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Abstract 

An increasing amount of research is incorporating the concept of Digital twin (DT) in 

biomedical and health care applications. This scoping review aims to summarize existing 

research and identify gaps in the development and use of DTs in the health care domain.  The 

focus of this study lies on summarizing: the different types of DTs, the techniques employed 

in DT development, the DT applications in health care, and the data resources used for 

creating DTs.  We identified fifty studies, which mainly focused on creating organ- (n=15) and 

patient-specific twins (n=30).  The research predominantly centers on cardiology, 

endocrinology, orthopedics, and infectious diseases.  Only a few studies used real-world 

datasets for developing their DTs.  However, there remain unresolved questions and 

promising directions that require further exploration.  This review provides valuable reference 

material and insights for researchers on DTs in health care and highlights gaps and unmet 

needs in this field.   
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Introduction 

Digital Twin (DT) is a novel approach in aiding decision-making to solve various real-world 

challenges and has attracted growing attention in both industry and research communities. 

The original use of the “twin” concept can be traced back to NASA’s Apollo mission in the 

1960s, where engineers created a “living model” to simulate spacecraft. In 2010, John Vickers 

introduced the term “digital twin”, which consists of three components: a virtual system, a 

physical entity, and a bidirectional connection linking each other. While DTs have been widely 

studied in manufacturing, there is more and more interest in their applications in health care. 

 

Recently, healthcare research has evolved from traditional reactive methods to proactive 

strategies [2–4]. Healthcare practitioners are trying to provide precision medicine, focusing on 

improving human health by evaluating individualized factors and acting on them [2]. The goal 

is to “target the right treatments to the right patients at the right time” [3]. Health digital twin, 

relying on artificial intelligence (AI) and machine learning (ML), is promising in this context. A 

health DT refers to the use of DT in health care, modeling patients, organs, pathophysiological 

systems, and/or other health-related entities (e.g., a hospital), to offer solutions in precision 

medicine, clinical trials, and public health.  

 

DTs resemble other modeling techniques, such as microsimulation (MSM) and agent-based 

modeling (ABM). In health care, an MSM model simulates individual behaviors ("micro", e.g.,  

at the patient or household level) to estimate population-level effects 1,2.  MSM has been used 

in various disease analyses (e.g., dementia 3 and oncology 4). The National Cancer Institute 

(NCI)'s Cancer Intervention and Surveillance Modeling Network (CISNET) program has built 

MSM models to analyze cancer control interventions 5. ABM, another simulation method, is 

focused on simulating the actions of targeted agents (e.g., patients) interacting with a specific 

environment.  During the COVID-19 pandemic, ABM was used to model human activities and 
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virus transmissions for assessing the impact of public health interventions (e.g., social 

distancing and vaccination strategies). 6–8 

 

While MSM and ABM have a long history in health care applications, discussions surrounding 

DTs have surged more recently along with the advancement of AI/ML and the proliferation of 

big data.  Several existing efforts have provided up-to-date perspectives on DTs in health care 

9–11. A few review papers were published to discuss specific disease applications, such as 

multiple sclerosis 12, cardiovascular disease 13, COVID-19 14, and the immune system 15.  

Nevertheless, the existing work has only focused on discussing DTs, MSM, and ABM, 

separately, without drawing similarities and distinctions across the three. In addition, DTs 

studies have emerged in health care, however, there is a lack of clarification of the difference 

among DTs, MSMs, and ABM, and the summarization of the DTs in health.   In this scoping 

review work, first, we aimed to bridge this gap by providing a comprehensive and nuanced 

picture of health DT literature, highlighting the differences and overlaps across these modeling 

techniques. In addition, we conducted a comprehensive review of individual studies in DTs for 

healthcare applications. 

 

Method 

Search strategy and selection criteria 

In this study, we performed a two-phase literature review: the first phase focused on evaluating 

existing review articles related to DTs, MSM, and ABM; the second phase assessed individual 

studies about health DTs.  For both phases, we adhered to the same methodology following 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines, which included a comprehensive literature search, a review of abstracts and full 

texts, and data extraction from selected articles. 
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In the first phase, we aimed to examine the definition, scope, and progress of DTs by extracting 

review papers that discussed relevant techniques and concepts, including DTs, MSM, and 

ABM.  We collected peer-reviewed publications from mainstream databases, including IEEE 

Xplore (n = 36), ACM Digital Library (n = 4), Web of Science (n = 57), PubMed (n = 158), and 

Embase (n = 25), using the search query: Title: ("survey" OR "review" OR "overview" OR 

"summary") AND Abstract: ("digital twin*" OR "microsimulation" OR "agent-based simulation") 

AND ("healthcare" OR "health" OR "infection" OR "disease*") with filters limiting to studies 

published in the last decade (2013-2023).  We then excluded papers that (1) were not review 

articles, (2) were not related to health care or medicine, or (3) were not written in English.  A 

total of 25 review papers were included from 274 papers. 

