈FGHIJK:LMNO<

 

 

As above, we included a set of 6 demographic variables, which include the time between visits, 

as  covariates within the model. For maximum comparability between linear regressions obtained 

from this set of analysis to the above set, we reported adjusted R2 statistic as calculated above.  

 

Behavioural changes have not been corrected for time between visits, and may be 

strongly related to either age or sex. Therefore we expected that the included demographic 

features (age, sex, time between visits) may have an outsized impact on the linear regression. To 

account for this, we aimed to determine the expected adjusted R2 statistic if there was no impact 

of brain asymmetry change on the behavioural change at hand (label shuffling permutation test). 

To this end, we have repeated the regression analyses after permuting LBAC and MBAC labels, 

which breaks the relationship between brain asymmetry change and the behavioural change at 

hand. The adjusted R2 statistic which resulted from these regressions was subtracted out from 

the adjusted R2 statistic from the unperturbed data. In so doing, we were able to quantify the 

added benefit of brain asymmetry changes (both LBACs and MBACs) on charting the relationship 

between behavioural change and brain and demographics.  

 

For visualization purposes, the largest absolute beta coefficient from the above equation 

was extracted for each of the 397 separate behavioural change variables, each of which has one 

regression analysis linking brain change to behaviour change. The feature corresponding to this 

beta coefficient represents the strongest relationship between the behavioural change of interest 

and all examined input features. To ensure comparability of beta coefficients, all input features 

were normalized to mean 0 and standard deviation 1 prior to conducting the regression. The 

strongest feature was grouped according to membership of LBAC features, MBAC features, or 

demographic/intercept term features.  

 

Electronic Healthcare Record Data 

To offer a distinct window into a separate field of biological phenotypes which may be linked to 

morphological between brain asymmetry pattern changes, we turned our attention to physician-

diagnosed medical illnesses as captured through electronic health records. To do so, we 

performed a rich annotation of the derived brain asymmetry pattern changes by means of a 

phenome-wide association analysis benefitting from a wide variety of almost 1,700 disease 

phecodes extracted from participants’ electronic health records, spanning over 11,000 ICD 

codes. Feature extraction for both ICD-9 and ICD-10 diagnoses was carried out using the FMRIB 

UKBB Normalisation, Parsing And Cleaning Kit (FUNPACK version 2.5.0; 
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https://zenodo.org/record/4762700#.YQrpui2caJ8). Once extracted, ICD-9 and ICD-10 codes 

were grouped into ~1,700 hierarchical phenotypes (phecodes) which combine related ICD-9 and 

ICD-10 codes into a single ‘phecode’, using previously established phecode definitions which 

span 17 disease classes (Wu et al., 2019). For technical reasons, the full set of ~1,700 disease 

phecodes were condensed using several data compression protocols on a per disease class 

basis, to create a total of 174 composite disease clusters. These composite disease clusters were 

finally compared to measures of brain asymmetry pattern change to probe for relations between 

morphological brain asymmetry changes and clinical diagnoses.  

 

More concretely, we used FUNPACK on the full UKBB cohort (n = 502,507) to extract 

phenotype information related to ICD-9 diagnosis codes and ICD-10 diagnosis codes. This 

collection of 502,507 participants contained within it the full imaging cohort ( n ~40,000) and the 

repeat imaging cohort (n = 1,425). The FUNPACK utility contained built-in rules tailored to the 

UKBB which enabled the extraction of a total of 2,837 columns associated with ICD-9 codes 

(2,506 unique codes) and 14,217 columns associated with ICD-10 codes (8,845 unique codes). 

These ICD codes were collected on the basis of electronic health records linked to each 

participant. ICD-10 codes contain more granular information than ICD-9 codes (Wu et al., 2019); 

separate ICD-9 and -10 codes may reflect common etiologies (Denny et al., 2013; Denny et al., 

2010). To consolidate related medical diagnoses across and within ICD coding paradigms, we 

used the Phecode Map 1.2 with ICD-10 codes made available from Wu and colleagues 

(https://phewascatalog.org/phecodes_icd10  (Wu et al., 2019)). In total, applying phecode 

definitions linking ICD codes resulted in a final set of 1,662 clinical phecodes obtained from 

502,507 participants. These clinical phecodes spanned 17 disparate disease classes, ranging 

from congenital anomalies, to neoplasms, to mental disorders, to infectious diseases (Wu et al., 

2019). 

