
Advances in the Clinical Application of High-throughput 
Proteomics

Miao Cui1,2, Fei Deng3, Mary L. Disis4, Chao Cheng5,6, Lanjing Zhang3,7,8,*

1Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

2Department of Pathology, Mount Sinai West, New York, NY, USA

3Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 
Piscataway, NJ, USA

4UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, USA

5Department of Medicine, Baylor College of Medicine, Houston, TX, USA

6Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA

7Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA

8Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Abstract

High-throughput proteomics has become an exciting field and a potential frontier of modern 

medicine since the early 2000s. While significant progress has been made in the technical 

aspects of the field, translating proteomics to clinical applications has been challenging. This 

review summarizes recent advances in clinical applications of high-throughput proteomics and 

discusses the associated challenges, advantages, and future directions. We focus on research 

progress and clinical applications of high-throughput proteomics in breast cancer, bladder 

cancer, laryngeal squamous cell carcinoma, gastric cancer, colorectal cancer, and coronavirus 

disease 2019. The future application of high-throughput proteomics will face challenges such as 

varying protein properties, limitations of statistical modeling, technical and logistical difficulties 

in data deposition, integration, and harmonization, as well as regulatory requirements for 

clinical validation and considerations. However, there are several noteworthy advantages of 

high-throughput proteomics, including the identification of novel global protein networks, the 

discovery of new proteins, and the synergistic incorporation with other omic data. We look 
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forward to participating in and embracing future advances in high-throughput proteomics, such 

as proteomics-based single-cell biology and its clinical applications, individualized proteomics, 

pathology informatics, digital pathology, and deep learning models for high-throughput 

proteomics. Several new proteomic technologies are noteworthy, including data-independent 

acquisition mass spectrometry, nanopore-based proteomics, 4-D proteomics, and secondary ion 

mass spectrometry. In summary, we believe high-throughput proteomics will drastically shift the 

paradigm of translational research, clinical practice, and public health in the near future.
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Introduction

During the post-genomic era, proteomics has become an exciting field and a potential 

frontier of modern medicine since the early 2000s.1–3 High-throughput technologies 

enabled quantitative proteomics, revealing unprecedented new insights.4–6 For example, 

GAPDH, traditionally considered a housekeeping protein consistently expressed in various 

tissues, was recently found linked to retinoblastoma, lung adenocarcinoma, and intrahepatic 

cholangiocarcinoma.4,5,7 These findings led to increasing clinical applications of high-

throughput proteomics, although these clinical applications remain relatively limited. 

Therefore, we here summarize recent advances in clinical applications of high-throughput 

proteomics and discuss the associated challenges, advantages, and future directions (Fig. 1).

The four most commonly used high-throughput proteomic techniques are mass spectrometry 

(MS), protein pathway array (PPA), next-generation tissue microarrays (ngTMA), and 

multiplex bead- or aptamer-based assays such as Luminex® and Simoa® (Fig. 2).8 

They each have their own methodological strengths and weaknesses and should be 

used accordingly.8 Briefly, MS analyzes and quantifies proteins, their isoforms, and 

post-translational modifications through direct assessment of the fragments or specific 

proteolytic activities. Based on instrumental analysis methods, MS can be roughly classified 

into direct infusion MS, ion mobility system (IMS) MS, liquid chromatography-mass 

spectrometry (LC-MS), gas chromatography MS, and supercritical fluid chromatography 

MS.9,10 IMS MS is gaining popularity for its smaller chemical variations and higher 

speed than LC-MS.9 The direct infusion shotgun proteome analysis combines shotgun and 

IMS MS methodologies and appears to be a highly efficient and accurate approach for 

high-throughput proteomics.9,11 Isobaric tags for relative and absolute quantitation (iTRAQ) 

is another commonly used MS-based technique, covalently labeling the side-chain amines 

and/or N-terminus of targeted peptides.12 It has been applied to discovering biomarkers of 

hepatocellular carcinoma and cervical cancer.13,14 However, iTRAQ has its disadvantages, 

including isotopic use, contamination, and background noises, despite its very high accuracy 

(orders of magnitude).15

PPA uses a mixture of antibodies in a gel-based array to simultaneously detect 

corresponding antigens in a sample, making it high-throughput. ngTMA applies antibodies 
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to a large number of tissue samples/cores simultaneously, usually formalin-fixed paraffin-

embedded and arranged in an array on a single histologic slide. This allows large-scale 

antibody-based molecular analysis of multiple samples at the same time, improving time- 

and cost-efficiency and decreasing variations and the need for additional controls. Multiplex 

bead- or aptamer-based assays mix the samples with multiple beads or aptamers that 

simultaneously bind to various antigens in the samples through conjugated antibodies, 

aptamers, or probes. Most of these systems use fluorescent-based conjugation and detection 

systems. Finally, these technologies each have their unique strengths and weaknesses. For 

example, the acceptable sample types vary by methodology. MS and PPA are mostly for 

processed proteins, while ngTMA and bead/aptamer-based assays require human tissue and 

blood samples, respectively. More methodological details can be found in other reviews.8