 

In the second phase, we focused on individual studies of DTs in health care, sourced from 

PubMed (n=611) and Embase (n=669).  Our initial inclusion criteria specified studies that were 

(1) published within the past 10 years (2013–2023), (2) written in English, and (3) related to 

DTs in health care and biomedical applications (e.g., diagnosis, treatment, and drug 

discovery/development).  We excluded studies that were (1) not peer-reviewed original 

research (e.g., pre-prints), (2) lacking full text, (3) commentaries, perspectives, or editorials, 

or (4) unrelated to the health care domain. After an initial screening of 940 papers, we 

discarded those that were not relevant (n=800) or did not meet our criteria (n=90), resulting in 

50 papers selected for data extraction and final analysis.  

 

For both phases, all papers underwent a two-person independent review process for the 

inclusion and exclusion; and conflicts were resolved by a third reviewer. The details and 

outcomes of both the Phase 1 and Phase 2 reviews, following the PRISMA guidelines, are 

illustrated in Figure 1.  
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Figure 1. Flow diagram illustrating the process of study. 

 

Results 

We summarized the characteristics (Figure 2) of DTs, MSM, and ABM, based on 25 review 

articles. These three modeling approaches have distinct ways of analyzing data and serve 

different purposes during applications.  DTs rely on AI/ML and visualization techniques to 

create personalized models of real-world objects with data connections.  MSM mainly 

leverages existing statistics and conducts analysis and draws evidence at the population level, 

while ABM focuses on the behaviors of agents in specific environments.  It is worth noting that 

the analytical methods used in MSM and ABM can also contribute to the development of DTs.  
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Figure 2. Differences among digital twins, microsimulation, and agent-based simulation in healthcare. 
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In the Phase 2 review, we conducted a detailed analysis of the existing studies on health DTs, 

summarizing their types, foundational techniques, applications, and datasets: 

 

Types of DTs in Health care 

As shown in Figure 3, current research on DTs in health care can be categorized into five 

classifications based on the physical entity they represent: organ-based (30%), physiological 

system-based (4%), patient-based (60%), procedure-based (4%), and miscellaneous (2%). 

 

Figure 3. Types of current health digital twins. 
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Health DTs for modeling specific organs were commonly used for improving health monitoring 

and treatment regimen optimization.  In this classification, the majority of studies 16–25 

developed DTs of the heart (n=10), with fewer studies targeting the brain 26–28 (n=3), liver 29 

(n=1), and lungs 30 (n=1).   

 

In DT application for physiological systems, Golse et al. 31 created a DT to mimic the overall 

circulation system to estimate patients’ preoperative conditions and predict postoperative 

hemodynamic status. Similarly, Maleki et al. 32 built a DT model of the immune system to 

inform clinical decisions.   

 

Patient-level DTs replicate individual patients and are primarily focused on utilizing patient-

DTs to support decision-making on therapeutics and interventions, including optimizing 

treatment strategies 33–38, predicting chemotherapy responses 39, and evaluating dietary 

interventions 40–43.  Another application focus is patient health and outcomes predictions using 

DTs, such as the onset of disease-specific brain atrophy 44, the spread of COVID-19 45, the 

risk of vertebral fracture46, the occurrence of metastases 47, the progression of diabetic 

retinopathy and cataracts 48, the auxiliary diagnosis of sepsis 49, and long-term health 

management (e.g., life-course risk of multimorbidity) 50.  Additionally, there is a growing 

interest in creating patient DTs for health and vital sign monitoring, such as tracking and 

forecasting glucose 51–54, blood velocity and pressures 55,56, and body mass 57.  Being distinct 

from organ or physiological system-based DTs, patient-based DTs do not model an organ or 

physiological system directly. Nevertheless, patient-based DTs adopt a more comprehensive 

view of the human body and the surrounding environment, allowing for the simulation of 

physiological systems or organs as part of the patient-based DTs.  A smaller segment of 

research was focused on building patient-based DTs for drug development, such as drug 

reactions 58,59 and diffusion 60.  In addition, using data from actual human leukocyte antigen 

(HLA) haplotypes of ~22,000 individuals, Malone et al. 61 employed a DT-type simulation to 

design vaccines for preventing COVID-19.   
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Two studies focused on procedure-based DTs, such as Ahmadian et al. 62 simulated the 

cement injection process of the vertebra in a DT to predict vertebral compression fractures.  