 

For technical reasons, the collection of 1,662 clinical phecodes required a further refinement 

prior to analysis with our set of whole-brain asymmetry changes. To this end, 3 separate data 

compression techniques were used to reduce the total set of 1,662 clinical phecodes into a set 

of 174 composite disease clusters which capture distinct underlying trends in the overall 

diagnosis landscape. For increased interpretability, these composite disease clusters each 

integrate disease status from phecodes within one disease class only. 

 

As the first data reduction technique, we turned to principal component analysis (PCA), 

which is a commonly-used data reduction technique. PCA is an unsupervised method whose 

extracted latent factors represent the dimensions of maximum variance within the dataset. We 

applied PCA on the larger full UKBB cohort (n > 500,000), rather than the repeat imaging cohort 

(n = 1,425), to improve the representativeness and stability of the resultant composite disease 

clusters. To boost interpretability of resultant latent factors, PCA was applied separately to each 

of the 17 disease classes. In other words, PCA was applied 17 times, with each PCA application 

being specific to phecodes within a single disease class. The interpretability of latent factors was 

thus boosted because each latent factor is intrinsically linked to only one aspect of health. For 

example, the latent factor obtained from applying PCA to phecodes in the mental health 

https://zenodo.org/record/4762700#.YQrpui2caJ8
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disorders disease class represents clinical diagnoses within the mental health domain only, 

irrespective of diagnoses in other domains. This enables an at-a-glance look into the content 

captured by a given latent factor based on which disease category it captures. By contrast, PCA 

applied on the full set of 1,662 clinical phecodes at once would combine phecodes from across 

disease classes, which may make it more difficult to separate the effects of diseases in one class, 

such as mental health disorders, from diseases in another class, such as endocrine or metabolic 

disorders.  

 

For each of the 17 disease clusters, the question of how many latent factors to keep was 

addressed by means of an empirical permutation analysis. To break the link between related 

disease phecodes, we perturbed each of the clinical phecodes within a disease cluster 

separately, before applying PCA on the permuted dataset. This enabled us to establish the 

expected explained variance in a scenario where there is no relationship between separate 

disease phecodes. A total of 5 permutations was done for each disease category, and the mean 

explained variance for each noise-based latent factor was taken as a reference measure. 

Unperturbed (true) latent factors were kept if their explained variance exceeded the explained 

variance of the equivalent noise-based latent factor. This procedure resulted in a total of 58 

latent factors spanning 17 disease classes being retained, with the per-class latent factors ranging 

from one, in the case of the pregnancy complications and congenital anomality disease classes, 

to ten, in the case of genitourinary diseases (Table 1). On average, the retained latent factors 

explained 45.1% of the variance within their respective disease class (Table 1).  

 

To complement the PCA-derived composite disease clusters, we used two doubly 

multivariate latent factor decomposition methods to establish latent factors which explicitly link 

disease status to brain activity. Specifically, we used canonical correlation analysis (CCA) and 

canonical partial least squares (PLS-C) decomposition. Both these self-supervised methods are 

doubly multivariate, meaning that they integrate information from one ‘block’ of variables, in this 

case disease status, with another ‘block’ of variables. We capitalize on the resting-state fMRI data 

available through the UKBB to establish composite disease clusters which link resting-state brain 

activity (one ‘block’) to clinical phecodes (the second ‘block’). Resting-state functional imaging 

was acquired over the course of 6 minutes for 37,526 participants. For technical reasons to avoid 

overfitting, we reduced the expert-curated full and partial correlation matrices (dimensions 25 

and 100) made available by the UKBB team to 100 top PC components prior to applying 

dimensionality reduction techniques, in accordance with standard practice. As with PCA, both 

CCA and PLS-C were conducted on each disease class separately. The number of latent factors 

kept for each technique was equivalent to the number of latent components identified in the 