Advances in the clinical applications of proteomics

High-throughput proteomics methods have broad applications in translational research, 

clinical practice, and public health. They enable the exploration of molecular mechanisms 

and biological processes, the identification of novel diagnostic and prognostic biomarkers 

for precision medicine, and the discovery of therapeutic targets for personalized therapy.16 

Given the rapidly expanding high-throughput datasets,17 high-throughput proteomics 

becomes increasingly important for translational and clinical research. It has been widely 

used in cancer research and other fields.18–20 Several elegant reviews have focused on one 

or two disease areas and should be referred to for more details.19,21–26 Here, we briefly 

summarize recent advances in the clinical application of high-throughput proteomics in 

selected diseases.

Breast cancer

Song et al.27 performed both PPA and SmartChip, which is an mRNA microarray, and 

identified 1,243 cancer pathway-related genes in breast cancer. They revealed decreased 

protein and mRNA expression in CDK6, Vimentin, and SLUG, and different protein 

expression in BCL6, CCNE1, PCNA, PDK1, SRC, and XIAP between tumor and normal 

tissues, but no difference in mRNA expression in those genes. At the signaling network 

level, 15 altered pathways were identified in breast cancer. Among them, the p53, 

IL17, HGF, NGF, PTEN, and PI3K/AKT pathways, accounting for 6 pathways, were 

found to be shared between the mRNAs and proteins. Although many dysregulated 

pathways in breast cancer occur at both mRNA and protein levels, mRNA expression 

does not necessarily correlate with protein expression. It thus suggests different regulatory 

mechanisms for proteins and mRNAs in breast cancer pathogenesis.27 Hadi et al.28 used gas 

chromatography-mass spectrometry to identify potential protein markers for breast cancer. A 

partial least square discriminant analysis model was built to separate breast cancer patients, 

achieving a sensitivity of 96% and a specificity of 100% on the validation dataset. Models 

using the decision tree algorithm for grading, staging, and neoadjuvant status reached 

predictive accuracies of 71.5%, 71.3%, and 79.8%, respectively.28 Interestingly, Aslebagh 

et al.29 assessed protein expression patterns in human milk obtained from breastfeeding 

mothers who had breast cancer using 2D-polyacrylamide gel electrophoresis coupled with 
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nano LC-MS/MS analysis. It showed that breast milk could be an essential and potentially 

informative biospecimen for breast cancer biomarker discovery.29

Colorectal cancer

Barberini et al.30 applied gas chromatography-mass spectrometry to identify biomarkers 

in blood plasma for colorectal cancer and found the most significantly altered metabolic 

pathways in colorectal cancer involve monosaccharides, such as the catabolic pathway 

of fructose and D-mannose, and amino acids, such as methionine, valine, leucine, and 

isoleucine. Ang et al.31 described a detailed protocol for revealing candidate protein markers 

in stool samples using 1D sodium dodecyl sulfate-polyacrylamide gel electrophoresis with 

LC-MS/MS. Their protein quantitation protocol and validation study will enhance the 

fecal proteome for the detection of potential fecal biomarkers. Additionally, using a high-

density antibody microarray, Rho et al.32 showed that plasma levels of several proteins/

glycoproteins were associated with colon cancer diagnosis, including BAG4, IL6ST, and 

CD44. Adding CD44, EGFR, sialyl Lewis-A, and Lewis-X content further improved the 

panel’s performance to an area under the curve (AUC) of 0.86 to 0.90.

Gastric cancer

In gastric cancer, Gao et al.33 discovered that VCAM1, FLNA, VASP, CAV1, PICK1, 

and COL4A2 were differentially expressed using isobaric tags for relative and absolute 

quantitation (ITRAQ) labeling analysis with LC-MS. They identified VCAM1 as a potential 

biomarker for treatment, located at the center of the protein-protein interaction network 

by KEGG pathway analysis. Lian et al.34 identified 20 proteins that were differentially 

expressed in Helicobacter pylori-associated gastric cancer using PPA. They found that both 

brassinosteroid-insensitive 1-associated kinase 1 and calpastatin were favorable prognostic 

factors in H. pylori-associated gastric cancers. The ERK/MAPK signaling pathway was the 

most significantly affected by H. pylori using PPA and ingenuity pathway analysis. He 

et al.35 applied PPA to AFP-producing gastric adenocarcinoma, which is more aggressive 

and associated with liver metastasis, uncovering that cyclin D1, RANKL, LSD1, Autotaxin, 