Shu et al. 63 proposed a DT framework, called Twin-S, to simulate skull surgery procedures.  

We also identified miscellaneous DTs beyond organs, physiological systems, patients, or 

procedures.  Fahim et al. 64 constructed a home-based DT to monitor the daily activities of the 

elderly.   

 

Core Models of Health Digital Twins 

The existing research employed both complex AI/ML techniques (58%) and simple 

statistical/mathematical models (36%) to build DTs (Figure 4-a).  For instance, Lal et al. (2020) 

33 utilized Bayesian networks as the core of a DT to simulate treatment responses for sepsis 

patients.  Malone et al. (2020) proposed a DT framework with variations of Support Vector 

Machines 61 for COVID-19 vaccine design.  Recurrent neural networks (RNN) 18,37,52,64 and 

generative adversarial networks (GAN) 45,51,55 were utilized for DT development in the analysis 

of complex data like sequential data (e.g., sensor readings and vital signs). When dealing with 

medical images, convolutional neural networks (CNN) 26,27,49 and GAN 23,46,62 are frequently 

used.  Batch et al. (2022) 47 integrated RNN and CNN to develop a cancer DT for metastasis 

detection based on information extracted from a sequence of patients’ past structured 

radiology reports.  Additionally, reinforcement learning has been applied to optimize 

therapeutic regimens, including parameter adjustments for implantable cardioverter 

defibrillators 21 and treatment strategies for cancers like oropharyngeal squamous cell 

carcinoma 35. 
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Figure 4. Techniques and applications of health digital twins. a) Core techniques to create health 

digital twins. b) Distributions of health digital twins in disease application domains. 

 

Mathematical models often leverage prior knowledge (e.g., equations of cell model and tissue 

propagation) and/or existing statistics to create DTs.  For example, Goodwina et al. 54 

proposed a metabolic DT framework based on a probabilistic model to optimize insulin dosing 

by simulating the blood glucose trajectories.  Galappaththige et al. 22 developed a cell model 

and tissue propagation equations to establish patient-specific cardiac electrophysiological 

models.  Gillette et al. 16,17 employed a reaction-eikonal model to create high-fidelity cardiac 

Mathmatical Model
36%

No specific models
6%

Shallow Machine 
Learning

26%

Deep Learning
28%

Reinforcement Learning

4%

AI/ML techniques 
58%

Distribution of core techniques
a)

b)



 12 

DTs that simulate ventricular electrophysiology.  Wu et al. 39 combined magnetic resonance 

imaging (MRI) data with biologically based mathematical models to generate patient-specific 

DTs for predicting and assessing treatment responses (e.g., chemotherapy).  Qi et al. 38 

created virtual patients by incorporating realistic baseline tumor burdens, anatomical lesion 

distributions, non-target progression rates, and site-specific response dynamics.  Azzolin et al. 

25 used a statistical shape model to generate detailed personalized computational models of 

human atria.  Cappon et al. 53 developed personalized DTs using patient physiology for 

glucose concentration simulations.   

 

Disease Applications of Health DTs 

We categorized existing studies using the Phecode 65 category to summarize the applications 

of DTs across different disease domains as shown in Figure 4-b.  The most applications of 

health DTs are in cardiovascular medicine 16,17,19–25, such as extracranial carotid artery disease 

56 and aortic aneurysms 18.  Neoplasms are the second largest application domain, with DTs 

modeling different cancers and associated conditions, such as lung 38, brain 26–28, breast 39, 

colorectal 66, metastatic cancers 47, and cancer-induced pain 60.  Eight studies focused on 

chronic conditions, such as diabetes (Type 2 40–42,48,52 and Type 1 diabetes 51,53,54).  Some 

researchers applied health DTs to study infectious diseases 33,49, for example, developing the 

COVID-19 vaccine 45,61. 

 

About 22% of the studies belong to various other disease domains.  In the musculoskeletal 

domain, DTs were used to improve skull surgery procedures 63 and fracture management 34,46.  