PCA analysis. That is, if the PCA analysis resulted in 3 latent factors for a given disease class, the 

top 3 CCA and top 3 PLS-C latent factors for that disease class were kept. In this way, we 

extracted an additional set of 116 composite disease clusters (58 each for CCA and PLS-C) from 

our original set of clinical phecodes. These composite disease clusters linked resting state brain 

activity (as captured in fMRI imaging) to disease status (as captured in clinical phecodes), and 

thus represented a different dimension of disease.  
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Finally, we charted robust cross-links between the subject-wise expression of a given 

brain asymmetry pattern change and the portfolio of 174 composite disease clusters, with 

appropriate correction for multiple comparisons. For each composite disease clusters, the 

Pearson’s correlation between the given composite disease clusters and the inter-individual 

variation in brain asymmetry change revealed both the association strength and accompanying 

statistical significance of the given disease cluster- brain asymmetry change association. For each 

uncovered brain asymmetry pattern change, two standard tests were used to adjust for the 

multitude of associations being assessed. First, we used Bonferroni’s correction for multiple 

comparisons, adjusting for the number of tested phenotypes (0.05/174 = 2.87e-4). Second, we 

further evaluated the significance of our correlation strength using the false discovery rate (FDR), 

another popular method of multiple comparison correction which is less stringent than 

Bonferroni’s correction. The false discovery rate (Benjamini & Hochberg, 1995) was set as 5% 

(Miller et al., 2016; Raizada et al., 2008; Sha et al., 2021) and computed for each pain archetype 

in accordance with standard practice (Genovese et al., 2002). For visualization purposes, disease 

clusters in Manhattan plots were coloured and grouped according to the category membership 

defined by the phecode map developed by Wu and colleagues (2019) and shape in accordance 

to the dimension reduction technique applied. This procedure was applied for measures 

capturing direction of brain asymmetry change (LBACs) as well as magnitude of brain asymmetry 

change (MBACs).  

  



 36 

Table 1: Disease class size before and after PCA-based data compression. Composite disease 

clusters (latent factors) are retained for latent factors whose explained variance exceed the 

explained variance of equivalent noise-based latent factors. PCA was applied separately for each 

disease class. 

Disease Category Number 

of 

Phecode

s 

Number 

of latent 

factors 

Total 

Explained 

Variance 

of latent 

factors (%) 

Circulatory System 155         4   50.1 

Congenital 

Anomalies 

54         1   38.3 

Dermatological 94         4   45.3 

Digestive 155         6   48.3 

Endocrine/Metabo

lic 

146         2   51.5 

Genitourinary 156         10   52.1 

Hematopoietic 54         3   64.4 

Infectious Diseases 55         2   44.7 

Injuries and 

Poisonings  

125         2   21.6 

Mental Disorders 70         4   64.5 

Musculoskeletal 120         2   36.0 

Neoplasms 132         3   39.9 

Neurological 78         5   53.5 

Pregnancy 

Complications 

44         1   22.9 

Respiratory  75         6   64.0 

Sense Organs 113         1   23.0 

Symptoms 36         2   46.0 

Total 1,662 58 45.1 

(Mean) 
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Supplementary Figure 1: Amount of longitudinal structural brain asymmetry change in individuals reflect age, sex, 

and employment status 

Mean LBACs (A) and mean MBACs (B) across all 33 statistically defensible asymmetry patterns in relatively older 

participants (top 25th age percentile) and relatively younger participants (bottom 25th age percentile) at baseline. 

Diagonal line indicates equal LBACs or equal MBACs in each relative age group. Relatively older individuals undergo 

large magnitude of brain asymmetry changes than relatively younger individuals. Relatively older and relatively 

younger individuals exhibit similar brain asymmetry changes (LBACs). (C) Pearson’s correlation coefficient between 

complementary approaches to structural brain asymmetry. Amounts of asymmetry change, capturing the magnitude 

but not preferred direction of structural asymmetry changes, are weakly correlated to asymmetry changes (LBACs).  