Calpain2, stat3, XIAP, IGF-Irβ, and Bcl-2 were up-regulated, and ASC-R and BID were 

down-regulated with significant differences. Furthermore, high levels of XIAP and IGF-
Irβ were independent prognostic factors. These factors can also be used to build a risk 

model with the pathological stage to separate AFP-positive gastric adenocarcinoma into 

two subgroups. The protein kinase A pathway was involved in the high-risk score group, 

while the PTEN pathway had significant enrichment in the low-risk score group by gene 

set enrichment analysis.35 Tong et al.36 uncovered nine serum markers using the Luminex 

system for the diagnosis of gastric cancer. Among them, pepsinogen I, pepsinogen II, 

ADAM8, VEGF, and Anti-H pylori IgG were identified as the panel of classifiers in the 

three algorithms, including logistic regression, random forest, and support vector machine, 

with accuracy in the validation set of 78.7%, 82.5%, and 86.1%, respectively.36

Bladder cancer

Proteomics has provided unique insights into the diagnostics, therapeutic targets, and 

pathogenesis of bladder cancer.37 Chen et al.38 applied differential 12C2-/13C2-dansylation 

labeling coupled with liquid chromatography/tandem MS to evaluate metabolite-based 
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diagnostic biomarkers in urine for bladder cancer. They used ultraperformance liquid 

chromatography coupled with a high-resolution Fourier transform ion-cyclotron resonance 

MS system and an ion trap MS with multiple reactions for precise quantification. Among 

o-phosphoethanolamine, 3-amino-2-piperidone, uridine, and 5-hydroxyindoleacetic acid, o-

phosphoethanolamine and uridine were differentially expressed in the urine of bladder 

cancer patients compared with controls. Furthermore, o-phosphoethanolamine was the most 

promising biomarker among the four, with an AUC of 0.709 for bladder cancer diagnosis. 

The AUC improved to 0.726 with the combination of o-phosphoethanolamine and uridine.38 

Hu et al.39 demonstrated that 45 proteins were differentially expressed in bladder cancers 

compared with non-tumor samples. Among them, EGFR and cdc2p34 were associated 

with muscle invasion and higher histological grade. Moreover, ß-catenin, HSP70, autotaxin, 

Notch4, PSTPIP1, DPYD, ODC, cyclinB1, calretinin, and EPO can be employed as a 

classifier panel to classify muscle-invasive bladder urothelial carcinoma by prognosis. P2X7, 

cdc25B, and TFIIH p89 were identified as significant prognostic factors by Kaplan–Meier 

and log-rank analyses on overall survival.39 Recent studies also identified 14 differentially 

expressed plasma proteins in cancer versus control groups, with apolipoprotein A1 being 

the most promising candidate (AUC = 0.906) and showed that Cadherin 12 is a predictor of 

neoadjuvant chemotherapy outcomes.40,41

Laryngeal squamous cell carcinoma

Sewell et al.42 first identified stratifin, S100 calcium-binding protein A9, p21-ARC, 

stathmin, and enolase as proteomic markers for laryngeal squamous cell carcinoma. Chen et 
al.43 discovered 16 proteins differentially expressed in laryngeal squamous cell carcinoma. 

Among them, TTF-1, CDK2, Eg5, PCNA, Bcl-xL, 14-3-3b, p27, SRC-1, and cytokeratin 

18 were identified as markers for classification, and JAK2, keratin 10, and IL-3Ra were 

identified for prognosis. They also developed a risk model based on histological grade, T 

classification, N classification, JAK2, and IL-3Ra, which can predict the prognosis with 

85.5% accuracy.43 Pan et al.44 developed a four-autoantibody-based early diagnostic panel, 

including TP53, HRAS, CTAG1A, and NSG1, for esophageal squamous cell carcinoma 

using the Luminex xMAP platform. The panel can discriminate early esophageal squamous 

cell carcinomas from controls with a sensitivity of 58.0% and specificity of 90.0% in 

an external validation dataset.44 Using LC-MS, Zhao et al.45 recently revealed that the 

fatty acid desaturase 1 expression was linked to poor prognosis and advanced clinical 

features in recurrent laryngeal squamous cell carcinoma patients treated with chemotherapy. 

They identified that fatty acid desaturase 1 is a potential promoter in laryngeal squamous 

cell carcinoma progression through the AKT/mTOR signaling pathway by protein-protein 

interactions (PPIs) and module analysis.