Two studies developed DTs for selecting treatments for respiratory conditions including 

pneumonia 37 and neonatal respiratory failure 30.  In gastroenterology, DTs were used for 

predicting the progression of Crohn's disease 36 and portal hypertension 31.  DTs were also 

applied to predict the onset of brain atrophy 44 and validate treatments 32 for multiple sclerosis.  

Bahrami et al. (2022) 58 employed a physics-based DT to propose tailored therapy for chronic 
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pain management.  In addition to specific disease domains, DTs were also developed for 

broad health management applications, such as diet and healthy aging 43,50,55,57,64. 

 

Data Sources 

Data for constructing DTs comes from three primary sources: data from prior clinical studies 

(58%), real-world data, including electronic health records (EHRs) (22%), and simulation-

generated data (20%). Clinical study data include both clinical trial data 30,32,39,51,52,59,60 and 

data gathered from observational cohorts 20,36,38,40,42,44,49.  This category covers various types 

of data, such as structured clinical variables (e.g., conditions and treatments) 31,33,43, imaging 

data (e.g., CT scans 57, specimens 46, and 3D images 23,34), and sensory readings 16,17,25. 

Among these, only very few datasets (6 datasets used by 5 studies) are publicly accessible 

(Table 1). 

 

Real-world data are the data relating to patients’ health status collected during routine care, 

including EHRs and administrative insurance claims data 26,28,37,47,56,61.  Nine real-world 

datasets (used by six studies) are publicly accessible (Table 1), with the remaining five studies 

using private data.  Some studies use simulated data for testing the DT models across various 

disease and application domains, including cardiovascular 18,19,21,22, type 1 diabetes 53, 

vertebroplasty procedures 62, and 3D skull structure 63.  While these simulated data are useful 

for developing and validating the DT models, they may fall short of creating comprehensive 

DTs that represent real-world patients and health care settings. 

 

Discussion 

In this review, we elucidated the differences among DTs, MSMs, and ABMs.  We then 

reviewed n=50 existing DT studies in health care and summarized the studies based on the 

DT types, foundational techniques, applications, and datasets.  We identified five types of 

health DTs, including patient-based DTs (n = 30), organ-based DTs (n = 15), physiological 
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system-based DTs (n=2), procedure-based (n=2), and miscellaneous (n = 1).  Most organ-

based DTs were designed for forecasting treatment response, while patient-based DTs are 

primarily used for health monitoring.  Regarding foundational techniques of DTs, our review 

identified 29 studies that employed AI/ML techniques and 18 studies that adopted 

mathematical models in developing DTs.  From the view of applications, most DTs are 

designed for cardiovascular medicine, Neoplasms, chronic conditions, and infectious diseases.  

Clinical study data, real-world data, and simulated data have all been used for DT 

development.  Overall, our review shows that AI-based DTs have demonstrated an emerging 

trend as more and more large-scale datasets, especially large collections of real-world EHR 

data, have become increasingly available, and computational power has dramatically 

increased, given the rising capability of Graphics Processing Units (GPUs) and deep neural 

networks.  

 

Admittedly, there seems to be a clout-chasing phenomenon in a few of the existing studies 

because of the hot trend of DTs.  Some research 22,53,58 focused more on developing modeling 

approaches using simulated data rather than proposing a true DT, i.e., linking the virtual model 

to real-world entities.  Although the authors claimed that these methods have the potential to 

develop health DTs using real-world data, they neglected to explain to what extent their studies 

could be associated with the DT development process.  For instance, a study merely 

developed models for metastatic disease detection based on radiology reports of three 

separate organs but did not explain how their models can contribute to creating a DT. 47  Being 

able to predict outcomes (or any future events or changes in the system) is a basic need of 

DTs, but these alone should not be called DTs.  Furthermore, some authors may have 

inaccurately described their studies as creating DTs, when they should have been classified 

under other simulation techniques.  For example, Lin et al. (2023) 66 claimed to have created 

patient DTs of 5,417,699 Taiwanese individuals to simulate the effectiveness of colorectal 

cancer screening as an intervention, rather than conducting true randomized controlled trials.  