(D) and (E) Cohen’s d effect size of MBACs between sex or employment contrasts. Three employment Cohen’s d 

contrasts were conducted per asymmetry pattern, comparing participants who were in full-time employment at both 

time points (employed), in retirement at both time points (retired) or transitioned from full-time employment at first 

imaging visit and retired at second imaging visit (retiring). Grey rectangle indicates single largest absolute Cohen’s d 

for sex-contrast (pattern 6, |d|=0.240). Retirement status displayed smaller effect sizes on how much brain asymmetry 

progresses (MBACs) than how brain asymmetry progresses (LBACs). Conversely, sex displayed larger effect sizes on 

how much brain asymmetry progresses (MBACs) than how brain asymmetry progresses (LBACs). 
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Supplementary Figure 2: Overall brain volume change is better captured by changes in brain asymmetry than age 

and sex 

Coefficient of determination (R2) distribution across 100 bootstrap iterations from L2 penalized linear regression 

models predicting yearly rate of change in (i) both white and grey matter volume or (ii) total grey matter volume, or 

(iii) white matter volume on the basis of asymmetry phenotypes or non-brain phenotypes. Predictor variables are 

indicated in the legend. No models contain age or sex information unless otherwise specified. All asymmetry models 

contained information about 33 distinct asymmetry patterns.  R2 scores were adjusted for number of parameters in 

each model. 
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Supplementary Figure 3: Overall brain volume reflects age and sex 

Coefficient of determination (R2) distribution across 100 bootstrap iterations from L2 penalized linear regression 

models predicting volume of in (i) total grey matter or (ii) both white and grey matter, or (iii) total grey matter on the 

basis of asymmetry phenotypes or non-brain phenotypes. Predictor variables are indicated in the legend. No models 

contain age or sex information unless otherwise specified. All asymmetry models contained information about 33 

distinct asymmetry patterns. R2 scores were adjusted for number of parameters in each model. Baseline asymmetry 

better reflected total brain volume than changes in brain asymmetry. Of examined predictor variables, age and sex 

most strongly reflect total brain volume. 
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Supplementary Figure 4: Measures of longitudinal structural brain asymmetry change in individuals reflect sex, 

and employment status independent of age 

(A) and (B) Cohen’s d effect size of LBACs between sex or employment contrasts with age-correction on LBACs. (C) 

and (D) Cohen’s d effect size of MBACs between sex or employment contrasts with age-correction on MBAC. Three 

employment Cohen’s d contrasts and one sex contrast were conducted per asymmetry pattern for both LBACs and 

MBACS. Employment contrasts compared participants who were in full-time employment at both time points 

(employed), in retirement at both time points (retired) or transitioned from full-time employment at first imaging visit 

and retired at second imaging visit (retiring). Age at baseline visit was regressed out of asymmetry change measures 

(MBACs/LBACs) prior to calculating effect size. Grey rectangle indicates single largest absolute Cohen’s d for sex-

contrast in each respective measure of brain asymmetry (LBAC pattern 21, |d|=0.176; MBAC pattern 6, |d|=0.227).  

Age correction of measures of brain asymmetry (MBACs/LBACs) retained the key observation that employment status 

reflects how brain asymmetry progresses (LBACs) more strongly than sex. Sex continued to display larger effect sizes 

on how much brain asymmetry progresses (MBACs) than how brain asymmetry progresses (LBACs). Correcting for age 

group differences in employment groups most strongly impacted contrasts involving MBACs of retired individuals. 

With age correction, the trend of greater magnitudes of asymmetry pattern change (MBAC) in retired individuals as 

compared to either employed individuals or recent retirees was reduced.  
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Supplementary Figure 5: Amount of brain asymmetry changes and overall brain asymmetry changes have unique 

and complementary linked behavioural phenotypes 

Coefficient of determination (R2) of L2 penalized linear regression models predicting pattern 6 (A) LBACs and (B) 

MBACs on the basis of age, sex, and within behavioural phenotypes within a given domain. Separate models were fit 

for each statistically defensible asymmetry pattern. Principle component analysis was applied to model coefficients 

within a domain across all 33 asymmetry patterns. Top set of phenotypic contributors (text) within top principal 

components reveal consistently relevant phenotypes (light text) and behavioural changes (dark text) which track 

multiple sets of brain asymmetry changes. Rural versus urban divide emerged as consistently relevant for assessing 

how much brain asymmetry progressed. Social home environment was consistently relevant for assessing how brain 

asymmetry progression occurred. 
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