Coronavirus disease 2019 (COVID-19)

High-throughput proteomics is a technology that can be rapidly applied, as demonstrated 

by its use in studying COVID-19. Despite the progress made in combating COVID-19,46,47 

diagnostics and prognostication of COVID-19 and long COVID-19 remain challenging 

in the post-vaccination period.48,49 Ray et al.50 illustrated that proteomics techniques, 

including MS, antibody-based assays, and bioinformatics had tremendous potential 

to uncover the severe-acute-respiratory-syndrome-related coronavirus-2 (SARSr-CoV-2) 
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pathobiology and inform therapeutics and vaccine development. LC-MS has helped identify 

the host cell pathways modulated by SARS-CoV-2 virus.51 Hierarchical clustering analysis 

identified two main clusters of proteins: one consisting of proteins involved in cholesterol 

metabolism, which were reduced during infection, and another of proteins that were 

increased by infection. They showed that inhibition of these pathways can stop viral 

replication in vitro and thus can be targets for COVID-19 prevention and treatment.51 

Forster et al. successfully used phylogenetic networks to identify undocumented COVID-19 

infection sources. Their team found three central variants marked by different amino acid 

profiles, named A, B, and C types. The A and C types are mostly found in Europeans and 

Americans, while the B type is more prevalent in East Asia.52,53 Interestingly, the ancestral 

genome of type B seems to have mutated into derived B types before being transmitted 

beyond East Asia.52,53

Challenges

Protein property

Degradation has always been the biggest challenge in proteomics, compared to the 

considerable stability of DNA and cDNA. Protein stability and half-life are modulated by 

multiple post-translational modifications (PTMs), which regulate various signaling pathways 

and modify proteins with functional chemical groups, including phosphate, glycan, methyl, 

acetyl, ubiquitin, and others.54 Although these modifications are significant for protein 

functions such as activity state, stability, localization, turnover, and interactions with other 

molecules, they are susceptible to degradation. This degradation can occur during protein 

extraction, sample collection, and temperature changes.55 Missing PTM detection can lead 

to misinterpreted results and errors in data analysis. For example, the degradation of 

phosphorylation can mislead the activity status of proteins and dynamic protein-protein 

interactions. Loss of PTMs can also significantly change the original multi-dimensional 

structure of proteins. Low protein concentration and non-specific bindings are additional 

challenges for immunoassay-based techniques.

Statistical modeling

The missing or inappropriate normalization of data will lead to inaccurate or misleading 

statistical analysis, despite the use of proper statistical methods.56–58 For example, although 

housekeeping proteins such as GAPDH and beta-actin are known for their consistent 

expression across biological sources, it is sometimes inaccurate if there are systematic errors 

or intrinsic linkages to a disease.4,5,7 These errors may affect protein detection in certain 

areas or types of protein. Using additional housekeeping proteins can help identify these 

errors and serve as internal controls.

Statistical modeling algorithms may also be affected by input data and selected features/

factors (e.g., quality of samples and biomarker selection). For example, the clustering results 

can be greatly influenced by changes in samples and available features.8 In such scenarios, 

unsupervised machine learning (ML) may be particularly useful since it does not rely on 

the labels/annotations provided by experts but is driven by the intrinsic relationships of the 

samples.59,60 However, the performance of unsupervised ML may be worse than supervised 
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ML and thus should be compared with that of supervised ML.61 Sample selection, variables, 

and study goals need to be clarified beforehand to achieve a more meaningful result.

The same statistical method can be performed using various formulas, which focus on 

different principles or data types and generate different results. For example, clustering 

analysis can generate different heat maps using different distances as units, such as 

Euclidean distance, Manhattan distance, Pearson correlation, minimum distance, and 

maximum distance. Even for the same dataset, different ML models can achieve varying 

classification accuracy and performance.8,62,63 Moreover, there is no best or standardized 

statistical algorithm to fit all data types, especially unknown data. Therefore, an optimized 

statistical model should not only be based on the data itself to seek the most reasonable 

formula but also on clinical significance and dataset characteristics. This is probably the 

biggest challenge during data analysis. Therefore, model optimization and comparison 

should also be performed to ensure that the best-fit model is identified and used while 

minimizing the risk of overfitting.6,64–66

Data deposition, integration and harmonization

Research and clinical communities are integrating and standardizing data from different 

studies and sources for a bigger picture of the signaling network and greater statistical 

power. However, several challenges remain in collecting and merging datasets currently.67 

(1) The two major omics data depositories, which include proteomic data, are the Gene 

Expression Omnibus hosted by the National Library of Medicine, National Institutes of 

Health, Bethesda, MD, USA, and the ArrayExpress by the European Molecular Biology 

Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK.68 However, 

there are limited publicly available resources for acquiring proteomics and genomics data, 

which makes assessing signaling network changes among the DNA, mRNA, and protein 

levels difficult in a target disease due to limited overlapping molecules. Indeed, 33.8% 

of the datasets in the ProteomeXchange consortium were unreleased.69 These two omics 

data depositories also focus on genomic and transcriptomic data. While the PRoteomics 

IDEntifications (PRIDE) database, part of the ProteomeXchange consortium, has more 

proteomic data,70 how to incorporate the 3 omics data types remains challenging. (2) 

