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Pan-cancer proteogenomic landscape of whole-genome
doubling reveals putative therapeutic targets in various
cancer types

Dear Editor,
Whole-genome doubling (WGD) occurs in various can-

cer types and plays a crucial role in tumour development
and genomic instability.1,2 However, the proteogenomic
characteristics and molecular regulators governing WGD
have yet to be elucidated. By integrating large-scale multi-
omics data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC),3 we classified three types of WGD
tumours across cancer types. This study elucidates the
mutational signatures, molecular pathways, transcription
factor (TF) regulation and kinase phosphorylation net-
works enriched in tumours withWGD to explore potential
drug targets.
Our study integrated genomic, transcriptomic, pro-

teomic and phosphoproteomic data from 1060 samples
representing 10 cancer types including breast cancer
(BRCA), clear cell renal cell carcinoma (CCRCC), colon
adenocarcinoma (COAD), glioblastoma (GBM), high-
grade serous carcinoma (HGSC), head and neck squamous
cell carcinoma (HNSCC), lung squamous cell carcinoma
(LSCC), lung adenocarcinoma (LUAD), pancreatic ductal
adenocarcinoma (PDAC) and uterine corpus endometrial
carcinoma (UCEC) (Figure 1A). WGD was found to be
prevalent in 42% of tumours, with the highest in HGSC
(83%) and the lowest in PDAC (9.4%) (Figure 1B,C; Table
S1A). Although no clinical phenotypes were associated
with WGD status across pan-cancer, the advanced tumour
stage was linked toWGD status in HNSCC (false discovery
rate [FDR] < .05) (Figure S1A,B).
Mutation signature analyses showed that WGD was

associated with specific copy number (CN) signatures
(Figure 1D; Table S1B). WGD in LSCC, LUAD and HNSCC
showed enrichment for either or both CN7 and CN15
signatures (FDR < .05). Since CN7 indicates chromothrip-
sis amplification and CN15 indicates chromosomal loss-
of-heterozygosity (LOH) with twice-genome-doubling,4
WGD in LSCC, LUAD and HNSCC may have occurred
within a highly unstable genome. WGD in BRCA and
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HGSC was enriched for CN11 (focal LOH with twice-
genome-doubling) (FDR < .05), suggesting that WGD in
these malignancies occurred within a focally unstable
genome. ManyWGD samples from CCRCC, COAD, GBM,
PDAC and UCEC were found to be enriched for CN2
(FDR < .05), indicating tetraploidy. Consequently, three
WGD types were defined: ‘WGD type 1 (highly unsta-
ble genome)’ in LSCC, LUAD and HNSCC; ‘WGD type
2 (focal instability)’ in BRCA and HGSC; ‘WGD type 3
(tetraploidy)’ in CCRCC, COAD, GBM, PDAC and UCEC
(Figure 1E).
Driver mutations associated with WGD were identified

in each tumour type. Whereas previous studies suggest
enrichment of TP53 mutations in WGD tumours,1,2 we
identified enrichment of TP53 mutations exclusively in
the WGD-positive samples of BRCA, COAD, UCEC and
LUAD (p < .05) (Figure 1F; Table S1D). Moreover, we
found that more than 80 gene amplifications resulted in
gene and protein expression upregulation (involved in cell
cycle and metabolism) in WGD-positive LSCC, LUAD and
HNSCC (WGD type 1) (Figure S1C; Table S1D,E). Addition-
ally, more than 100 mutations were enriched in WGD type
1 (p < .05), whereas other cancer types exhibited <15 sig-
nificant gene mutations associated with WGD. As a highly
unstable genome has a high level of tumour mutational
burden (TMB),5 WGD type 1 had a higher TMB in WGD-
positive than inWGD-negative tumours (p< .05;Wilcoxon
rank-sum test) (Figure S1D,E). COAD exhibited lower
TMB in WGD-positive tumours than in WGD-negative
tumours (p < .001; Wilcoxon rank-sum test) and TP53 and
APC mutations were augmented in WGD-positive COAD
(p < .05; Fisher’s exact test) (Figure 1F). Genomic insta-
bility is therefore a catalyst for WGD in LSCC, LUAD and
HNSCC, whereas TP53 and APC mutations may serve as
primary drivers of WGD in COAD.
Pathway analysis revealed distinct biological processes

enriched in WGD tumours across different cancer types
(Figure 2A; Table S2A,B). Although previous studies have