This study seems to be more aligned with the definition of microsimulation models; indeed the 
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authors cited microsimulation as DT, stating, “the concept of the digital twin was realized in 

the realm of cancer prevention and screening by the parallel universe approach, which has 

already been used in a micro-simulation scenario for the development of CISNET (Cancer 

Intervention and Surveillance Modeling Network)” 66.  However, it remains unclear whether 

those virtual patients do correspond to actual patients in the real world or were just generated 

using simulation parameters derived from the real-world population, leading to the 

misclassification of their CISNET microsimulation models as “digital twins”.   

 

In addition to the misuse of the terminology, several other issues that need to be carefully 

considered in creating health DTs, are not adequately addressed in prior research.  First, 

model fairness and bias have not been considered in existing health DT studies  67,68.  Health 

DTs, corresponding individuals in the real world, should serve everyone fairly, regardless of 

their socioeconomic status, and should not exacerbate existing health disparities and 

inequalities.  DT developers should assess the potential biases of data used to train the 

models, as well as the bias that is introduced by the modeling approaches. Bias mitigation 

would be conducted for identified bias before the health DT application 67.  Furthermore, health 

DTs rely heavily on the quality and completeness of real-world data from real-world individuals 

for both model creation and linkage to real-world entities.  Lin et al suggested data 

completeness can generally improve model effectiveness, emphasizing the importance of 

data quality 69,70.  Another important gap in existing DT research is explainability and 

transparency; stakeholders often lack insight into how the DT works, leading to concerns about 

the trustworthiness of the models.  Integrating tools that facilitate technical scrutiny of an 

algorithm's behavior and its uncertainties is essential and should become a standard practice 

in algorithm development 71.  Researchers and developers also need to make the DT workflow 

and models transparent, creating “white-box” rather than “black-box” systems.  Last but not 

least, it is important to note that currently almost all existing studies are focused on the 

development of DT modeling approaches. There are still no real-world implementations of 

health DTs, and no study has been able to make a live connection to continuously achieve the 
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bidirectional data exchange as defined in true DTs, i.e., DTs inform health choices or actions 

and the individuals’ data feedback to the models with updated information or improvement to 

the models.  To address these research gaps and unmet needs in health DTs, the involvement 

of all stakeholders, with consideration of human-AI teaming,72 is critically needed in the 

development and co-creation of the health DTs. 

 

Looking ahead, there is a promising future in research focused on developing and 

implementing health DTs, particularly given the recent rapid evolution in large foundation 

models, especially in large language models (LLMs) such as ChatGPT and GPT-4.  These 

foundation models have impressive abilities to adapt to various downstream tasks, a desired 

goal of DTs.  Discussions of foundation models for DTs have started in the general domain 

73,74; nevertheless, more research and development work is very much needed, especially for 

health DTs74.  From the application standpoint, real-world applications of utilizing DTs, 

especially for ongoing care and monitoring of chronic diseases, are greatly needed.  Other 

novel uses of health DTs should also be a focus of future research.  Furthermore, more and 

more studies are utilizing deep learning techniques to build up health DT systems.  As deep 

learning models often lack interpretability, a possible solution would be integrating deep 

learning techniques with prior domain knowledge to improve transparency, in addition to the 

line of explainability research 75.  Besides, most current studies have built DTs based on data 

from a single source.  The next-generation DTs should incorporate multimodal data (e.g., 

structured fields from medical records, free-text reports and physician notes, imaging, 

genomics, and environmental factors) to comprehensively model an entity.  The rising interest 

and ability of multimodal foundation models that can leverage data from multiple modalities 

might be a critical advancement for building health DTs.  Finally, as mentioned above, 

addressing bias and fairness remains a primary concern, with researchers urged to assess 

and mitigate potential biases of current health DT techniques. 
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Our study is subject to several limitations. First, we excluded non-English studies and reports. 

Second, given that the current scope review is focused on DTs, we reviewed solely review-

type articles discussing MSM and ABM, without diving into the individual studies and details 

of those techniques.  Future investigations should comprehensively explore DTs and relevant 

techniques within specific application domains.  

 

In conclusion, this scoping review offers valuable reference information and perspectives for 

researchers who are interested in DT techniques and applications in health care, while also 

highlighting the gaps and future research directions in this field.   
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Data availability 
 
No new or unpublished data is included within the study. 
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Figure Legends 

Figure 1. Flow diagram illustrating the process of study. 

Figure 2. Differences among digital twins, microsimulation, and agent-based simulation in 

healthcare. 

Figure 3. Types of current health digital twins. 

Figure 4. Techniques and applications of health digital twins. a) Core techniques to create 

health digital twins. b) Distributions of health digital twins in disease application domains. 
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Table 1. Publicly accessible datasets for health digital twin research. 
 