Particularly with clinical samples, protecting patient identity is becoming and should have 

become a priority for database repositories.69,71,72 It is legally and ethically challenging 

to balance excessive administrative burdens with sufficient patient protection. (3) Sample 

preparations in different research or clinical settings will increase system errors and 

noises in multi-omics analysis. Therefore, it is essential to use a standardized protocol, 

common data standards, and annotation guidelines during the experiment and computational 

processing to simplify and acquire qualified data for further data sharing, merging, 

integration, and mining. Efforts have been focused on standardized submission and data 

protocols.67,68,73,74 (4) Nearly all proteomic data repositories are designed to accept MS-

based data, while non-MS-based data such as that from ngTMA and multi-bead-based 

technology are currently incompatible.69 This has become a future direction for the 

ProteomeXchange consortium.
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Clinical validation and considerations

Approximately 3,000 genomic and proteomic biomarkers are currently used in clinical 

trials involving more than 2,000 diseases.75 However, a significant bottleneck in developing 

useful and marketable proteomics-based assays is the step of moving into clinical validation, 

with or without a clinical trial.22,76 Any qualified clinical validation study should have not 

only high sensitivity and specificity but also high precision and high accuracy.77 These 

characteristics are affected by specimen collection, storage, and processing, which are often 

not assessed in the scientific research phase. Developing clinical tests, including multi-step 

procedures that must also be easy to perform with good reproducibility, can be difficult.22 

Besides, a complex clinical environment is usually not conducive to high-throughput assays. 

Cross-contamination is still common and difficult to completely remove/prevent, even for 

procedures performed in different areas such as the clean area (pre-test room), reaction area 

(test room), and contaminated area (post-test room).78

Furthermore, real-world clinical settings are more complex than research settings. Patients’ 

existing treatments and comorbidities are major barriers between real-world and research 

settings. They may interfere with or confound the expected clinical usefulness of proteomic 

markers and thus decrease the generalizability of research studies.78 MS might be highly 

specific, but clinical laboratories may need higher sensitivity from an (immune) assay 

platform.79 Indeed, it is relatively straightforward to incorporate a particular protein variant 

into a clinical setting as a screening marker that is sensitive but less specific for a disease 

or diagnosis. Moreover, other reasons may also significantly delay the clinical application of 

proteomics, including researchers’ lack of understanding of clinical validation requirements, 

long development turnaround times, the lack of ready-to-use quality control and calibrators, 

and the lack of necessary paperwork and regular maintenance. A sufficient number of both 

positive and negative samples for clinical validation is a unique but not uncommon challenge 

for small laboratories.

How to meet these challenges

Technological advances, stringent data validation, model optimization, and rigorous 

validation processes are key to successfully meeting these challenges in clinical 

proteomics.20,80 PTM, as part of the challenging protein property, can be effectively 

monitored using advanced MS technologies, such as iTRAQ, multiplexed proteome 

dynamics profiling, and data-independent acquisition (DIA) MS.81–83

Several considerations are noteworthy for improving the statistical modeling of high-

throughput clinical proteomics.20 First, rigorous and high-performance statistical modeling 

relies on robust data validation and quality control processes, which must be ensured 

through document control and implementation. Second, all ML modeling must be compared 

with conventional or existing modeling and undergo an optimization (tuning) process for the 

best performance. Third, an external dataset should be used as the independent test set so 

that the generalizability of the final (chosen) model can be reliably and independently tested.

Finally, although proteomics-based clinical trials lag behind other diagnostic modalities 

(e.g., genomics), plasma proteomic and metabolomic data may greatly help guide 
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precision oncology.19,20,84–86 When developing clinical proteomic tests, attention should 

be directed to each of the pre-analytics, method development, performance evaluation, 

and implementation steps.85 Several groups called for standardization and stringent quality 

control processes for the clinical use of proteomic biomarkers.19,20,85 Education and training 

of laboratory staff are also important for the robust validation and implementation of clinical 

proteomics.85

Advantages

Global networks

Understanding cell signaling networks involved in disease and carcinogenesis has 

significantly advanced our knowledge of disease mechanisms and cancer initiation. 

These networks provide a global picture of protein-protein interactions, pathway-pathway 

interactions, and the significant functions of each pathway and subnetwork group.87 

Protein signaling network alterations, as part of a multi-step model of carcinogenesis, 

result from genetic, epigenetic, transcriptomics, etc. For example, PPA allows digitalized 

protein expression to be combined with genomic data to create a more comprehensive 

multi-dimensional signaling network of diseases.8 This network can be further integrated 

with existing knowledge, such as epidemiological data and digital pathology. A proteomic 

network, including large-scale PPI discoveries, will thus bridge the gap between genomics 

and biological functions, refining or reshaping our understanding of diseases.88,89 

Furthermore, the entire network has great potential to investigate the functions and 

relationships of proteins and metabolites that reflect the disease’s hallmarks, and to 

understand the strength of each group of PPIs, enabling the discovery of driver proteins 

or driver pathways.90,91 The single protein expression with the most statistical differences 

is not necessarily the protein that affects biological functions the most in the network, 

nor are they the driver proteins that affect the entire network changes or the independent 

factors that affect disease progress. Therefore, biostatistical models and artificial intelligence 

can recombine all of the biomarkers and optimize them into a panel,89 providing higher 

specificity than single-protein assays to meet different clinical needs, such as early 

diagnosis, prognosis prediction, and targeted treatment. This enables truly personalized 

medicine because each biomarker contributes differently to each clinical setting.