Clin. Transl. Med. 2024;e1796. wileyonlinelibrary.com/journal/ctm2 1 of 7
https://doi.org/10.1002/ctm2.1796

http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/ctm2
https://doi.org/10.1002/ctm2.1796


2 of 7 LETTER TO THE JOURNAL

F IGURE 1 Copy number signatures associated with whole-genome doubling (WGD). (A) Schematic representation of the multi-omics
datasets collected for each cancer type and the subsequent analysis pipeline. (B) Distribution of the WGD fraction within the Clinical
Proteomic Tumour Analysis Consortium (CPTAC) cohort, displaying a bimodal pattern. (C) Prevalence of WGD by cancer type. (D) Heatmap
based on copy number signature exposure values in samples with WGD. Copy number signatures were derived from the Catalogue of Somatic
Mutations In Cancer (COSMIC). (E) Uniform manifold approximation and projection (UMAP) plot based on signature exposure values of
single-base-substitution, double-base-substitution, indel and copy number alteration. Each dot indicates samples and is colored based on
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WGD fraction (top) and cancer types (bottom). (F) Dot plot depicting differentially mutated genes in WGD in each cancer type. High-grade
serous carcinoma (HGSC) and glioblastoma (GBM), which had no significantly enriched mutations in WGD, are not shown. The position of
each dot along the x-axis and the colour of the dots indicate signed p-values obtained using Fisher’s exact test. Only the top three significant
genes were labelled in each cancer type, except for colon adenocarcinoma (COAD) and pancreatic ductal adenocarcinoma (PDAC), which
had only two and one significant genes, respectively. In lung adenocarcinoma (LUAD), PTPRN, GRIN2B, ANPEP and ADGRE1 genes
exhibited the same p-values, and TP53 was additionally labelled. BRCA, breast cancer; CCRCC, clear cell renal cell carcinoma; HNSCC, head
and neck squamous cell carcinoma; LSCC, lung squamous cell carcinoma; UCEC, uterine corpus endometrial carcinoma.

F IGURE 2 Pathway enrichment in whole-genome doubling (WGD)-positive tumours. (A) Normalised enrichment scores (NES) of
pathways related to cell motility, immune response, cell cycle and metabolism in WGD-positive tumours. Pathways exhibiting significance
(FDR < .05) and a log fold-change > .25 are shown. (B and C) Boxplot comparing NES scores of cell cycle (HALLMARK_E2F_TARGETS) and
immune response pathways (GOBP_IMMUNE_RESPONSE) between WGD-positive and WGD-negative tumours in individual cancer types.

reported upregulation of the cell cycle and downregulation
of immune response pathways in WGD,1,2,6 this pattern
was specific to WGD type 1 (Figure 2B,C). WGD type 2
tumours were enriched for the dTTPmetabolism pathway,
which is responsible for DNA synthesis and mainte-
nance, and the DNA endoreduplication pathway, which
is a known mechanism inducing WGD7 (Figure S2A,B).
WGD-positive COAD demonstrated significant activation
of theWnt signalling pathway, putatively attributed toAPC
mutation8 (Figure S2C).
To identify a potential therapeutic target for WGD

tumours, TF activity was measured using the gene expres-
sion profile of WGD tumours. E2F family and MYC TFs
were activated in pan-cancer WGD tumours, particularly
in WGD type 1 (FDR < .1) (Figure 3A,B; Table S3A,B).
Since many TFs have been deemed as ‘undruggable’,9 we

developed an integrative framework incorporating pro-
tein expression, cancer dependency and patient survival
data to prioritise WGD-activated TFs as therapeutic tar-
gets (Figure 3C). Hence, BPTF was identified as a putative
target for WGD-positive HNSCC tumours with poor prog-
nosis (Figure 3D–F). Potential targets forWGDwere found:
GLI2 (LSCC), TFDP1 and TFDP2 (LSCC, HNSCC, PDAC
and HGSC), E2F3 (LUAD) and SREBF2 (BRCA) (Figure
S3A–I; Table S3C). We further validated that the knock-
down of E2F3 in WGD-positive LUAD cell lines, and
BPTF, SFPQ and REST in WGD-positive HNSCC cell
lines resulted in a greater reduction in viability relative to
WGD-negative cell lines (Figure 3G).
As kinases are well-known druggable proteins,9 we