Data 

Source 

Name Description Link 

Clinical 

Studies 

Human Connectome 

Project (HCP)  

A public research data includes a 

series of studies that focus on the 

connections within the human brain. 

https://www.humanconn

ectome.org/ 

Alzheimer’s Disease 

Neuroimaging 

Initiative (ADNI)  

A longitudinal multicenter study 

designed to develop clinical, 

imaging, genetic, and biochemical 

biomarkers for the early detection 

and tracking of Alzheimer’s disease 

(AD). 

https://adni.loni.usc.edu/ 

 

OhioT1DM dataset  A dataset to facilitate research in 

blood glucose level prediction. It 

contains 12 individuals with type 1 

diabetes. 

http://smarthealth.cs.ohio

.edu/OhioT1DM-

dataset.html 

 

Center for Advanced 

Studies in Adaptive 

Systems (CASAS) 

dataset  

This dataset consists of real-world 

sensor data collected from smart 

home environments. 

 

https://casas.wsu.edu/ 

 

Single heart failure 

patient with atrial 

fibrillation  

This dataset includes detailed 

clinical data from a 78-year-old 

female heart failure patient with atrial 

fibrillation. 

https://zenodo.org/record

s/7405335 

 

Human Hepatic 

Glucose Metabolism 

 

This dataset comprises 

experimental data on glycogenolysis 

and glycogen synthesis extracted 

from various studies. 

https://doi.org/10.1371/jo

urnal.pcbi.1002577.s001 

 

https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://adni.loni.usc.edu/
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
https://casas.wsu.edu/
https://zenodo.org/records/7405335
https://zenodo.org/records/7405335
https://doi.org/10.1371/journal.pcbi.1002577.s001
https://doi.org/10.1371/journal.pcbi.1002577.s001


 30 

Real-

world 

Data 

Medical Information 

Mart for Intensive 

Care -III (MIMIC-III) 

A large database contains health-

related data associated with over 

forty thousand patients who stayed 

in ICU. 

https://physionet.org/cont

ent/mimiciii/1.4/ 

 

eICU Collaborative 

Research Database  

A large multi-center critical care 

database contains health data from 

ICU patients. 

https://eicu-crd.mit.edu/ 

 

Whole Brain Atlas  This dataset provides anatomical 

and functional imaging data of the 

human brain. 

https://www.med.harvard

.edu/aanlib/ 

 

Global Initiative on 
Sharing All Influenza 
Data (GISAID)  
 

This dataset contains genomic 

sequences and related clinical and 

epidemiological data for various 

influenza viruses and coronaviruses. 

https://gisaid.org/ 

 

National Child 

Development Study 

(NCDS) 

This dataset contains longitudinal 

data on the lives of individuals born 

in a single week in 1958 in Great 

Britain, encompassing a wide range 

of information. 

https://ncds.info/ 

 

Clinical Practice 

Research Datalink 

(CPRD) 

CPRD contains real-time UK 

population health data, for 

epidemiological and 

pharmacoepidemiological research. 

https://www.cprd.com/da

ta 

 

Cerner Real-World 

Data (CRWD) 

The dataset is a de-identified big 

data source of multicenter electronic 

health records. 

https://www.oracle.com/h

ealth/population-

health/real-world-data/ 

 

National Health and 

Nutrition Examination 

Survey (NHANES)  

This dataset provides 

comprehensive health and 

nutritional data from a nationally 

https://www.cdc.gov/nch

s/nhanes/index.htm 

 

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://eicu-crd.mit.edu/
https://www.med.harvard.edu/aanlib/
https://www.med.harvard.edu/aanlib/
https://pubmed.ncbi.nlm.nih.gov/28382917/
https://pubmed.ncbi.nlm.nih.gov/28382917/
https://gisaid.org/
https://ncds.info/
https://www.cprd.com/data
https://www.cprd.com/data
https://www.oracle.com/health/population-health/real-world-data/
https://www.oracle.com/health/population-health/real-world-data/
https://www.oracle.com/health/population-health/real-world-data/
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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representative sample of the U.S. 

population 

Brain MRI Image 

dataset from Kaggle 

It contains brain MRI Images for 

brain tumor detection, collected from 

Google Images. 

https://www.kaggle.com/

datasets/navoneel/brain-

mri-images-for-brain-

tumor-detection 

 

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