Discovery of new proteins

Unlike immunoassays, MS-based methods do not require the development of high-affinity 

antibodies specific to each protein epitope. They allow the simultaneous sequencing of 

hundreds of proteins in a wide variety of biological matrices, including fresh cells, 

frozen tissues, and formalin-fixed paraffin-embedded tissues.92,93 MS-based methods can 

discover unknown proteins by powerful searching against a protein sequence database and 

quantifying them in a complex compound with high sensitivity, which is the cornerstone 

of identifying biomarkers and exploring the proteomics network.18,19 Moreover, various 

types of chemical groups in the peptide structure, such as phosphate groups involved 

in PTMs, can be captured and mapped back to protein sequences to infer the expressed 

proteins.94,95 Increasingly popular and improving MS technology makes protein discovery 
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easier, resulting in more comprehensive proteome coverage for various organisms and 

generating a wealth of information stored in databases and bioinformatics repositories.

Multi-omics

The complex signaling pathway mechanisms that trigger oncogenesis or disease are 

not dependent on any single factor or only on the proteomic level but instead on the 

comprehensive effects from genomic and transcriptomic to proteomic alterations. Any 

individual protein is regulated by PPIs, mRNA, and DNA, working cooperatively in 

intricate signaling networks.87,89,96 Moreover, protein levels cannot be directly predicted 

by mRNA abundance, and protein dynamics are also dependent on other factors such 

as epigenetic and transcriptional regulation, which work together to alter protein levels, 

abnormal structural conformation, and impair function. Therefore, a multi-omics approach 

is required to characterize the complex pathophysiology of oncogenesis and explore and 

reshape the mechanisms of pathogenesis at the molecular level.97–99 Integration of data 

across -omics areas is promising because it provides a comprehensive view of genomic 

mutations and transcriptional abnormalities, promoting basic research on cells and animals. 

Thus, an exciting term and field, namely proteogenomics, has been developed.100,101 For 

example, Cao et al.102 conducted a comprehensive proteogenomic study on 50,000 MS runs 

of more than 900 projects. Among the 170,529 identified novel peptides, only about 1/30 

(6,048) passed their strictest standard, which included being identified in more than two MS 

runs, more than one PRIDE project, and other criteria.

Currently, the diagnosis, evaluation, and treatment of most cancers are based on limited 

protein biomarkers or mutations combined with clinical presentation or characteristics. The 

integration of “omics” data can serve as the cornerstone of modern medicine to identify 

a new panel of biomarkers at the molecular level.103 These profiles, generated by the 

statistical models of multi-omics data, can ultimately serve as risk factors for disease, 

diagnostic assays for early detection, therapeutic markers for personalized treatment, 

and many other applications in medicine. A single candidate, whether protein, gene, 

or clinicopathological characteristics, is often insufficient or ineffective in providing a 

comprehensive evaluation due to the complexity of human tumors and carcinogenesis.104,105 

Furthermore, as accumulating patient specimens undergo multi-omics analysis, a larger 

sample size with a more diverse population will allow the identification of additional low-

frequency driver markers and mutations, especially in rare diseases.

Future directions

The clinical applications of high-throughput proteomics are still limited. Therefore, it is 

crucial to develop a roadmap for the future. We here recommend a roadmap focusing 

on single-cell biology, individualized proteomics, digital pathology, pathology informatics, 

deep learning modeling, and new proteomic technologies (Fig. 3).
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Proteomics based single cell biology and its clinical applications

Single-cell mass cytometry is increasingly applied in various biomedical fields as the vast 

heterogeneity between cells of the same tissue is gradually recognized in medicine.106–