estimated kinase activity using proteomics and phospho-
proteomics profiles of WGD tumours and constructed a
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F IGURE 3 Determining potential therapeutic targets among activated transcription factors (TFs) in whole-genome doubling (WGD).
(A) Dot plot depicting estimated TF scores in WGD-positive versus WGD-negative tumours across pan-cancer analysis. The top and bottom
five TFs, ranked by TF score, are labelled. (B) Significantly upregulated TFs in WGD in each tumour type. The tiles are coloured based on the
TF estimation score; TFs meeting the criteria of FDR < .05 and TF score > 3 are denoted with asterisks. (C) Schematic diagram showing the
filtering processes to identify effective therapeutic targets. The number of TFs or the name of TFs remaining after each step is indicated on the
right. (D) Volcano plots of differentially expressed proteins among significant TFs in WGD-positive tumours versus WGD-negative tumours.
(E) Boxplots comparing log2 cell viability between WGD-positive and WGD-negative cells after depleting genes with CRISPR in each cancer
cell line. (F) Kaplan–Meier curve of overall survival based on protein expression levels of BPTF in head and neck squamous cell carcinoma
(HNSCC). (G) Cell viability assay for functional validation of identified TF targets. Specifically, E2F3 in lung adenocarcinoma (LUAD) and
BPTF, REST and SFPQ in HNSCC were tested as these TFs were identified as promising targets and were experimentally available. Point
indicates mean viability and error bar indicates standard deviation. p-Values from paired t-tests are denoted with asterisks. *p < .05, **p < .01,
***p < .001 and ****p < .0001.
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F IGURE 4 Drug repurposing strategies to target key kinases in whole-genome doubling (WGD). (A) Kinases with significant
upregulation of expression in association with WGD in each tumour type. The tiles are coloured based on the kinase estimation score and
kinases showing statistically significant upregulation are denoted with asterisks. (B) Dot plot depicting differentially expressed proteins
among significantly upregulated kinases in WGD-positive tumours versus WGD-negative tumours. Six cancer types with significant kinase
activation in WGD are displayed (lung squamous cell carcinoma [LSCC], lung adenocarcinoma [LUAD], head and neck squamous cell
carcinoma [HNSCC], breast cancer [BRCA], pancreatic ductal adenocarcinoma [PDAC] and colon adenocarcinoma [COAD]), excluding
COAD, which had no kinases with significantly upregulated protein expression. Kinases with significant upregulation of protein expression
(FDR < .05 and log2 fold-change > 0), as well as activation (FDR < .1), have been labelled. (C) Drug repurposing network for key kinases
associated with WGD in each tumour type. Six cancer types with significant kinase activation of WGD are shown (LSCC, LUAD, HNSCC,
BRCA, PDAC and COAD).

drug-repurposing network targeting kinases upregulated
in WGD. We observed cancer-type-specific activations in
WGD tumours, including CDK1/2 in cell cycle regulation,
CSNK2A1 in DNA damage response, PAK4 in prolifer-
ation and apoptosis suppression, and PRKAA2/ULK1 in
hypoxia-induced autophagy (Figure 4A,B; Table S4A).
This indicates that WGD accelerates cell proliferation dur-
ing tumourigenesis but also induces DNA damage and
hypoxia, necessitating kinase activation to inhibit apop-

tosis. The drug repurposing network analysis suggested
potential drugs with significant selectivity in WGD, such
as palbociclib (LSCC, BRCA), erlotinib, gefitinib and ner-
atinib (LSCC) and nintedanib (PDAC) (Figures 4C and
S4G–I; Table S4C).
In conclusion, our study presents the first proteoge-

nomic analysis to characterise the molecular features of
WGD across various cancer types. Three WGD types were
defined: WGD type 1 (highly unstable genome), WGD type
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2 (focal instability) and WGD type 3 (tetraploidy). Cell
cycle pathway activation and immune response pathway
inactivation were specific to WGD type 1. The integra-
tive framework characterised a comprehensive molecular
network from gene regulation to kinase–phosphorylation
activity and suggested BPTF as a putative target for WGD-
positive HNSCC. Further studies are warranted to evaluate
the efficacy of drugs targeting WGD-specific TFs and
kinases.
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