109 This technology will likely help create a new division of modern biology, termed 

single-cell proteomics, providing unique biological insights at the single-cell level.110 For 

example, protein extraction-based proteomics techniques, such as Western blot or PPA, are 

challenging to identify whether the target protein is highly expressed in a small portion of 

cells or weakly expressed in most cells. A sufficiently large population of single cells can be 

studied as a time series of “snapshots” to recreate a timeline of dynamic biological processes 

of disease. Next-generation sequencing, as the ultra-high-throughput transcriptome analysis, 

has tremendously improved sensitivity and increased capacity in genomics, allowing the 

identification of numerous new genetic variables in rare cell populations.25 Single-cell 

proteomics can similarly provide maximal information to uncover the uniqueness of each 

cell in proteomics and has been recently applied to multiple myeloma, chimeric antigen 

receptor T cell therapy, and ovarian cancers.111–113

Li et al.114 described a nanoliter-scale oil-air-droplet chip for multistep complex sample 

pretreatment and injection for single-cell proteomic analysis in the shotgun mode, 

identifying 355 proteins at the single-cell level (mouse oocyte). Zhu et al.115 developed 

the nanoPOTS (nanodroplet processing in one pot for trace samples) platform, which 

can identify over 3,000 proteins from as few as 10 cells using the Match Between Runs 

algorithm of MaxQuant. They demonstrated the quantification of 2,400 proteins from a 

single human pancreatic islet within sections using this system. Ctortecka et al.116 further 

developed the proteoCHIP for preparing single-cell proteomics samples and can detect 

2,000 proteins per TMT10-plex in single cells that were 170 multiplexed across various 

human cell types. Krieg et al.117 used high-dimensional single-cell mass cytometry for 

an in-depth characterization of immune cell subsets in the peripheral blood of patients 

with stage IV melanoma to predict responses to anti-PD-1 immunotherapy. Various new 

mass-based cytometry technologies significantly promote high-dimensional proteomics of 

single-cells,118 opening an exciting field to understand the complicated relationship between 

tumor cells and the environment and bringing higher clinical value for precision medicine.

Individualized proteomics

Polymorphisms, as individual modifiers of distinct genetic traits, widely influence the 

genome-based global arrangement of proteomics, resulting in a unique proteomic signature 

for each individual. Moreover, the structure and expression of the proteomic network 

vary in functional efficiency, known as “network polymorphisms”.119,120 Furthermore, 

individual variations lead to different biochemical and physiological baselines. Various 

modifiable factors, such as smoking, stress, obesity, and nutrition, accumulate in each 

individual with aging, shaping their unique genome, epigenome, and proteome together to 

contribute to disease development.121 Therefore, assessing and monitoring an individual’s 

proteotype of oncogenic proteomic profiles will contribute to the evolution and expansion of 

individualized precision medicine, ensuring that the right intervention, including diagnosis 

or treatment, is provided to the right person at the right time.26,119
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Pathology informatics and digital pathology

Pathology informatics and digital pathology have emerged in recent years with the rapid 

development of imaging and computational technology. They enable us to perform more 

clinical tasks in a shorter time and generate a large amount of medical data. Novel sources 

of data from electronic medical records, pathology images, and bio-information,122 recorded 

by wearable personal trackers (e.g., heart rate, activity, sleep, weight), along with multi-

omics data, are incorporated into a comprehensive dataset, providing a broader view of 

disease. No single analytical domain holds the keys to all aspects of disease development, 

diagnosis, and treatments.37,92,123 These detailed multi-dimensional explorations enable 

proteomics to play a significant role in the near future. The new multi-dimensional 

data resources provide a new foundation to generate more comprehensive proteomics 

biomarkers or panels for modern precision medicine. In turn, proteomics in this integrated 

multidisciplinary context can provide robust information to rethink and uncover the 

pathogenesis or specific patterns during the course of disease.

Deep learning

Deep learning, a subdiscipline within artificial intelligence and ML, focuses on algorithms 

that enable computers to learn to solve problems from existing data (training data).124 

With its powerful computing and learning capabilities, deep learning can handle complex 

situations far beyond what the human brain alone can accomplish.125 It is particularly 

well-suited for processing massive (big) data with strong internal correlations from high-

throughput multi-omics, assisting in diagnosis.126 Deep learning can accelerate the statistical 

analysis and data visualization of existing proteomics methods. For example, MS data are 

analyzed by peaks, that represent ions with a specific mass-to-charge ratio and can be 

biomarkers due to their similarity in the massive sequence database, without determining 

which peptides or proteins are actually present.127 During this process, deep learning can be 

a powerful tool to identify biomarkers with higher accuracy.89,128,129 It allows us to explore 

large, comprehensive datasets combining data from multi-omics.130

Although multiple ML applications have been used to assist with proteomic data analysis, 

there remains substantial room for improvement.131 Traditional data analysis is based on 

digital matrices converted from raw image results through multiple steps. For example, 

the size and density of each band from the antibody-antigen reaction, generated by a 

protein pathway array, need to be manually converted to numeric data. This multi-step 

manual processing can cause various systematic errors and make data difficult to merge. 

Convolutional neural networks and recurrent neural networks, types of deep learning/

neural network-based multilayer artificial neural networks, are particularly useful for image 

analysis. They allow algorithms and statistical models to be built directly on the original 

image results rather than manually converted digital data. This approach may significantly 

improve the accuracy and efficiency of proteomics data analysis and increase the availability 

of high-quality public data resources.74,132,133

New proteomic technology

New proteomic technologies are rapidly developing and currently include DIA MS, 

nanopore-based proteomics, Python-based high-efficiency data processing packages, 4-D 
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proteomics, and secondary ion MS. For example, the SWATH-MS system, a type of 

DIA MS, systematically fragments and measures all ionized peptides within a predefined 

mass range, resulting in fewer biases and better consistency than using the window of 

precursor isolations.134 In SWATH-MS measurements, peptide-centric scoring is often 

used and requires a thorough understanding of the peptide’s chromatographic and mass 

spectrometric characteristics.134 Based on a conceptually novel MS machine,135 an ultra-fast 

label-free DIA MS (named narrow-window DIA MS) was recently proposed, combining 

high-resolution MS1 scans and parallel tandem MS/MS scans of ~200 Hz, delivering high 

sensitivity, specificity, and speed.136 Nanopore, known for its low cost and high sensitivity 

in DNA/RNA sequencing, may also be applied to label-free proteomics.137 A Python-based 

package (AlphaPept) was developed to efficiently process large high-resolution MS datasets 

using both central processing unit and graphics processing unit.138 The introduction of 

4-D proteomics, with the fourth dimension of ion mobility (system), expands the depth 

of proteomics and has been coupled with DIA MS.139–142 Secondary ion MS involves 

the detection and mass-to-charge ratio analysis of secondary ions generated when sample 

surfaces are bombarded with energetic ions,143 offering very granular surface chemical data 

and sub-monolayer sensitivity. It is noteworthy that these new proteomic technologies can 

be integrated to generate synergistic outcomes. For example, 4D-proteomics combined with 

DIA MS reportedly improves detection sensitivity.142 DIA MS was also used to explore 

single-cell proteomics.144

We must balance innovation and compliance when applying new proteomic technologies 

to clinical problems. Innovations in technology will certainly shift the paradigm in clinical 

proteomics. However, without rigorous validation in multiple datasets and high-level clinical 

evidence, new technologies, including proteomics, must not be directly used for clinical 

care, even as a laboratory-developed test (LDT).145,146 Indeed, the College of American 

Pathologists has a policy requiring rigorous validation of LDTs, and the U.S. Food and Drug 

Administration is also likely to regulate LDTs.147

Conclusions

High-throughput proteomics is increasingly being applied to translational research, clinical 

practice, and public health. While others have elegantly reviewed advances in pancreatic 

cancer, soft tissue sarcomas, or medicine as a whole, we briefly summarize recent advances 

in the clinical applications of high-throughput proteomics in breast cancer, colorectal cancer, 

gastric cancer, bladder cancer, laryngeal squamous cell carcinoma, and COVID-19. Future 

applications of high-throughput proteomics will face challenges related to various protein 

properties, limitations of statistical modeling, and technical and logistical difficulties in 

data deposition, integration, and harmonization, as well as regulatory requirements for 

clinical validation and considerations. However, we are encouraged by the advantages of 

high-throughput proteomics, including novel global protein networks, the discovery of new 

proteins, and synergistic incorporation with other omic data. We look forward to future 

advances in high-throughput proteomics, such as single-cell proteomics and its clinical 

applications, individualized proteomics, pathology informatics, digital pathology, and deep 

learning models for high-throughput proteomics. In our view, recent and future advances in 
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high-throughput proteomics will in our view drastically shift the paradigms of translational 

research, clinical practice, and public health.
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Fig. 1. The challenges and advantages of high-throughput proteomics.
The figure was generated using a template of Slidesgo (https://slidesgo.com/).
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Fig. 2. Commonly used proteomics platforms.
Bead-based array system includes commercially available Luminex and Meso-scale 

Discovery (MSD®) assays, while the mainstream aptamer-based proteomic system is 

SOMAscan® assay.
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Fig. 3. The roadmap toward the future includes the six major directions.
The figure was generated using a modified template of Slidesgo (https://slidesgo.com/).

Cui et al. Page 25

Explor Res Hypothesis Med. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://slidesgo.com/

	Abstract
	Introduction
	Advances in the clinical applications of proteomics
	Breast cancer
	Colorectal cancer
	Gastric cancer
	Bladder cancer
	Laryngeal squamous cell carcinoma
	Coronavirus disease 2019 (COVID-19)

	Challenges
	Protein property
	Statistical modeling
	Data deposition, integration and harmonization
	Clinical validation and considerations
	How to meet these challenges

	Advantages
	Global networks
	Discovery of new proteins
	Multi-omics

	Future directions
	Proteomics based single cell biology and its clinical applications
	Individualized proteomics
	Pathology informatics and digital pathology
	Deep learning
	New proteomic technology

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

